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In veterinary epidemiology, regression models are commonly used to describe 
animal health and related risk factors. However, model selection and evaluation 
present ongoing challenges—especially when many potential predictors, complex 
interactions, and limited sample sizes are involved. The VASIB project serves as 
a representative example, focusing on piglet-producing farms with persistent 
respiratory disease problems. Across 30 farms, a wide array of variables was 
collected at the farm, barn, compartment, pen, and individual animal levels, 
aiming to support optimized treatment and management strategies to improve 
respiratory health. This study investigates the occurrence of coughing in pigs 
using various epidemiological models, including hierarchical frequentist logistic 
regression, non-hierarchical Bayesian logistic regression (with full and partial 
pooling), and hierarchical Bayesian models with informative and non-informative 
priors. These approaches are evaluated and compared using statistical measures 
such as the corrected Akaike Information Criterion (AICc), marginal and conditional 
R2, and intra-class correlation coefficients (ICCc/ICCadj). In the frequentist models, 
convergence issues arose due to limited observations within clusters, which did 
not occur in the Bayesian framework. While the choice of priors had limited 
influence on Bayesian model results, differences between models suggest that 
prior specification can still be relevant. Thus, it is important to assess and compare 
various model structures—including both hierarchical and non-hierarchical, and 
Bayesian versus frequentist approaches—to capture the data’s complexity and ensure 
robust inference. Here, the Bayesian hierarchical models outperform frequentist 
models, especially in handling complex data structures and providing robust 
estimates. Across all models, stocking density and floor condition emerged as 
consistently significant factors influencing the likelihood of coughing. Overall, this 
work emphasizes that there is no universal rule for model selection in veterinary data 
analysis. Instead, a balanced, context-sensitive modeling strategy that considers 
both statistical and epidemiological perspectives is essential to derive meaningful 
and actionable conclusions for improving animal health.
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1 Introduction

The hygiene status of a farm is a major factor influencing animal 
health and is therefore a fundamental part of veterinary advice (1). 
However, the subjective rating of the veterinarian is prone to a lot of 
internal and external factors and may differ from visit to visit and can 
be  difficult to understand. For this reason, careful evaluation is 
needed, which factors measure the health outcome on farms in a 
harmonized form and highlight critical points in an understandable 
way. In general, from the epidemiological point of view, this evaluation 
is in line with a careful development of regression models, connecting 
the health outcome with a more or less complex set of interacting 
factors under study, which describe the several biosecurity measures 
and other influencing factors (2–5).

In this work, the development of regression models for data from 
daily veterinary practice is described. Within the research project 
VASIB, in selected farms with sustainable respiratory disease 
problems, the aim is to examine whether targeted diagnostic measures, 
optimization of the treatment strategy and comprehensive, intensive 
management advice can minimize respiratory symptoms and with this 
the use of antibiotics and thus make an active contribution to reducing 
the general development of resistance in livestock farming. To this 
end, the project is working on the development and validation of a 
model that can be used with onsite-farming data from veterinary 
practices with the aim of synergizing epidemiological data from 
veterinary preventive medicine and farm data (6).

However, to describe respiratory health in piglet production 
different herd measures, which are based on direct veterinary 
inspection and on information from the farmers may be used. Overall, 
this may be interpreted as a multivariate health outcome or the need 
of selection a representative surrogate to describe respiratory health. 
Within this investigation we  choose as a surrogate “coughing in 
piglets,” which is generally used in practice (7).

Nevertheless, many other factors must be considered, if coughing 
has to be described during the veterinary inspection visit. First, animal 
health data on a farm appears at farm, barn, compartment, pen and 
individual animal level. These hierarchical structures must 
be considered especially if factors respond in different ways, like the 
air- or feed borne transmission (8). Second, manyfold direct (causal) 
and indirect factors effect animal health, which are more or less 
associated within an interacting and partial correlated structure (9, 
10). And, if these multiple factors lead to a large number of different 
classes, they break down into multiple substructures, which usually do 
not contain a sufficient number of animals for a powerful 
epidemiological analysis. This at the end, causes missing data, which 
finally restricts the prognostic value of an epidemiological model (3).

Against this background the development of an epidemiological 
statistical model to be used for prevention in livestock farming is not 
a matter of highest quality and precision only, but a sophisticated 
model building process, which takes into account the needs of daily 
work data.

Classical statistical models often struggle to account for complex 
data structures, leading to potential bias when questionable or poorly 

defined covariates are included (3). To address this, advanced 
statistical methodologies, such as hierarchical or generalized models, 
are employed to better capture variability and dependencies in the 
data (4). Bayesian methods are particularly valuable in cases where 
prior knowledge exists, enabling the incorporation of expert insights 
into the modeling process for more robust and informed 
inference (11).

The objective of this paper therefore was twofold: first, to 
evaluate and compare the performance of different hierarchical 
regression modeling approaches—both frequentist and Bayesian—
applied to complex, nested data from piglet production systems, 
and second, to investigate the relevance of selected environmental 
and management-related predictors, such as floor condition and 
stocking density, on coughing as a clinically meaningful indicator 
of respiratory health in weaner pigs. This modeling process 
presented here is intended to support veterinary decision-making 
not only within the VASIB project, but also in routine 
farm settings.

2 Material and methods

2.1 Study design and data acquisition

The data used for this investigation was enrolled during the VASIB 
project on farms that were supervised by one veterinary practice 
network that is located in the Federal States of North Rhine Westphalia 
and Schleswig Holstein, Germany. Only farms with piglet and weaner 
production with sustainable respiratory health problems were selected 
for this investigation. Within this setting this study followed a single 
cross-sectional design. Data collection took place between April and 
November 2016 during scheduled veterinary visits.

For this paper, the primary health issue addressed is coughing, 
which in daily routine practice serves as a symptom indicative of 
underlying respiratory diseases in weaner pigs. The assessment focuses 
on multiple hygiene and management measures that can influence the 
respiratory health of pigs. Therefore, the basic health problems and 
biosecurity measures included in the assessment are:

	 1.	 Coughing: the primary indicator of respiratory distress in pigs, 
often linked to various environmental and management factors.

	 2.	 Barn hygiene: this includes cleanliness and the presence of 
contaminants in the barn environment, which can exacerbate 
respiratory issues.

	 3.	 Disposal hygiene: the management of carcasses and waste, 
which if poorly handled, can lead to health risks for 
living animals.

	 4.	 Isolation and transport: the conditions under which pigs are 
transported and isolated, impacting their exposure to stress 
and pathogens.

	 5.	 Hygiene of drug administration: the protocol for administering 
medications can affect the overall health and recovery of 
the animals.

https://doi.org/10.3389/fvets.2025.1611771
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Tug et al.� 10.3389/fvets.2025.1611771

Frontiers in Veterinary Science 03 frontiersin.org

	 6.	 Feed hygiene: the quality and cleanliness of feed can influence 
the health status of the pigs and their susceptibility to diseases.

	 7.	 Climate control: proper ventilation and climate conditions in 
barns are critical to maintaining respiratory health and 
preventing disease outbreaks.

	 8.	 Management husbandry: overall management practices, 
including grouping and caring for the animals, which can 
influence their health status.

	 9.	 Cleaning and disinfection: the frequency and effectiveness of 
cleaning procedures can prevent disease spread and improve 
overall hygiene in the barn environments.

For this, 30 piglet-producing farms with recurring respiratory 
tract disease problems in weaners were selected for an in-deep 
investigation. Overall, data was enrolled within 72 pigsties, 130 
compartments, and 300 pens respectively, and finally from 450 single 
animals. Although all farms were part of a common veterinary 
network, they were managed independently and did not belong to the 
same corporate ownership. Thus, differences in management style, 
resource availability, and biosecurity adherence exist. To partially 
control for such unobserved heterogeneity, we  used hierarchical 
modeling with random effects at the compartment and pen levels, 
which helps account for unmeasured clustering effects. However, 
we acknowledge that certain latent factors at the farm level—such as 
corporate protocols or feeding systems—were not directly modeled 
and may introduce unmeasured confounding. This limitation is 
discussed later in the discussion Section.

In preparation for the veterinary visit, a questionnaire was 
developed and evaluated beforehand. The questionnaire included 
management, biosecurity, feeding, medication and medical history 
aspects (181 items: 81% closed, 7% semi-closed, 12% open questions) 
was sent to the farmers. This information was verified and completed 
during a face-to-face interview at the start of the farm visit and 
missing values, or implausible answers were clarified (the original 
German version is on view at: https://www.tiho-hannover.de/institut-
fuer-biometrie-epidemiologie-und-informationsverarbeitung/
publikationen/zusatzmaterial-publikationen).

The information of the questionnaires, the checklist and the 
results of the clinical examination were entered in a SQL database 
developed for the study. All datasets were checked for plausibility 
and completeness.

For demonstration of the regression modeling process, the 
variables addressed in Table 1 were selected for this investigation.

In order to investigate the influence on cough in the study 
population hierarchical logistic (frequentist and Bayesian) regression 
models were used. Here, we include all levels [farms (30) → pigsties 
(72) → compartments (130) → pens (300)] as mentioned above. The 
pen sizes vary between 12 and 85 animals, from which overall 450 
animals were included into individual veterinary inspection (see 
Figure 1). The selection of animals was based on practical feasibility 
and clinical judgement during the veterinary inspection. Animals 
showing respiratory signs, especially coughing, were prioritized for 
inclusion. However, non-coughing animals were enrolled as well.

For these analyses, Table 1 presents information derived from 
1,298 variables, encompassing both qualitative and quantitative 
data. To reduce this number of variables to Table  1, an initial 
screening was conducted, during which all items were inspected for 
their relevance. Missing values were present in several variables, 

primarily due to incomplete documentation during routine on-farm 
assessments and occasional technical measurement issues. The 
overall proportion of missing values across the dataset was 23.1%, 
with individual variables showing between 0 and 100% missingness. 
Variables with more than 50% missing values (a total of 136 
variables) were excluded, along with alphanumeric variables (45 
variables) such as comments and text fields. Additionally, 
categorical factor variables with only a single level of expression 
(121 variables) were eliminated due to insufficient variability. 
Following this data cleaning, 228 variables remained in this dataset. 
To address potential multicollinearity, a heterogeneous correlation 
matrix, consisting of the usual Pearson product–moment 
correlation for continuous variables, the biserial or polyserial 
correlation for mixed continuous categorical variables and the 
polychoric correlations between several multilevel categorical 
variables (38, 39, p.  100f.) was computed. Highly correlated 
variables (correlation coefficient > 0.8) were removed. Following 
preprocessing, 29 variables, included both qualitative (categorical) 
and quantitative (continuous) measures, remain for further analysis.

Approximately 15% of the data in the first-visit dataset were 
missing and were handled using multiple imputation to ensure data 
integrity and avoid bias in the results. For quantitative variables, the 
predictive mean matching (PMM) method was used, in which real 
values are drawn from the available data to generate plausible 
replacement values for missing entries (12). Categorical variables (see 
Section 3.1 and Table 1) were imputed using a proportional odds 
logistic regression (POLR) model to adequately account for ordinal 
relationships between categories (13, 14). These methods made it 
possible to minimize the impact of missing data and perform a more 
robust analysis of factors influencing cough in pigs. The R software 
packages “mice” and “miceadds” are used for both imputation 
methods (15, 16). The hierarchical structure of the data—comprising 
animals nested within pens, compartments, and farms—was explicitly 
taken into account to ensure that the imputation procedure met the 
specific requirements of the dataset (13, 14). In order to address this 
structure, group-level identifiers (pen ID, compartment ID, farm ID) 
were included as auxiliary variables in the imputation models. 
Incorporating these identifiers as predictors enabled the procedure to 
capture clustering effects and to reflect the multilevel dependencies 
inherent in the data. By doing so, the imputation models preserved 
intra-cluster correlations and increased the plausibility of the imputed 
values under the assumption that data were missing at random (MAR).

The outcome variable, “coughing in piglets,” was not formally 
tested for conditional independence prior to model fitting. 
Conditional independence implies that the association between two 
variables disappears when conditioning on a third variable. While 
such tests can be informative, especially in causal modeling 
frameworks, they are often difficult to implement and interpret in the 
presence of multiple covariates and hierarchical data structures. Given 
the complexity and high dimensionality of the dataset, we prioritized 
the specification of hierarchical models that account for confounding 
and clustering effects by design, rather than performing separate 
conditional independence tests. Additionally, predictor selection was 
based on theoretical knowledge and previous studies.

Assumptions regarding independence, particularly in relation to 
modeling components such as Gaussian priors in the Bayesian 
framework, should be  interpreted cautiously. However, the 
hierarchical data structure and relevant dependencies were explicitly 
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addressed through appropriate model specification using both 
frequentist and Bayesian approaches.

2.2 Classical analysis of hierarchical model

Hierarchical regression extends classical regression by handling 
clustered data structured across multiple levels (see Figure 1). Here, 
the goal is to account for the variability at each level to analyze 
cluster effects (5). The key elements are varying coefficients and a 
model for these coefficients, possibly incorporating cluster-level 
predictors—features that distinguish hierarchical models from 
classical ones. Here, we examine frequentist hierarchical models 
and compare their applicability in the context of cough prevention 
in pig production.

For multilevel data, each level contributes a variance component 
that measures intraclass-correlation. As an example, we here consider 
a three-level model for the cough response, ( )π~ ,ijk ijky Ber  with 
cough probability π ijk for the k-th pig, located in the j-th pen in the i

-th compartment. Pigs (level 1) are nested in pens (level 2), which are 
nested in compartments (level 3); compartments are the primary 
units, pens the secondary units, and pigs the units of observation. 
These clusters are treated as random effects with an average effect of 
zero, and the analysis is performed using logistic regression. In 
addition to random effects capturing the hierarchical structure (e.g., 
pens, compartments), relevant predictors at the pig, pen and 
compartment levels—such as animal age, pen size, stocking density, 
environmental conditions, and hygiene indicators—are included as 
fixed effects in the hierarchical regression models. With this, the data 
are modeled by a logistic regression model (see Equation 1).

	

π
β β

π

 
= +  − 

1
0 1log

1
ijk

ij ijk
ijk

pig
	

(1)

where β0ij  is the intercept, β1 the coefficient associated with the 
pig-level predictor 1

ijkpig for = …1, , ijk n  pigs, = …1, , ij n  pens and 
( )1, , ,i n n∈= …   compartments.

TABLE 1  Variables and descriptions in the “initial” dataset.

Variable Description (categories) Level

Cough Do the pigs cough? (0 = no; 1 = yes) Animal

Clinical variables Sum of all clinical variables (0 = no symptoms; 1 = mild symptoms) Animal

Laboratory variables Sum of all laboratory variables, including blood Animal

Blood lab variables Sum of blood lab variables Animal

Pen ID ID variable for the pens Pen

Age Age of animals (in days) Pen

Animal contamination Degree of dirtiness of the animals (0 = no findings; 1 = slightly dirty; 2 = moderately dirty; 3 = heavily dirty) Pen

Skin injuries Animals with skin injuries (0 = none; 1 = few (up to 10%); 2 = some (up to 50%); 3 = many (over 50%)) Pen

Pen size Size of the pen (in m2) Pen

Stocking density Stocking density in the pens Pen

Compartment ID ID variable for the compartments Compartment

Water flow rate Water flow rate (in ml/min) Compartment

Temperature Recorded temperature (in  °C) Compartment

Air pressure Air pressure (in Pa) Compartment

CO2 level CO2 level (in ppm) Compartment

Relative humidity Relative humidity (in %) Compartment

NH3 level NH3-adjusted value (in ppm) Compartment

Floor condition Condition of the floor (1 = new; 2 = moderately worn; 3 = heavily worn; 4 = damaged) Compartment

Farm ID ID variable for the farms Farm

Disinfectant Frequency of disinfectant replacement in disinfection baths (1 = daily; 2 = weekly; 3 = when dirty; 4 = after emptying; 

5 = irregularly)

Farm

Proximity to next farm Proximity to the nearest pig farm (1 = <0.5 km; 2 = 0.5 km – 10 km; 3 = > 10 km) Farm

Target temperature – In Average target temperature when animals are housed (in  °C) Farm

Target temperature – 

Out

Average target temperature when animals are removed (in  °C) Farm

Respiratory diseases Batches affected by respiratory diseases last year (1 = few (up to 10%); 2 = some (up to 50%); 3 = many (over 50%)) Farm

Protective clothing Use of protective clothing outside barns (0 = no; 1 = yes, to cross the yard; 2 = yes, for other tasks) Farm

Minimum quarantine Minimum quarantine duration (in days) Farm

Maximum quarantine Maximum quarantine duration (in days) Farm

Winter Was the farm visited in winter? (0 = no; 1 = yes) Farm
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Each pen is modeled with its own logistic regression. The 
pig-level predictor 1pig  has the same effect across pens, while the 
pen-specific β₀ᵢⱼ captures differences between pens (see Equation 2):

	 β β β= + +2
0 0 2 0ij i ij ijpen u 	 (2)

where 2
ijpen  is a pen-level covariate and 0iju  a pen-level random 

effect. At the compartment level, the intercept is modeled as

	 β β= +0 0 0i iu 	 (3)

Substituting (2) and (3) into (1) yields

	

π
β β β

π

β

 
= + + +  − 

+ +

1 2
0 1 2

3
3 0 0

log
1

.

ijk
ijijk

ijk

i i ij

pig pen

compartment u u
	

(4)

Here, β3 represents an additional compartment-level covariate 
included as a fixed effect. This generalized linear mixed model 
includes two random effects— 0iu for compartments ( ( )2

0 0~ 0,i iu N σ )  

and 0iju  for pens ( ( )2
0 0~ 0, )ij iju N σ —which account for cluster-

specific variability (5). In practice, as in our final multivariable model 

fitted in R (see Section Results), multiple predictors at different levels 
were included simultaneously (e.g., animal age, pen size, stocking 
density, CO₂ concentration, ammonia levels, and relative humidity). 
This reflects the actual complex production setting more accurately 
than the simplified didactic formulation in Equations 1–4.

As illustrated in the VASIB example, with only five individuals 
per cluster, variance estimates may be unreliable, and substantial 
variability in the random effects can lead to biased estimates of the 
fixed effects. Hierarchical models are thus better able to handle 
dependencies in nested data than non-hierarchical approaches 
(17). Estimation of variance components is unreliable with as few 
as five individuals per cluster (17), and high variability in random 
effects can bias estimates, making hierarchical models that 
incorporate random effects to account for nested data superior in 
accuracy and fit to non-hierarchical models that assume 
independent observations.

2.3 Bayesian analysis of hierarchical model

Bayesian regression estimates parameters as distributions by 
combining sample data with prior knowledge, making it useful for 
complex relationships, non-convergence in maximum likelihood 
(ML) methods, and small samples (18). Non-hierarchical Bayesian 
models assume independence and ignore clustering, thereby risking 
bias, while hierarchical Bayesian models assign priors to capture the 
nested data structure.

For example, parameters such as 0β  (intercept) and 1β  (pig-level 
effect) can be  modeled with Gaussian priors, ( )20 1, ~ ,Nβ β µ σ
treating the data as a single population (“complete pooling”). The 
response variable is modeled as ( )π θ π, ~ijk ijk ijky Ber∣  with prior 
vector θ containing all level-specific β coefficients. For the 
compartment-specific intercepts, we assume (5)–(7):

	 ( )β β σ β σ 2
0 0 0 0 0, ~ ,i N∣

	
(5)

FIGURE 1

Hierarchical levels within the sample population.
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	 ( )β µ σ 2
0 ~ ,N

	
(6)

	 ( )σ0 ~ ,InvGamma a b 	 (7)

The level-specific regression coefficients follow (8):

	 ( )β β µ σ… 2
1, , ~ ,p N

	
(8)

Continuous predictors are standardized before model fitting, and 
parameter estimates are later back transformed to the original scale 
for interpretation. Specifically, the intercept on the original scale is 
obtained as

	



00 1
ˆ ˆp m

mm m

x
S

β β β
=

= −∑
	

(9)

where mx  and Sm are the mean and standard deviation of the m-th 
predictor, respectively. The regression coefficient of the m-th predictor 
on the original scale is then,

	



ˆ
m

m
mS
ββ =

	
(10)

Overall, the full Bayesian hierarchical model with highly 
informative priors is specified as (11):

	

π
β β β

π

β

 
= + + +  − 

+ +

1 2
0 1 2

3
3 0 0

log
1

,

ijk
ijijk

ijk

i i ij

pig pen

compartment u u

with random effects

	
( )2

0 0~ 0,i iu N σ
 
and

 
( )2

0 0~ 0, ,ij iju N σ

and priors

	 ( )β0 ~ 0,1N

	 ( )1 15, , ~ 0,1Nβ β…

	 ( )σ0 ~ 0.5,0.5i InvGamma

	 ( )σ0 ~ 0.5,0.5ij InvGamma 	 (11)

In practice, as in our final multivariable Bayesian model fitted in R 
(see Section Results), multiple predictors at different levels were included 
simultaneously (e.g., animal age, pen size, stocking density, CO₂ 
concentration, ammonia levels, and relative humidity). This reflects the 

actual complex production setting more accurately than the simplified 
didactic formulation in Equations 5–11. Unlike the frequentist models, 
Bayesian inference yields full posterior distributions for each parameter, 
allowing results to be summarized by means and 95% credible intervals 
rather than point estimates with confidence intervals.

In this investigation, we  compare the final multivariable 
frequentist hierarchical model (FM 1–3) with three Bayesian logistic 
regression models: a non-hierarchical model with non-informative 
priors (BM 1), a hierarchical model with non-informative priors (BM 
2 and 3), and a hierarchical model with highly informative priors (BM 
4 and 5). While additional frequentist models were used during model 
development (e.g., univariable screening), only the final model (FM 
2) was used for direct comparison with the Bayesian models.

Firstly, it should be noted that we employ Markov Chain Monte 
Carlo (MCMC) algorithms for model fitting. For all Bayesian models, 
four independent chains were run with 5,000 iterations each, of which 
the first 2,500 iterations per chain were used for warm-up. This leaves 
us with a total of 10,000 post-warmup draws. Calculations are done 
with the brms R package, version 2.17.0, and the statistical software R, 
version 4.0.5 (19). The brms package (20–22), with the help of the 
rstan package (23), uses the Stan platform to fit Bayesian hierarchical 
models. For further calculations and graphical representation ggmcmc 
(24), ggplot2 (25), bayesplot (26, 27), performance (28), tidybayes (29) 
and lme4 (30) were used.

2.4 Evaluation measures

In this study, several goodness-of-fit measures were employed to 
assess and compare model performance in both Bayesian and/or 
frequentist frameworks. Two key metrics were the R2 measures and 
the Akaike Information Criterion (AIC), along with its corrected 
version (AICC), as well as the Intraclass-Correlation Coefficient (ICC).

The R2 measure is divided into two types for hierarchical models: 
the marginal R2 (R2

m) and the conditional R2 (R2
c) (31). The marginal 

R2 represents the variance explained solely by the fixed effects, while 
the conditional R2 accounts for the total variance explained by both 
fixed and random effects. A large difference between these two 
indicates that a substantial portion of the variance is attributable to the 
grouping (random) effects, emphasizing the importance of properly 
modeling the hierarchical structure. In addition to the other model 
validation metrics, we calculated the Bayesian R-squared (Bayes R2) 
to assess the proportion of variance explained by the model. Unlike 
classical R2, the Bayesian R2 is derived from the posterior predictive 
distribution, providing a distribution of R2 values rather than a single 
point estimate. To summarize this distribution, we report the posterior 
median of Bayes R2 along with a 95% credible interval, which reflects 
the uncertainty inherent in the model fit. This approach allows us to 
present a single, interpretable R2 value while acknowledging the 
variability in model performance due to posterior uncertainty.

The ICC further breaks down the variance by measuring the 
proportion attributable to the random grouping factors (such as 
compartments or pens). This measure is critical for hierarchical 
models as it quantifies the degree of similarity within clusters. An 
adjusted ICC, which considers only the variance of the random effects 
relative to the total variance (random effects plus residual error), 
provides insight into the cluster-specific influence on the outcome. In 
the Bayesian models, a single intra-class correlation coefficient (ICC) 
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value was calculated based on the posterior distributions of the 
random effects. Specifically, the ICC was derived as the median of the 
posterior samples for the ratio of the random effect variance to the 
total variance (sum of the random effect variance and residual 
variance). This approach allows for a representative point estimate 
from the posterior distribution and follows the general 
recommendation for hierarchical models as outlined by Gelman and 
Hill (4). For the evaluation of the Bayesian models, Leave-One-Out 
Cross-Validation (LOO-CV) was employed to assess predictive 
performance. The LOO approach was implemented using the loo 
package in R, which provides an efficient approximation of out-of-
sample prediction error based on the expected log pointwise predictive 
density (elpd). Detailed results and comparisons between models 
using LOO are presented later in Section 3.4.

In frequentist models, these measures are derived from maximum 
likelihood estimates and are used alongside the AIC and AICC to 
compare models. The AIC balances model fit against complexity, 
where lower values indicate a better trade-off between the goodness 
of fit and parsimony. The AICC further adjusts for small sample sizes, 
providing a more reliable basis for model.

3 Results

3.1 General data structure and description 
of the sample population

After the data cleaning and imputation processes, the “initial” 
dataset for this paper contained a total of 29 variables (see Table 1), 
whereby these variables are both qualitative and quantitative in nature. 
The basis descriptive measures of these variables are displayed in 
Table 2. A critical assessment revealed that all variables associated with 
the pen level of the animals were highly correlated. This high degree 
of correlation indicated low variability between the pens within each 
farm. Specifically, in 27 out of the total 30 farms, all pigs were sourced 
from a single pen, underscoring the lack of diversity in pen conditions. 
Consequently, it was decided to exclude the pen level from further 
analyses to enhance the robustness of the results and reduce the risk 
of unstable parameter estimates due to multicollinearity.

As described in Section 2, the dataset comprised 30 farms with 15 
observations each (total n = 450), after correlated variables had been 
filtered out. Thus, the models were fitted to a streamlined and 
meaningful set of predictors relevant to the study objectives. The most 
important 14 variables are described descriptively in the following 
Table 2. Density plots of observed vs. imputed values for selected 
numerical variables, as well as convergence diagnostics (mean and 
standard deviation over 20 iterations), are provided in the 
Supplementary Figures S1–S3. Density plots were not generated for 
categorical variables, as they are not appropriate. The displayed trends 
indicate normal variation and convergence, with target values 
summarized in Table 2.

A total of 450 animals were included in this study. The average age 
of the animals was approx. 52 days, with an age range of 28 to 89 days. 
The average pen size was approximately 12 m2, with a range of 5.760 
to 25.750 m2. The stocking density averaged 0.388 animals per m2, i.e., 
1 animal per 2.577 m2. Floor conditions were predominantly classified 
as moderately worn (68.4%), while only a small proportion of pens 
were classified as new (31.6%). The water flow rate averaged 999 mL/
min, with a range from 100 to maximum values of up to 2,200 mL/

min. The average temperature was a pleasant 27.8 °C. The mean air 
pressure was approximately 1,009.8 Pa, with a range from a minimum 
of 989 Pa to a maximum of 1,032 Pa. The CO2 value averaged about 
2,248 ppm and ranged from 800 ppm to 5,000 ppm; while the NH3 
value averaged about 9.1 ppm and varied between 2 ppm and 30 ppm. 
The relative humidity of approximately 63.8%, which varied between 
45.2 and 78.5%.

Finally, 264 animals reported no coughing (58.7%), while 186 
animals suffered from coughing (41.3%). For the analyses, 
we  standardized the numerical variables and used them for the 
calculation. These results provide valuable insights into the health and 
husbandry conditions of the animal populations studied and their 
potential impact on animal welfare.

3.2 Results of frequentist models

Starting the model selection process, we  fit three hierarchical 
frequentist models (FM) without any explanatory variables first to 

TABLE 2  General descriptive measures of the sample population (n = 450 
animals from 30 farms).

Quantitative variables

Variable Mean Std. dev Min Max

Age in days 52.067 15.356 28.000 89.000

Pen size in m2 12.223 4.715 5.760 25.750

Stocking density 

in animals/m2
0.388 0.157 0.170 1.080

Water flow rate 

in ml/min
999.422 477.069 100.000 2,200.000

Temperature in  

°C
27.767 1.938 22.000 32.800

Air pressure in 

Pa
1,009,750 10.101 989.000 1,032.200

CO2 in ppm 2,247.556 980.917 800.000 5,000.000

NH3 in ppm 9.073 6.312 2.000 30.150

Relative 

humidity in %
63.748 7.963 45.200 78.500

Qualitative variables

Variable Category n %

Floor condition Moderately worn 308 68.4

New 142 31.6

Skin injuries 1 No 259 57.6

Yes 191 42.4

Skin injuries 2 No 346 76.9

Yes 104 23.1

Animal contamination 1 No 217 48.2

Yes 233 51.8

Animal contamination 2 No 310 68.9

Yes 140 31.1

Cough No 264 58.7

Yes 186 41.3

https://doi.org/10.3389/fvets.2025.1611771
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Tug et al.� 10.3389/fvets.2025.1611771

Frontiers in Veterinary Science 08 frontiersin.org

assess the impact of the cluster structure of the data. Table 3 shows the 
basic characteristics and measures of model fit for these basic models.

From the model estimates (using the Laplace approximation; see 
Table 3 for details) the log-likelihood of a pig coughing in an “average” 
pen is estimated as β = −0 0.62, i.e., the probability of suffering from 

coughing without the influence of other variables is 
( )
( )
−

+ −

exp 0.62
1 exp 0.62

=0.35 or 35%. The adjusted intraclass-correlation ( adjICC ) shows that 
between 41 and 48%, respectively, of the variation (compared with the 
total variance) in the outcome variable cough can be explained by the 
respective clustering structure of the data in the models. For FM 2 and 
FM 3, the ICC-values are the same, as adding the farm level does not 
seem to provide any additional information. There is not enough 
additional farm-level variation to justify adding an additional random 
effect at this level to explain all of the observed variation. Although the 
FM 1 confirms that there is variation between pens, the magnitude of 
this variation can be nearly fully explained by the variation between 
compartments and the residual variance term. It should be noted that 
the FM 3 failed to converge, even though we  have yet to add 
explanatory variables to the models. Therefore, the farm level was not 
further investigated in the model building process.

Before including explanatory variables in the model, the estimates 
of the compartmental effects or residuals, 0iu  have to be considered in 
more detail. These are calculated from the FM 2. Figure 2 plots these 

conditional modes of the random compartment effect with all 63 
compartments in total in rank order along with the associated 
95%-confidence intervals. The graph shows the estimated residuals for 
all compartments in the sample after remaining preprocessing. For 
nine of the 63 total compartments, the 95%-confidence intervals do 
not overlap with the horizontal line at zero, indicating that coughing 
in these compartments is above average. The confidence intervals are 
quite wide for some compartments, which is in line with the restricted 
sample sizes within these compartments. A corresponding graph (for 
FM 2) of the pen effects would simply consist of a horizontal line at 
zero, so this is not shown here.

Subsequently, explanatory variables are included in the model in 
addition to the random intercepts. The starting point is initially the 
FM 2 from above. For model 1 the variables collected at pen level are 
included first. These are the age of pigs in a specific pen, the pen size 
or the stocking density in a pen and others. Model 1 assumes that the 
relationship of the explanatory variables with cough is the same across 
pens or compartments. Furthermore, we  now add explanatory 
variables collected at the compartment level to our model. For both 
models, a random intercept is allowed for each of the pens or 
compartments. Table 4 shows the resulting odds ratios with associated 
95%-confidence intervals for the fixed effects of the fitted hierarchical 
logistic regression models (FM 2), where model 1 has explanatory 
variables for pen level and model 2 has explanatory variables for the 
pen- and compartment level.

Explanatory variables for the pen level have been considered in 
model 1. These are the pen size (in 2m ), the age of the animals (in 
days), the stocking density within a pen, animals with skin lesions 
(“low”- or “medium”-/high-grade lesions in each case in comparison 
with the reference category no lesions) and the degree of animal 
contamination within a pen.

Comparing the general outcome of both models show similar 
estimates at pen-level. Always all factors under study show no 
statistically significant effect. However, the age of the animals has a 
statistically significant effect on cough within model 1 and model 2. 
The estimated odds ratio for age is 1.70 resp. 1.64.

In model 2, compartment-specific variables have been added now. 
These are the water flow rate (in ml per minute), the measured 
temperature (in C), the air pressure (in Pa), the carbon dioxide value 
(CO2), the corrected ammonia value (NH3) (each in ppm) and the 
relative humidity (in %), each in one compartment. Also evaluated 
was the floor condition (as new vs. worn).

TABLE 3  Measures for model specificity comparing hierarchical frequentist model (FM) 1, 2 and 3.

FM 1 FM 2 FM 3

Model with random 
intercepts (for each)

Pens Pens, compartment Pens, compartment, farms

Estimated intercept −0.62 −0.61 −0.58

Log-likelihood −289.63 −270.97 −270.04

Estimated variance pens 2.29 0.20 0.22

Estimated variance compartments 2.84 1.96

Estimated variance farms 0.90

Rc
2 0.36 0.43 0.43

ICCadj 0.41 0.48 0.48

FIGURE 2

Confidence intervals of estimated residuals per compartment from 
FM 2 with circles showing modes (intercept-only).
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Four of these supplemental factors show a statistically significant 
effect, which again indicates the overarching hierarchical necessity of 
fitting nested models.

So far, only the fixed effects have been studied. However, both 
models have also allowed random intercepts for pens and 
compartments. The values of the estimated variances (VAR), standard 
deviations (SD), the log-likelihood function and intraclass-correlation 
(conditional and adjusted), for the comparison of the models are 
shown in Table 5. Here we notice that the estimated variances and 
standard deviations for the pen effects are close to zero for all our 
models. Adding explanatory variables significantly reduces the 
estimated variance across compartments, suggesting that the 
distribution of one or more variables varies across compartments.

The adjusted intraclass-correlation ( adjICC ) considers only the 
random effects in the model. Here, for model 2, a total of 48% of the 
variation (compared with the total variation) in the outcome variable 
cough can be explained by the clustering structure of the data in this 

model (similar to the FM 2). However, the conditional cICC  (considers 
fixed and random effects) is slightly higher here at 43%.

3.3 Results of Bayesian models

Starting the model selection process from a Bayesian point of 
view, we ran a non-hierarchical Bayes model with all our explanatory 
variables. This model claimed that the stocking density and the floor 
condition in the pens are statistically significant variables for 
the response.

Since we  know of the hierarchical structure of the data, this 
non-hierarchical model does not account for the pen and 
compartment effects. Therefore, we ran an intercept only model with 
varying intercepts for the hierarchical levels pen and compartment. 
The ICC-value for this model is adjICC  = 0.53, meaning that 53% of 
the variation in the outcome variable can be accounted for by the 
clustering structure of the data. Splitting this measure into the two 
hierarchy levels, we  get penICC  = 0.03 for the pen level and 

compartmentICC = 0.50 for the compartment level, which drives the 
decision to do not take the pen-level into further consideration.

This leaves us with Bayesian models with random intercepts for 
the compartment level and all explanatory variables. Within these 
we accounted for different kinds of (non- and high informative) prior 
distributions to our models as outlined in Table 6.

To explicitly incorporate prior knowledge into our hierarchical 
Bayesian models, we defined informative priors for key parameters 
based on expert knowledge in the field. The rationale for using 
informative priors was twofold: first, to stabilize estimation in the 
presence of limited or noisy data, and second, to restrict the model in 
biologically plausible parameter spaces. We acknowledge that prior 
selection can substantially influence posterior inference, particularly 
in complex hierarchical settings. Therefore, we conducted a sensitivity 
analysis, demonstrating that the main conclusions of the model 

TABLE 4  Odds ratios and 95% confidence intervals for fixed effects in frequentist hierarchical logistic regression models.

Factor Model 1 Model 2

Age (in days) 1.70 [1.19, 2.42] 1.64 [1.13, 2.38]

Pen size (in m2) 0.71 [0.47, 1.06] 0.94 [0.60, 1.48]

Stocking density (in animals/m2) 1.26 [0.93, 1.70] 1.27 [0.92, 1.75]

Animal contamination 1 (none vs. low) 1.37 [0.63, 2.99] 1.05 [0.46, 2.40]

Animal contamination 2 (none vs. high) 1.06 [0.39, 2.85] 0.63 [0.21, 1.88]

Skin lesions 1 (none vs. low) 0.86 [0.45, 1.64] 1.02 [0.51, 2.05]

Skin lesions 2 (none vs. high) 0.61 [0.28, 1.33] 0.81 [0.35, 1.86]

Water flow rate (in ml/min) 0.57 [0.36, 0.91]

Temperature (in  °C) 1.10 [0.85, 1.42]

Air pressure (in Pa) 0.98 [0.55, 1.77]

CO2-value (in ppm) 2.04 [1.24, 3.37]

NH3-value (in ppm) 1.10 [0.66, 1.83]

Relative humidity (in %) 0.55 [0.33, 0.94]

Floor condition (as new vs. worn) 6.28 [1.89,20.90]

Within the framework of the final multivariable frequentist model (FM 2), two specifications were considered: Model 1 included explanatory variables at the animal and pen levels, while 
Model 2 additionally included compartment-level variables. Thus, both models represent FM 2 structures differing only in the number and hierarchical level of predictors. Bold values indicate 
statistically significant results (p < 0.05).

TABLE 5  Measures for model specificity comparing FM 2 (a random-
intercept-only model with pens nested in compartments), Model 1 and 
Model 2.

FM 2 Model 1 Model 2

Log-likelihood −270.97 −262.08 −251.27

Number parameters 3 13 20

Estimated VAR pens 0.20 0.15 0.03

Estimated SD pens 0.45 0.39 0.17

Estimated VAR 

compartments

2.84 2.92 2.99

Estimated SD 

compartments

1.68 1.71 1.73

ICCc 0.43 0.46 0.43

ICCadj 0.48 0.48 0.48
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remained robust across a range of plausible prior specifications. The 
improved performance of model BM 5, which used highly informative 
priors, should thus be interpreted as a consequence of the coherent 
integration of data and prior information, rather than being solely 
driven by the prior itself.

The resulting estimated odds ratios and their associated 95% 
credibility intervals were as follows (Table 7): for stocking density in 
BM 1 (non-hierarchical), it was estimated at 3.84 with a credibility 
interval of [2.97, 4.96]. In contrast, BM 2 (hierarchical; 
non-informative) showed an odds ratio of 9.30 [6.23, 13.89], while BM 
3 (hierarchical; non-informative) had an odds ratio of 9.28 [6.19, 
13.91]. For BM 4 (hierarchical; highly informative), stocking density 
yielded an odds ratio of 9.34 [6.15, 14.19], and BM 5 (also hierarchical; 
highly informative) resulted in an odds ratio of 6.33 [4.35, 9.22].

In our analysis, floor condition emerged as a significant variable 
influencing the occurrence of cough in pigs. The assessment 
categorized floor condition into two levels: “new” and “worn.” The 
data revealed that 3.84 odds ratio (OR) for worn floor conditions 
indicates that pigs housed in compartments with worn flooring have 
approximately four times higher odds of exhibiting coughing 
symptoms compared to those in pens with new flooring.

This finding suggests that the quality of the flooring has a direct 
impact on respiratory health. Worn or degraded flooring can 
contribute to increased dust and pathogen exposure, leading to higher 

instances of respiratory issues among livestock. In this context, it is 
crucial for farm management practices to prioritize maintaining good 
floor conditions within pig housing facilities as part of overall 
biosecurity and animal welfare strategies. The results highlight the 
importance of addressing environmental factors such as floor 
condition when evaluating animal health outcomes.

In terms of model specificity measures comparing Bayesian 
Models (BM 2–5), Table  8 summarizes key statistics including 
estimated random effects variance (σ0ˆ compartments ) which was 
estimated at 2.36, 2.37, 2.36, and 2.21 across models BM 2 through BM 
5, respectively.

Figure 3A shows the posterior densities for different models (BM 
2 – BM 5) in relation to floor condition. Most models are very similar in 
their density distribution, with the exception of BM 5, which has a higher 
peak concentration. All models show a main distribution around a 
positive effect area, which indicates that floor properties have an overall 
positive influence on the target variable under consideration. The dashed 
zero reference line marks the boundary between positive and negative, 
i.e., here preventive effects. None of the models has a substantial density 
in the negative range, which indicates that restrictions in floor quality 
always result in increased respiratory problems.

All models (BM 2–BM 5) for the variable “stocking density” 
(Figure 3B) show similar distributions centered close to zero. This 
suggests that the overall influence of stock density on the outcome is 
small or directionless. As the densities cluster around the dashed zero 
reference line, stocking density appears to play only a minor role for 
coughing in this collective of farms.

It is noticeable that BM 5 (purple) has a slightly narrower 
distribution and a greater maximum value than the other models, 
which could indicate less uncertainty in this estimate. The remaining 
models (BM 2  – BM 4) show a wider distribution, which could 
indicate greater uncertainty or variability in the estimate of the effect.

Overall findings indicate that while both hierarchical and 
non-hierarchical models provided insights into factors affecting cough 
incidence in pigs, modeling approaches that incorporate random 
effects offer more robust estimates by accounting for underlying 
data structures.

3.4 Evaluation results

At the beginning, three hierarchical frequentist models (FMs) 
without explanatory variables were fitted to assess the impact of the 
data’s clustering structure. The model estimates indicated that, in an 
“average” pen, pigs have a 35% probability of coughing without 
accounting for other influencing factors. Subsequently, models 
incorporating explanatory variables identified significant predictors – 
namely, stocking density and floor condition – as influential on the 
incidence of coughing among pigs.

Next, our approach was extended using Bayesian methods. First, 
all explanatory variables were included in non-hierarchical models, 
which revealed that stocking density and floor condition significantly 
influenced coughing incidence. Recognizing the hierarchical structure 
of the data, intercept-only models with varying intercepts across pen 
and compartment levels were estimated. These models showed an 
intra-class correlation (ICC) indicating that 53% of the variation was 
attributable solely to clustering effects, with the compartment level 
being dominant. The resulting estimated odds ratios across different 
Bayesian models highlighted significant variations, particularly with 

TABLE 6  Overview of prior distributions used in Bayesian logistic 
regression models.

Model Prior distributions

BM 1 (non-hierarchical)
( )0 ~ 0,50β 

( )1 15, , ~ 0,100β β… 

-

-

-

BM 2 (hierarchical) (non-informative)
( )0 ~ 0,50β 

( )1 15, , ~ 0,100β β… 

( )0 ~ 0.01,0.01σ InvGamma

( )0 ~ 0.01,0.01σ i InvGamma

( )0 ~ 0.01,0.01σ ij InvGamma

BM 3 (hierarchical) (non-informative)
( )0 ~ 0,100β 

( )1 15, , ~ 0,1000β β… 

( )0 ~ 0.01,0.01σ InvGamma

( )0 ~ 0.01,0.01σ i InvGamma

( )0 ~ 0.01,0.01σ ij InvGamma

BM 4 (hierarchical) (high-informative)
( )0 ~ 0,1β 

( )1 15, , ~ 0,10β β… 

( )0 ~ 1,1σ InvGamma

( )0 ~ 1,1σ i InvGamma

( )0 ~ 1,1σ ij InvGamma

BM 5 (hierarchical) (high-informative)
( )0 ~ 0,1β 

( )1 15, , ~ 0,1β β… 

( )0 ~ 0.5,0.5σ InvGamma

( )0 ~ 0.5,0.5σ i InvGamma

( )0 ~ 0.5,0.5σ ij InvGamma

BM 1: non-hierarchical; BM 2 – BM 3: hierarchical with non-informative priors; BM 4 – BM 
5: hierarchical with highly informative priors.
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regard to stocking density; inflated estimates were observed when the 
hierarchical structure was not accounted for, compared to models that 
did include random effects.

The loo package in R was used to perform Leave-One-Out Cross-
Validation (LOO), thereby assessing the out-of-sample predictive 
performance of the hierarchical Bayesian models. Using the loo() 
function, expected log pointwise predictive density (elpd) scores were 
computed. The model comparison analysis based on LOO resulted in 
elpd differences for five Bayesian models. The results are summarized 
in Table 9.

Generally model BM 5 served as the reference with the best 
predictive performance, while BM 1 showed a substantial drop in 
performance. Convergence diagnostics were monitored 
using the Rhat statistic derived from MCMC samples generated with 
tools like Stan (via the rstan package in R). All chains converged well 
(Rhat < 1.01), confirming the reliability of the parameter estimates.

Additionally, Bayes R2 values were computed to assess the 
proportion of variance explained by the models. Table 10 summarizes 
the Bayes R2 estimates for various models with and without the 
inclusion of random effects:

In summary, the Bayes R2 results indicate that models including 
random effects provide significantly higher explained variance 
compared to models without them, especially evident in the FMs 
which exhibit no explanatory power without random effects.

4 Discussion

The investigation presented here shows an extended version of a 
model building process for respiratory health in pig production. 
Therefore, in the discussion section we  want to reflect on the 
implications of our findings in two dimensions by comparing different 
modeling approaches and their suitability for analyzing complex, 
hierarchical data first, and by discussing the findings from the 
viewpoint of veterinary advice to the farmers.

4.1 The model selection process and its 
characteristics

The model selection was based on multiple criteria, including 
model fit, convergence issues, and the interpretability of results as 

TABLE 7  Odds ratios with 95% credible intervals from Bayesian logistic regression models.

Factor BM 1 non-
hierarchical

BM 2 hierarchical 
non-informative

BM 3 hierarchical 
non-informative

BM 4 hierarchical 
highly- 

informative

BM 5 hierarchical 
highly- 

informative

Stocking density (in 

animals/m2)

3.84 [2.97,4.96] 9.30 [6.23, 13.89] 9.28 [6.19, 13.91] 9.347 [6.15, 14.19] 6.33 [4.35,9.22]

Pen size (in m2) 0.96 [0.73, 1.27] 1.01 [0.58, 1.76] 1.01 [0.57, 1.76] 1.01 [0.57, 1.76] 0.98 [0.59, 1.63]

age (in days) 1.02 [0.79, 1.32] 1.04 [0.66, 1.61] 1.04 [0.66, 1.62] 1.04 [0.66, 1.63] 1.03 [0.69, 1.56]

Floor condition (as 

new vs. worn)

3.84 [2.03, 7.28] 7.29 [1.66, 32.93] 7.57 [1.79, 34.22] 7.46 [1.72 34.69] 3.45 [1.16, 10.18]

Water flow rate (in ml/

min)

1.00 [0.76, 1.31] 1.00 [0.58, 1.73] 1.00 [0.57, 1.76] 1.00 [0.57, 1.76] 1.00 [0.60, 1.66]

air pressure (in Pa) 1.00 [0.77, 1.29] 1.00 [0.46, 2.19] 1.00 [0.46, 2.18] 1.00 [0.45, 2.20] 1.02 [0.52, 1.98]

CO2-value (in ppm) 1.00 [0.75, 1.33] 1.00 [0.52, 1.92] 1.00 [0.52, 1.92] 1.00 [0.52, 1.93] 1.00 [0.57, 1.76]

NH3-value (in ppm) 0.97 [0.77, 1.21] 1.05 [0.52, 2.14] 1.05 [0.51, 2.17] 1.05 [0.50, 2.20] 1.05 [0.56, 1.96]

Temperature (medium 

vs. high)

2.59 [0.63, 11.43] 3.66 [0.34, 39.97] 3.78 [0.34, 42.82] 3.84 [0.35, 46.82] 1.66 [0.37, 7.42]

Relative humidity (in 

%)

1.00 [0.75, 1.32] 0.90 [0.44, 1.86] 0.90 [0.44, 1.86] 0.90 [0.43, 1.89] 0.92 [0.49, 1.75]

Skin lesions 1 (none vs. 

low)

1.22 [0.73, 2.03] 0.98 [0.43, 2.25] 0.98 [0.43, 2.27] 1.02 [0.43, 2.33] 0.97 [0.47, 1.98]

Skin lesions 1 (none vs. 

high)

0.94 [0.49 1.77] 0.78 [0.29, 2.04] 0.79 [0.30, 2.06] 0.79 [0.30, 2.16] 0.75 [0.33, 1.68]

Animal contamination 

1 (none vs. low)

0.86 [0.47, 1.61] 1.16 [0.45, 3.20] 1.19 [0.45, 3.42] 1.21 [0.46, 3.30] 1.24 [0.57, 2.71]

Animal contamination 

2 (none vs. high)

0.73 [0.35, 1.55] 0.56 [0.16, 2.07] 0.58 [0.16, 3.42] 0.59 [0.16, 2.07] 0.74 [0.27, 2.09]

BM 1: non-hierarchical; BM 2 – BM 5: hierarchical with random intercepts for compartments (BM 4 – BM 5 use highly informative priors). Credible intervals are based on the posterior 
distribution and are not directly comparable to frequentist confidence intervals. Bold values indicate statistically significant results (p < 0.05).

TABLE 8  Model-specific measures from Bayesian models BM 2–BM 5.

BM 2 BM 3 BM 4 BM 5

0 compartmentsσ̂ 2.36 2.37 2.36 2.21

ICCadj 0.64 0.64 0.66 0.62

ICCunadj 0.53 0.54 0.55 0.54

σ2₀: estimated variance of the random compartment effect; ICCadj: adjusted/conditional 
intraclass correlation; ICCunadj: unadjusted ICC.
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recommended in Burnham and Anderson (32). Frequentist models 
offer a straightforward interpretation with clear estimates and 
confidence intervals, making them widely used in applied research 
(33). However, they can struggle with complex hierarchical structures 
and small sample sizes, potentially leading to biased estimates when 
the assumption of independence is violated (34).

In contrast, Bayesian models integrate prior knowledge into the 
analysis, allowing for a more understanding of the data and the ability 
to handle hierarchical structures effectively (35). They provide credible 
intervals that more accurately reflect uncertainty, especially in small 
samples or complex models (35). The trade-offs, however, include a 
need for careful prior selection, which can be subjective and context-
dependent (36), as well as increased computational intensity due to 
iterative simulation methods such as MCMC (37). Hierarchical 
models, which account for the nested structure of data, further 
improve precision by modeling variability across different levels (4). 
While these models yield more stable and realistic estimates, they also 
introduce additional complexity in both model fitting and 
interpretation, requiring advanced diagnostics and greater 
computational resources (11).

The study compared four basic model types, summarized in 
Table 11.

Convergence issues were observed in models with a high number 
of explanatory variables, underlining the inherent complexity of 
hierarchical modeling. Notably, the Bayesian hierarchical model with 

FIGURE 3

Posterior density distribution for different models (BM 2 – BM 5) in relation to floor condition (A) and stocking density (B).

TABLE 9  Leave-one-out cross-validation results for Bayesian models BM 
1 –BM 5.

Model elpd_diff se_diff

BM5 0.0 0.0

BM4 −2.8 1.7

BM2 −3.1 1.9

BM3 −3.4 1.8

BM1 −52.0 10.1

elpd_diff: difference in expected log pointwise predictive density compared to the best model 
(BM5); se_diff: standard error of elpd_diff.

TABLE 10  Bayes R2 estimates (posterior median and 95% credible 
intervals) for models with and without random effects.

Model Estimate Est. 
error

Q2.5 Q97.5

Random effects included

BIM 1 0.343 0.047 0.242 0.429

BIM 2 0.357 0.041 0.279 0.436

BIM 3 0.363 0.042 0.280 0.441

BM 1 0.137 0.023 0.092 0.181

BM 2 0.428 0.037 0.356 0.502

BM 3 0.432 0.038 0.360 0.507

BM 4 0.444 0.035 0.375 0.511

BM 5 0.424 0.037 0.352 0.496

Random effects not included

BIM 1 0.000 0.000 0.000 0.000

BIM 2 0.000 0.000 0.000 0.000

BIM 3 0.000 0.000 0.000 0.000

BM 1 0.137 0.023 0.092 0.181

BM 2 0.208 0.031 0.142 0.262

BM 3 0.209 0.031 0.144 0.264

BM 4 0.213 0.031 0.148 0.267

BM 5 0.188 0.031 0.122 0.243

BM 1: non-hierarchical model; BM 2 – BM 5: hierarchical models with random intercepts 
for compartments (BM 4 – BM 5 with informative priors). BIM 1 – BIM 3: Bayesian 
intercept-only models with random intercepts for pens (BIM 1), pens and compartments 
(BIM 2), and pens, compartments, and farms (BIM 3). Credible intervals reflect uncertainty 
from the posterior and are not equivalent to confidence intervals.
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highly informative priors (BM 5) outperformed its counterparts by 
delivering the highest predictive accuracy, as evaluated using Leave-
One-Out Cross-Validation, and by achieving higher Bayesian R2 
values that underscored the explained variance. This model provided 
robust and realistic estimates by appropriately accounting for the 
hierarchical structure and avoiding the overestimation of effects 
observed in non-hierarchical models such as BM 1.

The goodness-of-fit measures employed in our analysis – namely 
the marginal and conditional R2, the Intraclass Correlation Coefficient 
(ICC), and the AIC/AICC  – provided valuable insights into the 
performance and appropriateness of our models. The marginal R2 
(R2m) quantified the proportion of variance explained solely by the 
fixed effects, while the conditional R2 (R2c) captured the overall 
explanatory power when both fixed and random effects were 
considered. This distinction underscored the importance of 
incorporating random effects to account for the hierarchical structure 
inherent in our data. Similarly, the ICC offered a direct measure of the 
variability attributable to clustering, highlighting the degree of within-
cluster similarity and reinforcing the necessity for hierarchical 
modeling. Although the explained variance in our models — as 
reflected in the R2 and ICC values ranging from approximately 0.17 to 
0.50 — may appear modest, such values are not uncommon in field-
based veterinary epidemiological studies. This is largely due to the 
high biological, environmental, and management-related variability 
inherent to real-world farm data. The primary goal of our modeling 
approach was not to fully explain the outcome variable, but rather to 
detect consistent and meaningful associations between risk factors 
and respiratory symptoms.

In particular, hierarchical models are designed to capture both 
fixed effects and random variability between nested levels (e.g., 
pens, compartments), and much of the unexplained variance may 
be attributed to unobserved or unmeasurable influences such as 
transient environmental fluctuations or management decisions, 
which are not documented. Importantly, several risk factors — such 
as floor condition and stocking density — emerged as robust 
predictors across different model structures and prior specifications. 
Therefore, despite moderate overall model fit metrics, the findings 
remain highly relevant and applicable in the context of veterinary 
field epidemiology.

This interpretation is in line with methodological guidance from 
Gelman and Hill (4) and McElreath (11), who emphasize that low R2 

values in hierarchical models often reflect natural complexity rather 
than model inadequacy.

Our results revealed that the Bayesian hierarchical model with 
highly informative priors (BM 5) demonstrated superior performance 
compared to its Frequentist counterparts. Notably, BM5 achieved 
higher conditional R2 and ICC values, suggesting that it more 
effectively captured both the systematic (fixed) and the random 
variability in the data. In contrast, the Frequentist models, while easier 
to interpret, tended to produce lower R2 estimates and were more 
prone to inflated effect estimates when clustering was inadequately 
addressed. Furthermore, model comparison through AIC and AICC 
consistently favored the Bayesian approach, albeit with the caveat that 
its increased computational complexity and sensitivity to prior 
specification require careful management.

Some of these recommendations support the findings of our 
analysis, while others offer alternative perspectives that enrich the 
discussion. For example, Burnham and Anderson (32) emphasize that 
model selection should be  based on multiple criteria  – such as 
parsimony, explanatory power, and convergence behavior – rather 
than relying solely on fit indices like AIC or BIC. This aligns with our 
approach of balancing interpretability and model performance. 
Similarly, McNeish and Stapleton (40) caution against using complex 
hierarchical models in small-sample contexts without careful 
consideration, echoing our observation that hierarchical modeling can 
lead to instability if not adequately supported by the data. Conversely, 
other studies highlight the value of Bayesian approaches in sparse or 
nested data scenarios. For instance, Gelman and Hill (4) and 
McElreath (11) advocate for the use of multilevel Bayesian models, 
particularly when dealing with complex data structures and 
uncertainty across levels. These perspectives confirm that there is no 
one-size-fits-all solution in model selection; instead, the choice 
depends on the structure of the data, the research questions, and 
practical considerations such as computational cost 
and interpretability.

In summary, the integration of these goodness-of-fit measures 
into our evaluation not only validated our model selection but also 
highlighted the trade-offs between the Bayesian and Frequentist 
paradigms. While Bayesian models offer enhanced flexibility and 
robustness in capturing complex hierarchical structures, they demand 
rigorous prior selection and greater computational resources. 
Conversely, Frequentist models provide simplicity and ease of 

TABLE 11  Comparison overview of the four underlying models.

Model Model characteristics

Flexibility Handles 
clustering

Handles small 
data

Includes prior 
knowledge

Complexity

Frequentistic 

hierarchical
Moderate Yes No No Low

Bayesian non-

hierarchical non-

informative

Moderate No Yes No Moderate

Bayesian hierarchical 

non-informative
High Yes Yes No High

Bayesian hierarchical 

highly informative
Very high Yes Yes Yes Very high
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interpretation but may fall short in accurately reflecting the underlying 
data structure, particularly in the presence of significant 
clustering effects.

4.2 Risk factors for coughing in selected 
farms with sustainable respiratory 
problems

Using “coughing in piglets” as the sole response variable has both 
advantages and disadvantages that should be  considered when 
evaluating its validity and limitations.

On the positive side, coughing is easily observable, making it 
simple for practitioners to document and collect data quickly. This 
ease of observation allows for timely identification of potential 
respiratory health issues, enabling early intervention which is crucial 
in livestock management where rapid responses are mostly necessary. 
Additionally, monitoring coughing is cost-effective, as it does not 
require expensive diagnostic tests or extensive clinical examinations, 
which can be particularly beneficial for farmers with limited resources.

However, there are significant drawbacks to relying solely on 
coughing as an indicator. Coughing can arise from multiple factors, 
including infections, allergies, environmental irritants, or stress, 
making it challenging to pinpoint the exact cause without additional 
clinical or even laboratory data. Furthermore, the assessment of 
coughing can be subjective and may vary among different observers, 
leading to inconsistencies in data collection and interpretation and 
introducing an information bias. Coughing is also a non-specific 
symptom that can be associated with various diseases, complicating 
the diagnostic process when viewed in isolation. The presence of 
coughing alone may not accurately reflect the severity of an underlying 
condition, necessitating consideration of other clinical signs to gain a 
more comprehensive understanding of the piglets’ respiratory 
health status.

The analysis of various models revealed that both frequentist and 
Bayesian approaches were able to identify key factors influencing the 
occurrence of coughing in pigs, including stocking density, floor 
condition, and water flow, which are clearly to report and addressed 
within the farm management process. Specifically, an increase in pen 
size by one square meter was associated with an odds ratio (OR) of 
0.79, suggesting a preventive effect, although this result did not reach 
statistical significance. In contrast, pigs housed in areas with worn 
floor experienced more than five times the odds of coughing compared 
to those on new floor, highlighting the crucial environmental impact 
as an important surrogate for biosecurity. Additionally, an increased 
water flow rate demonstrated a protective influence (OR = 0.57), 
emphasizing the importance of adequate hydration.

These general results are of importance due to the farm population 
studied here. It should be noted that the VASIB project was not a 
representative cross-sectional study of German pig production, but 
rather a highly selected collection of farms with persistent respiratory 
health problems. It can therefore be  assumed that the usual farm 
management measures and the continuous supervision by the herd 
veterinarian have already exhausted significant factors for improving 
animal health. Against this background, it is particularly remarkable 
that even in this collective, factors still appear to be significant which, 
from the point of view of animal hygiene and the associated 
biosecurity measures, can actually already be assumed to be known.

It can be concluded that this may indicate that certain influencing 
factors are either ignored in agricultural practice or cannot 
be  implemented at all. For example, the factor of floor condition, 
which is consistently considered to be conspicuous, is a factor that 
cannot be continuously improved, as this requires structural measures. 
By taking the hierarchical structure into account, however, there were 
indications of specific compartments with an increased impact, so that 
this can ultimately also be  understood as an indication for the 
development of alternative hygiene concepts.

5 Conclusion and outlook

The statistical modeling conducted in this study provides valuable 
insights into predicting clinical outcomes in real-world pig production 
systems, with a particular focus on respiratory health in piglets. Using 
both frequentist and Bayesian hierarchical approaches, we identified 
key risk factors—most notably stocking density, floor condition, and 
water flow rate—that significantly influence the incidence of coughing. 
These findings can support veterinarians and farmers in developing 
targeted management strategies to improve animal health and welfare.

Several limitations must be  acknowledged. The reliability of 
predictions depends strongly on the quality and completeness of the 
collected data, and missing or misreported information could bias 
results. Hierarchical models, although powerful, are complex to 
interpret for non-specialists, and both frequentist and Bayesian 
approaches rely on assumptions that may not always hold in practice. 
Moreover, the farms included in the VASIB project were pre-selected 
due to persistent respiratory health problems, and therefore do not 
represent the wider population of German pig production systems. 
This restricts the generalizability of our findings. Bayesian modeling, 
while advantageous for incorporating prior knowledge and generating 
predictions for farms outside the dataset, is computationally 
demanding and may require close collaboration with epidemiologically 
trained veterinarians for practical implementation.

From a methodological perspective, hierarchical regression 
models were essential for accurately assessing respiratory health risks. 
Frequentist methods demonstrated the importance of accounting for 
clustering effects, while Bayesian approaches refined estimates 
through the integration of prior information. In particular, the 
Bayesian hierarchical model with informative priors (BM 5) achieved 
the highest predictive accuracy, effectively capturing data structure 
and reliably identifying significant predictors. Nonetheless, model 
selection outcomes may differ under other data conditions.

From an animal health perspective, the results highlight the 
importance of optimizing stocking density, maintaining flooring 
quality, and ensuring adequate environmental conditions as central 
strategies to reduce respiratory disease in piglet production systems 
with persistent health challenges.

Looking forward, Bayesian modeling offers a promising avenue 
for predictive applications in animal health, enabling risk estimation 
even for farms not included in the study population. By leveraging 
prior knowledge and explicitly modeling uncertainty, these approaches 
can guide preventive interventions on a broader scale. Future research 
should prioritize improving data quality in farm settings, simplifying 
the communication of complex model outputs for practitioners, and 
validating results in more diverse and representative farm populations. 
With these advances, statistical modeling can become an increasingly 
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practical and powerful tool for proactive health management in 
livestock production.
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