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In veterinary epidemiology, regression models are commonly used to describe
animal health and related risk factors. However, model selection and evaluation
present ongoing challenges—especially when many potential predictors, complex
interactions, and limited sample sizes are involved. The VASIB project serves as
a representative example, focusing on piglet-producing farms with persistent
respiratory disease problems. Across 30 farms, a wide array of variables was
collected at the farm, barn, compartment, pen, and individual animal levels,
aiming to support optimized treatment and management strategies to improve
respiratory health. This study investigates the occurrence of coughing in pigs
using various epidemiological models, including hierarchical frequentist logistic
regression, non-hierarchical Bayesian logistic regression (with full and partial
pooling), and hierarchical Bayesian models with informative and non-informative
priors. These approaches are evaluated and compared using statistical measures
such as the corrected Akaike Information Criterion (AIC.), marginal and conditional
R?, and intra-class correlation coefficients (ICC./ICC,g). In the frequentist models,
convergence issues arose due to limited observations within clusters, which did
not occur in the Bayesian framework. While the choice of priors had limited
influence on Bayesian model results, differences between models suggest that
prior specification can still be relevant. Thus, it is important to assess and compare
various model structures—including both hierarchical and non-hierarchical, and
Bayesian versus frequentist approaches—to capture the data’s complexity and ensure
robust inference. Here, the Bayesian hierarchical models outperform frequentist
models, especially in handling complex data structures and providing robust
estimates. Across all models, stocking density and floor condition emerged as
consistently significant factors influencing the likelihood of coughing. Overall, this
work emphasizes that there is no universal rule for model selection in veterinary data
analysis. Instead, a balanced, context-sensitive modeling strategy that considers
both statistical and epidemiological perspectives is essential to derive meaningful
and actionable conclusions for improving animal health.
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1 Introduction

The hygiene status of a farm is a major factor influencing animal
health and is therefore a fundamental part of veterinary advice (1).
However, the subjective rating of the veterinarian is prone to a lot of
internal and external factors and may differ from visit to visit and can
be difficult to understand. For this reason, careful evaluation is
needed, which factors measure the health outcome on farms in a
harmonized form and highlight critical points in an understandable
way. In general, from the epidemiological point of view, this evaluation
is in line with a careful development of regression models, connecting
the health outcome with a more or less complex set of interacting
factors under study, which describe the several biosecurity measures
and other influencing factors (2-5).

In this work, the development of regression models for data from
daily veterinary practice is described. Within the research project
VASIB, in selected farms with sustainable respiratory disease
problems, the aim is to examine whether targeted diagnostic measures,
optimization of the treatment strategy and comprehensive, intensive
management advice can minimize respiratory symptoms and with this
the use of antibiotics and thus make an active contribution to reducing
the general development of resistance in livestock farming. To this
end, the project is working on the development and validation of a
model that can be used with onsite-farming data from veterinary
practices with the aim of synergizing epidemiological data from
veterinary preventive medicine and farm data (6).

However, to describe respiratory health in piglet production
different herd measures, which are based on direct veterinary
inspection and on information from the farmers may be used. Overall,
this may be interpreted as a multivariate health outcome or the need
of selection a representative surrogate to describe respiratory health.
Within this investigation we choose as a surrogate “coughing in
piglets,” which is generally used in practice (7).

Nevertheless, many other factors must be considered, if coughing
has to be described during the veterinary inspection visit. First, animal
health data on a farm appears at farm, barn, compartment, pen and
individual animal level. These hierarchical structures must
be considered especially if factors respond in different ways, like the
air- or feed borne transmission (8). Second, manyfold direct (causal)
and indirect factors effect animal health, which are more or less
associated within an interacting and partial correlated structure (9,
10). And, if these multiple factors lead to a large number of different
classes, they break down into multiple substructures, which usually do
not contain a sufficient number of animals for a powerful
epidemiological analysis. This at the end, causes missing data, which
finally restricts the prognostic value of an epidemiological model (3).

Against this background the development of an epidemiological
statistical model to be used for prevention in livestock farming is not
a matter of highest quality and precision only, but a sophisticated
model building process, which takes into account the needs of daily
work data.

Classical statistical models often struggle to account for complex
data structures, leading to potential bias when questionable or poorly
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defined covariates are included (3). To address this, advanced
statistical methodologies, such as hierarchical or generalized models,
are employed to better capture variability and dependencies in the
data (4). Bayesian methods are particularly valuable in cases where
prior knowledge exists, enabling the incorporation of expert insights
into the modeling process for more robust and informed
inference (11).

The objective of this paper therefore was twofold: first, to
evaluate and compare the performance of different hierarchical
regression modeling approaches—both frequentist and Bayesian—
applied to complex, nested data from piglet production systems,
and second, to investigate the relevance of selected environmental
and management-related predictors, such as floor condition and
stocking density, on coughing as a clinically meaningful indicator
of respiratory health in weaner pigs. This modeling process
presented here is intended to support veterinary decision-making
not only within the VASIB project, but also in routine
farm settings.

2 Material and methods
2.1 Study design and data acquisition

The data used for this investigation was enrolled during the VASIB
project on farms that were supervised by one veterinary practice
network that is located in the Federal States of North Rhine Westphalia
and Schleswig Holstein, Germany. Only farms with piglet and weaner
production with sustainable respiratory health problems were selected
for this investigation. Within this setting this study followed a single
cross-sectional design. Data collection took place between April and
November 2016 during scheduled veterinary visits.

For this paper, the primary health issue addressed is coughing,
which in daily routine practice serves as a symptom indicative of
underlying respiratory diseases in weaner pigs. The assessment focuses
on multiple hygiene and management measures that can influence the
respiratory health of pigs. Therefore, the basic health problems and
biosecurity measures included in the assessment are:

1. Coughing: the primary indicator of respiratory distress in pigs,
often linked to various environmental and management factors.

2. Barn hygiene: this includes cleanliness and the presence of
contaminants in the barn environment, which can exacerbate
respiratory issues.

3. Disposal hygiene: the management of carcasses and waste,
which if poorly handled, can lead to health risks for
living animals.

4. Isolation and transport: the conditions under which pigs are
transported and isolated, impacting their exposure to stress
and pathogens.

5. Hygiene of drug administration: the protocol for administering
medications can affect the overall health and recovery of
the animals.
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6. Feed hygiene: the quality and cleanliness of feed can influence
the health status of the pigs and their susceptibility to diseases.

7. Climate control: proper ventilation and climate conditions in
barns are critical to maintaining respiratory health and
preventing disease outbreaks.

8. Management husbandry: overall management practices,
including grouping and caring for the animals, which can
influence their health status.

9. Cleaning and disinfection: the frequency and effectiveness of
cleaning procedures can prevent disease spread and improve
overall hygiene in the barn environments.

For this, 30 piglet-producing farms with recurring respiratory
tract disease problems in weaners were selected for an in-deep
investigation. Overall, data was enrolled within 72 pigsties, 130
compartments, and 300 pens respectively, and finally from 450 single
animals. Although all farms were part of a common veterinary
network, they were managed independently and did not belong to the
same corporate ownership. Thus, differences in management style,
resource availability, and biosecurity adherence exist. To partially
control for such unobserved heterogeneity, we used hierarchical
modeling with random effects at the compartment and pen levels,
which helps account for unmeasured clustering effects. However,
we acknowledge that certain latent factors at the farm level—such as
corporate protocols or feeding systems—were not directly modeled
and may introduce unmeasured confounding. This limitation is
discussed later in the discussion Section.

In preparation for the veterinary visit, a questionnaire was
developed and evaluated beforehand. The questionnaire included
management, biosecurity, feeding, medication and medical history
aspects (181 items: 81% closed, 7% semi-closed, 12% open questions)
was sent to the farmers. This information was verified and completed
during a face-to-face interview at the start of the farm visit and
missing values, or implausible answers were clarified (the original
German version is on view at: https://www.tiho-hannover.de/institut-
fuer-biometrie-epidemiologie-und-informationsverarbeitung/
publikationen/zusatzmaterial-publikationen).

The information of the questionnaires, the checklist and the
results of the clinical examination were entered in a SQL database
developed for the study. All datasets were checked for plausibility
and completeness.

For demonstration of the regression modeling process, the
variables addressed in Table 1 were selected for this investigation.

In order to investigate the influence on cough in the study
population hierarchical logistic (frequentist and Bayesian) regression
models were used. Here, we include all levels [farms (30) — pigsties
(72) — compartments (130) — pens (300)] as mentioned above. The
pen sizes vary between 12 and 85 animals, from which overall 450
animals were included into individual veterinary inspection (see
Figure 1). The selection of animals was based on practical feasibility
and clinical judgement during the veterinary inspection. Animals
showing respiratory signs, especially coughing, were prioritized for
inclusion. However, non-coughing animals were enrolled as well.

For these analyses, Table 1 presents information derived from
1,298 variables, encompassing both qualitative and quantitative
data. To reduce this number of variables to Table 1, an initial
screening was conducted, during which all items were inspected for
their relevance. Missing values were present in several variables,
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primarily due to incomplete documentation during routine on-farm
assessments and occasional technical measurement issues. The
overall proportion of missing values across the dataset was 23.1%,
with individual variables showing between 0 and 100% missingness.
Variables with more than 50% missing values (a total of 136
variables) were excluded, along with alphanumeric variables (45
variables) such as comments and text fields. Additionally,
categorical factor variables with only a single level of expression
(121 variables) were eliminated due to insufficient variability.
Following this data cleaning, 228 variables remained in this dataset.
To address potential multicollinearity, a heterogeneous correlation
matrix, consisting of the usual Pearson product-moment
correlation for continuous variables, the biserial or polyserial
correlation for mixed continuous categorical variables and the
polychoric correlations between several multilevel categorical
variables (38, 39, p. 100f.) was computed. Highly correlated
variables (correlation coefficient > 0.8) were removed. Following
preprocessing, 29 variables, included both qualitative (categorical)
and quantitative (continuous) measures, remain for further analysis.

Approximately 15% of the data in the first-visit dataset were
missing and were handled using multiple imputation to ensure data
integrity and avoid bias in the results. For quantitative variables, the
predictive mean matching (PMM) method was used, in which real
values are drawn from the available data to generate plausible
replacement values for missing entries (12). Categorical variables (see
Section 3.1 and Table 1) were imputed using a proportional odds
logistic regression (POLR) model to adequately account for ordinal
relationships between categories (13, 14). These methods made it
possible to minimize the impact of missing data and perform a more
robust analysis of factors influencing cough in pigs. The R software
packages “mice” and “miceadds” are used for both imputation
methods (15, 16). The hierarchical structure of the data—comprising
animals nested within pens, compartments, and farms—was explicitly
taken into account to ensure that the imputation procedure met the
specific requirements of the dataset (13, 14). In order to address this
structure, group-level identifiers (pen ID, compartment ID, farm ID)
were included as auxiliary variables in the imputation models.
Incorporating these identifiers as predictors enabled the procedure to
capture clustering effects and to reflect the multilevel dependencies
inherent in the data. By doing so, the imputation models preserved
intra-cluster correlations and increased the plausibility of the imputed
values under the assumption that data were missing at random (MAR).

The outcome variable, “coughing in piglets,” was not formally
tested for conditional independence prior to model fitting.
Conditional independence implies that the association between two
variables disappears when conditioning on a third variable. While
such tests can be informative, especially in causal modeling
frameworks, they are often difficult to implement and interpret in the
presence of multiple covariates and hierarchical data structures. Given
the complexity and high dimensionality of the dataset, we prioritized
the specification of hierarchical models that account for confounding
and clustering effects by design, rather than performing separate
conditional independence tests. Additionally, predictor selection was
based on theoretical knowledge and previous studies.

Assumptions regarding independence, particularly in relation to
modeling components such as Gaussian priors in the Bayesian
framework, should be interpreted cautiously. However, the
hierarchical data structure and relevant dependencies were explicitly
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TABLE 1 Variables and descriptions in the “initial” dataset.

10.3389/fvets.2025.1611771

Variable Description (categories) Level
Cough Do the pigs cough? (0 = no; 1 = yes) Animal
Clinical variables Sum of all clinical variables (0 = no symptoms; 1 = mild symptoms) Animal
Laboratory variables Sum of all laboratory variables, including blood Animal
Blood lab variables Sum of blood lab variables Animal
Pen ID ID variable for the pens Pen
Age Age of animals (in days) Pen
Animal contamination Degree of dirtiness of the animals (0 = no findings; 1 = slightly dirty; 2 = moderately dirty; 3 = heavily dirty) Pen
Skin injuries Animals with skin injuries (0 = none; 1 = few (up to 10%); 2 = some (up to 50%); 3 = many (over 50%)) Pen
Pen size Size of the pen (in m?) Pen
Stocking density Stocking density in the pens Pen
Compartment ID ID variable for the compartments Compartment
Water flow rate Water flow rate (in ml/min) Compartment
Temperature Recorded temperature (in °C) Compartment
Air pressure Air pressure (in Pa) Compartment
CO, level CO;, level (in ppm) Compartment
Relative humidity Relative humidity (in %) Compartment
NH; level NH;-adjusted value (in ppm) Compartment
Floor condition Condition of the floor (1 = new; 2 = moderately worn; 3 = heavily worn; 4 = damaged) Compartment
Farm ID ID variable for the farms Farm
Disinfectant Frequency of disinfectant replacement in disinfection baths (1 = daily; 2 = weekly; 3 = when dirty; 4 = after emptying; Farm

5 = irregularly)
Proximity to next farm Proximity to the nearest pig farm (1 = <0.5 km; 2 = 0.5 km - 10 km; 3 = > 10 km) Farm
Target temperature - In | Average target temperature when animals are housed (in °C) Farm
Target temperature — Average target temperature when animals are removed (in °C) Farm
Out
Respiratory diseases Batches affected by respiratory diseases last year (1 = few (up to 10%); 2 = some (up to 50%); 3 = many (over 50%)) Farm
Protective clothing Use of protective clothing outside barns (0 = no; 1 = yes, to cross the yard; 2 = yes, for other tasks) Farm
Minimum quarantine Minimum quarantine duration (in days) Farm
Maximum quarantine Maximum quarantine duration (in days) Farm
Winter Was the farm visited in winter? (0 = no; 1 = yes) Farm

addressed through appropriate model specification using both
frequentist and Bayesian approaches.

2.2 Classical analysis of hierarchical model

Hierarchical regression extends classical regression by handling
clustered data structured across multiple levels (see Figure 1). Here,
the goal is to account for the variability at each level to analyze
cluster effects (5). The key elements are varying coefficients and a
model for these coefficients, possibly incorporating cluster-level
predictors—features that distinguish hierarchical models from
classical ones. Here, we examine frequentist hierarchical models
and compare their applicability in the context of cough prevention
in pig production.

For multilevel data, each level contributes a variance component
that measures intraclass-correlation. As an example, we here consider
a three-level model for the cough response, Yijk ~ Ber(;z,-jk), with
cough probability 7;j for the k-th pig, located in the j-th pen in thei
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-th compartment. Pigs (level 1) are nested in pens (level 2), which are
nested in compartments (level 3); compartments are the primary
units, pens the secondary units, and pigs the units of observation.
These clusters are treated as random effects with an average effect of
zero, and the analysis is performed using logistic regression. In
addition to random effects capturing the hierarchical structure (e.g.,
pens, compartments), relevant predictors at the pig, pen and
compartment levels—such as animal age, pen size, stocking density,
environmental conditions, and hygiene indicators—are included as
fixed effects in the hierarchical regression models. With this, the data
are modeled by a logistic regression model (see Equation 1).

Tijk .1
log| ——— 1= foij + Aipigiji (1)
l—ﬂ',-jk

where fy;; is the intercept, £ the coefficient associated with the
pig-level predictor pigl.ljkfor k=1,...,n,-j pigs, j=1,...,n; pens and
i=1...,n, (n € N) compartments.
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Farm Level (Level 5)
: |
Pigsty Level (Level 4)
|
[ | ]
e (Level 2) n
N
Animal (Level 1)
Observation numbers: 30 farms, 72 pigsties, 130 compartments, 300 pens and 450 animals
FIGURE 1
Hierarchical levels within the sample population.

Each pen is modeled with its own logistic regression. The
pig-level predictor pig1 has the same effect across pens, while the
pen-specific foi;j captures differences between pens (see Equation 2):

2
Boij = Poi + B2 penij + ug; )

where pen,-zj is a pen-level covariate and ug;; a pen-level random
effect. At the compartment level, the intercept is modeled as

Poi = Po + uho; (3)

Substituting (2) and (3) into (1) yields

T
log ijk
1- ”ijk

] =h+ ﬁlPig}jk + By pen +
(4)

ﬂ3compartment? +up; + Uojj.

Here, S5 represents an additional compartment-level covariate
included as a fixed effect. This generalized linear mixe? mo(Bel

2
includes two random effects—uq; for compartments ( 4oi ~ N{0,00; | )

and Uojj for pens (ug;j ~N (0,0'(%17 )) —which account for cluster-
specific variability (5). In practice, as in our final multivariable model
fitted in R (see Section Results), multiple predictors at different levels
were included simultaneously (e.g., animal age, pen size, stocking
density, CO, concentration, ammonia levels, and relative humidity).

This reflects the actual complex production setting more accurately
than the simplified didactic formulation in Equations 1-4.
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As illustrated in the VASIB example, with only five individuals
per cluster, variance estimates may be unreliable, and substantial
variability in the random effects can lead to biased estimates of the
fixed effects. Hierarchical models are thus better able to handle
dependencies in nested data than non-hierarchical approaches
(17). Estimation of variance components is unreliable with as few
as five individuals per cluster (17), and high variability in random
effects can bias estimates, making hierarchical models that
incorporate random effects to account for nested data superior in
accuracy and fit to non-hierarchical models that assume
independent observations.

2.3 Bayesian analysis of hierarchical model

Bayesian regression estimates parameters as distributions by
combining sample data with prior knowledge, making it useful for
complex relationships, non-convergence in maximum likelihood
(ML) methods, and small samples (18). Non-hierarchical Bayesian
models assume independence and ignore clustering, thereby risking
bias, while hierarchical Bayesian models assign priors to capture the
nested data structure.

For example, parameters such as S (intercept) and S (pig-level
effect) can be modeled with Gaussian priors, Sy, ~N ,u,0'2
treating the data as a single population (“complete pooling”). The
response variable is modeled as yjjx | 7k, 60 ~ Ber(ﬂ',»jk) with prior
vector O containing all level-specific f coefficients. For the
compartment-specific intercepts, we assume (5)-(7):

Boi ‘ﬂ0,00~N(/30:0'g) (5)
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fo~N(w0?) ©)

oy ~ Im/Gamma(a,b) 7)

The level-specific regression coefficients follow (8):
ﬂl,...,ﬁp~N(;¢,0'2) ®)

Continuous predictors are standardized before model fitting, and
parameter estimates are later back transformed to the original scale
for interpretation. Specifically, the intercept on the original scale is
obtained as

Bo= /o~ ﬁzlﬁm’;—: ©

where X, and S,, are the mean and standard deviation of the m-th
predictor, respectively. The regression coefficient of the m-th predictor
on the original scale is then,

ﬂmzi (10)

Overall, the full Bayesian hierarchical model with highly
informative priors is specified as (11):

1 Tk | _ igl 2

og = Po+ Prpigyy + Papenij +
1- ”ijk

&compartment? + Uo; + Upjj>

with random effects

Ug; ~ N(o,aé,-) and ugjj ~ N(O»Ugij)s

and priors
Bo~N(01)
Bis--Bis ~N(0,1)
i ~ InvGamma(0.5,0.5)

C0ij ~ InvGamma(O.S,O.S) (11)

In practice, as in our final multivariable Bayesian model fitted in R
(see Section Results), multiple predictors at different levels were included
simultaneously (e.g., animal age, pen size, stocking density, CO,
concentration, ammonia levels, and relative humidity). This reflects the
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actual complex production setting more accurately than the simplified
didactic formulation in Equations 5-11. Unlike the frequentist models,
Bayesian inference yields full posterior distributions for each parameter,
allowing results to be summarized by means and 95% credible intervals
rather than point estimates with confidence intervals.

In this investigation, we compare the final multivariable
frequentist hierarchical model (FM 1-3) with three Bayesian logistic
regression models: a non-hierarchical model with non-informative
priors (BM 1), a hierarchical model with non-informative priors (BM
2 and 3), and a hierarchical model with highly informative priors (BM
4 and 5). While additional frequentist models were used during model
development (e.g., univariable screening), only the final model (FM
2) was used for direct comparison with the Bayesian models.

Firstly, it should be noted that we employ Markov Chain Monte
Carlo (MCMC) algorithms for model fitting. For all Bayesian models,
four independent chains were run with 5,000 iterations each, of which
the first 2,500 iterations per chain were used for warm-up. This leaves
us with a total of 10,000 post-warmup draws. Calculations are done
with the brms R package, version 2.17.0, and the statistical software R,
version 4.0.5 (19). The brms package (20-22), with the help of the
rstan package (23), uses the Stan platform to fit Bayesian hierarchical
models. For further calculations and graphical representation ggmemc
(24), ggplot2 (25), bayesplot (26, 27), performance (28), tidybayes (29)
and Ime4 (30) were used.

2.4 Evaluation measures

In this study, several goodness-of-fit measures were employed to
assess and compare model performance in both Bayesian and/or
frequentist frameworks. Two key metrics were the R*> measures and
the Akaike Information Criterion (AIC), along with its corrected
version (AIC), as well as the Intraclass-Correlation Coeflicient (ICC).

The R? measure is divided into two types for hierarchical models:
the marginal R* (R?,) and the conditional R* (R%) (31). The marginal
R? represents the variance explained solely by the fixed effects, while
the conditional R? accounts for the total variance explained by both
fixed and random effects. A large difference between these two
indicates that a substantial portion of the variance is attributable to the
grouping (random) effects, emphasizing the importance of properly
modeling the hierarchical structure. In addition to the other model
validation metrics, we calculated the Bayesian R-squared (Bayes R?)
to assess the proportion of variance explained by the model. Unlike
classical R? the Bayesian R* is derived from the posterior predictive
distribution, providing a distribution of R values rather than a single
point estimate. To summarize this distribution, we report the posterior
median of Bayes R” along with a 95% credible interval, which reflects
the uncertainty inherent in the model fit. This approach allows us to
present a single, interpretable R* value while acknowledging the
variability in model performance due to posterior uncertainty.

The ICC further breaks down the variance by measuring the
proportion attributable to the random grouping factors (such as
compartments or pens). This measure is critical for hierarchical
models as it quantifies the degree of similarity within clusters. An
adjusted ICC, which considers only the variance of the random effects
relative to the total variance (random effects plus residual error),
provides insight into the cluster-specific influence on the outcome. In
the Bayesian models, a single intra-class correlation coeflicient (ICC)
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value was calculated based on the posterior distributions of the
random effects. Specifically, the ICC was derived as the median of the
posterior samples for the ratio of the random effect variance to the
total variance (sum of the random effect variance and residual
variance). This approach allows for a representative point estimate
from the posterior distribution and follows the general
recommendation for hierarchical models as outlined by Gelman and
Hill (4). For the evaluation of the Bayesian models, Leave-One-Out
Cross-Validation (LOO-CV) was employed to assess predictive
performance. The LOO approach was implemented using the loo
package in R, which provides an efficient approximation of out-of-
sample prediction error based on the expected log pointwise predictive
density (elpd). Detailed results and comparisons between models
using LOO are presented later in Section 3.4.

In frequentist models, these measures are derived from maximum
likelihood estimates and are used alongside the AIC and AICc to
compare models. The AIC balances model fit against complexity,
where lower values indicate a better trade-off between the goodness
of fit and parsimony. The AIC further adjusts for small sample sizes,
providing a more reliable basis for model.

3 Results

3.1 General data structure and description
of the sample population

After the data cleaning and imputation processes, the “initial”
dataset for this paper contained a total of 29 variables (see Table 1),
whereby these variables are both qualitative and quantitative in nature.
The basis descriptive measures of these variables are displayed in
Table 2. A critical assessment revealed that all variables associated with
the pen level of the animals were highly correlated. This high degree
of correlation indicated low variability between the pens within each
farm. Specifically, in 27 out of the total 30 farms, all pigs were sourced
from a single pen, underscoring the lack of diversity in pen conditions.
Consequently, it was decided to exclude the pen level from further
analyses to enhance the robustness of the results and reduce the risk
of unstable parameter estimates due to multicollinearity.

As described in Section 2, the dataset comprised 30 farms with 15
observations each (total n = 450), after correlated variables had been
filtered out. Thus, the models were fitted to a streamlined and
meaningful set of predictors relevant to the study objectives. The most
important 14 variables are described descriptively in the following
Table 2. Density plots of observed vs. imputed values for selected
numerical variables, as well as convergence diagnostics (mean and
standard deviation over 20 iterations), are provided in the
Supplementary Figures S1-53. Density plots were not generated for
categorical variables, as they are not appropriate. The displayed trends
indicate normal variation and convergence, with target values
summarized in Table 2.

A total of 450 animals were included in this study. The average age
of the animals was approx. 52 days, with an age range of 28 to 89 days.
The average pen size was approximately 12 m?, with a range of 5.760
to 25.750 m”. The stocking density averaged 0.388 animals per m? i.e.,
1 animal per 2.577 m® Floor conditions were predominantly classified
as moderately worn (68.4%), while only a small proportion of pens
were classified as new (31.6%). The water flow rate averaged 999 mL/
min, with a range from 100 to maximum values of up to 2,200 mL/

Frontiers in Veterinary Science

10.3389/fvets.2025.1611771

TABLE 2 General descriptive measures of the sample population (n = 450
animals from 30 farms).

Quantitative variables

Variable Mean Std. dev Min
Age in days 52.067 15.356 28.000 89.000
Pen size in m? 12.223 4.715 5.760 25.750
Stocking density
0.388 0.157 0.170 1.080
in animals/m?
Water flow rate
999.422 477.069 100.000 2,200.000
in ml/min
Temperature in
oc 27.767 1.938 22.000 32.800
Air pressure in
1,009,750 10.101 989.000 1,032.200
Pa
CO, in ppm 2,247.556 980.917 800.000 5,000.000
NH; in ppm 9.073 6.312 2.000 30.150
Relative
63.748 7.963 45.200 78.500
humidity in %

Qualitative variables

Variable Category
Floor condition Moderately worn 308 68.4
New 142 31.6
Skin injuries 1 No 259 57.6
Yes 191 42.4
Skin injuries 2 No 346 76.9
Yes 104 23.1
Animal contamination 1 No 217 48.2
Yes 233 51.8
Animal contamination 2 No 310 68.9
Yes 140 311
Cough No 264 58.7
Yes 186 41.3

min. The average temperature was a pleasant 27.8 °C. The mean air
pressure was approximately 1,009.8 Pa, with a range from a minimum
of 989 Pa to a maximum of 1,032 Pa. The CO, value averaged about
2,248 ppm and ranged from 800 ppm to 5,000 ppm; while the NH;
value averaged about 9.1 ppm and varied between 2 ppm and 30 ppm.
The relative humidity of approximately 63.8%, which varied between
45.2 and 78.5%.

Finally, 264 animals reported no coughing (58.7%), while 186
animals suffered from coughing (41.3%). For the analyses,
we standardized the numerical variables and used them for the
calculation. These results provide valuable insights into the health and
husbandry conditions of the animal populations studied and their
potential impact on animal welfare.

3.2 Results of frequentist models

Starting the model selection process, we fit three hierarchical
frequentist models (FM) without any explanatory variables first to
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TABLE 3 Measures for model specificity comparing hierarchical frequentist model (FM) 1, 2 and 3.

Model with random

Pens, compartment

FM 2 FM 3

Pens, compartment, farms

intercepts (for each)

Estimated intercept —-0.62 —0.61 —-0.58
Log-likelihood —289.63 —270.97 —270.04
Estimated variance pens 2.29 0.20 0.22
Estimated variance compartments 2.84 1.96
Estimated variance farms 0.90
R? 0.36 043 0.43
1CCy 0.41 0.48 0.48
conditional modes of the random compartment effect with all 63
2 compartments in total in rank order along with the associated
£ v 95%-confidence intervals. The graph shows the estimated residuals for
é o l‘L all compartments in the sample after remaining preprocessing. For
€ |||||||||H|| il nine of the 63 total compartments, the 95%-confidence intervals do
Q.
£ © | ” | ‘ H ‘ | ’ “ not overlap with the horizontal line at zero, indicating that coughing
o
“g o - g I in these compartments is above average. The confidence intervals are
‘é <« | quite wide for some compartments, which is in line with the restricted
3 s . . : : : : sample sizes within these compartments. A corresponding graph (for
0 10 20 30 40 50 60 FM 2) of the pen effects would simply consist of a horizontal line at
compartments zero, so this is not shown here.
FeUR 2 Subsequently, explanatory variables are included in the model in
Confidence intervals of estimated residuals per compartment from addition to the random intercepts. The starting point is initially the
FM 2 with circles showing modes (intercept-only). FM 2 from above. For model 1 the variables collected at pen level are
included first. These are the age of pigs in a specific pen, the pen size

assess the impact of the cluster structure of the data. Table 3 shows the
basic characteristics and measures of model fit for these basic models.

From the model estimates (using the Laplace approximation; see
Table 3 for details) the log-likelihood of a pig coughing in an “average”
pen is estimated as BE =-0.62, i.e., the probability of suffering from

exp(—0.62)

coughing without the influence of other variables is ——————
1+exp(—0.62)

=0.35 or 35%. The adjusted intraclass-correlation (ICCygj) shows that
between 41 and 48%, respectively, of the variation (compared with the
total variance) in the outcome variable cough can be explained by the
respective clustering structure of the data in the models. For FM 2 and
FM 3, the ICC-values are the same, as adding the farm level does not
seem to provide any additional information. There is not enough
additional farm-level variation to justify adding an additional random
effect at this level to explain all of the observed variation. Although the
FM 1 confirms that there is variation between pens, the magnitude of
this variation can be nearly fully explained by the variation between
compartments and the residual variance term. It should be noted that
the FM 3 failed to converge, even though we have yet to add
explanatory variables to the models. Therefore, the farm level was not
further investigated in the model building process.

Before including explanatory variables in the model, the estimates
of the compartmental effects or residuals, 1;(; have to be considered in
more detail. These are calculated from the FM 2. Figure 2 plots these
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or the stocking density in a pen and others. Model 1 assumes that the
relationship of the explanatory variables with cough is the same across
pens or compartments. Furthermore, we now add explanatory
variables collected at the compartment level to our model. For both
models, a random intercept is allowed for each of the pens or
compartments. Table 4 shows the resulting odds ratios with associated
95%-confidence intervals for the fixed effects of the fitted hierarchical
logistic regression models (FM 2), where model 1 has explanatory
variables for pen level and model 2 has explanatory variables for the
pen- and compartment level.

Explanatory variables for the pen level have been considered in
model 1. These are the pen size (in mz), the age of the animals (in
days), the stocking density within a pen, animals with skin lesions
(“low”- or “medium”-/high-grade lesions in each case in comparison
with the reference category no lesions) and the degree of animal
contamination within a pen.

Comparing the general outcome of both models show similar
estimates at pen-level. Always all factors under study show no
statistically significant effect. However, the age of the animals has a
statistically significant effect on cough within model 1 and model 2.
The estimated odds ratio for age is 1.70 resp. 1.64.

In model 2, compartment-specific variables have been added now.
These are the water flow rate (in ml per minute), the measured
temperature (in C), the air pressure (in Pa), the carbon dioxide value
(CO,), the corrected ammonia value (NH;) (each in ppm) and the
relative humidity (in %), each in one compartment. Also evaluated
was the floor condition (as new vs. worn).
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TABLE 4 Odds ratios and 95% confidence intervals for fixed effects in frequentist hierarchical logistic regression models.

Factor

Age (in days)

Model 1

1.70 [1.19, 2.42]

Model 2

1.64 [1.13,2.38]

Pen size (in m?)

0.71 [0.47, 1.06)

0.94 [0.60, 1.48]

Stocking density (in animals/m?)

1.26 [0.93, 1.70]

1.27[0.92, 1.75]

Animal contamination 1 (none vs. low)

1.37[0.63, 2.99]

1.05 [0.46, 2.40]

Animal contamination 2 (none vs. high)

1.06 [0.39, 2.85]

0.63 [0.21, 1.88]

Skin lesions 1 (none vs. low)

0.86 [0.45, 1.64]

1.02 [0.51, 2.05]

Skin lesions 2 (none vs. high)

0.61 [0.28, 1.33]

0.81 [0.35, 1.86]

Water flow rate (in ml/min)

0.57 [0.36, 0.91]

Temperature (in °C)

1.10 [0.85, 1.42]

Air pressure (in Pa)

0.98 [0.55, 1.77]

CO,-value (in ppm)

2.04 [1.24, 3.37)

NH;-value (in ppm)

1.10 [0.66, 1.83]

Relative humidity (in %)

0.55 [0.33, 0.94]

Floor condition (as new vs. worn)

6.28 [1.89,20.90]

Within the framework of the final multivariable frequentist model (FM 2), two specifications were considered: Model 1 included explanatory variables at the animal and pen levels, while
Model 2 additionally included compartment-level variables. Thus, both models represent FM 2 structures differing only in the number and hierarchical level of predictors. Bold values indicate

statistically significant results (p < 0.05).

TABLE 5 Measures for model specificity comparing FM 2 (a random-
intercept-only model with pens nested in compartments), Model 1 and
Model 2.

FM 2 Model 1 Model 2
Log-likelihood —270.97 —262.08 —251.27
Number parameters 3 13 20
Estimated VAR pens 0.20 0.15 0.03
Estimated SD pens 0.45 0.39 0.17
Estimated VAR 2.84 2.92 2.99
compartments
Estimated SD 1.68 1.71 1.73
compartments
ICC. 0.43 0.46 0.43
ICC,y 0.48 0.48 0.48

Four of these supplemental factors show a statistically significant
effect, which again indicates the overarching hierarchical necessity of
fitting nested models.

So far, only the fixed effects have been studied. However, both
models have also allowed random intercepts for pens and
compartments. The values of the estimated variances (VAR), standard
deviations (SD), the log-likelihood function and intraclass-correlation
(conditional and adjusted), for the comparison of the models are
shown in Table 5. Here we notice that the estimated variances and
standard deviations for the pen effects are close to zero for all our
models. Adding explanatory variables significantly reduces the
estimated variance across compartments, suggesting that the
distribution of one or more variables varies across compartments.

The adjusted intraclass-correlation (ICC,g;) considers only the
random effects in the model. Here, for model 2, a total of 48% of the
variation (compared with the total variation) in the outcome variable
cough can be explained by the clustering structure of the data in this
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model (similar to the FM 2). However, the conditional ICC, (considers
fixed and random effects) is slightly higher here at 43%.

3.3 Results of Bayesian models

Starting the model selection process from a Bayesian point of
view, we ran a non-hierarchical Bayes model with all our explanatory
variables. This model claimed that the stocking density and the floor
condition in the pens are statistically significant variables for
the response.

Since we know of the hierarchical structure of the data, this
non-hierarchical model does not account for the pen and
compartment effects. Therefore, we ran an intercept only model with
varying intercepts for the hierarchical levels pen and compartment.
The ICC-value for this model is ICC,g; = 0.53, meaning that 53% of
the variation in the outcome variable can be accounted for by the
clustering structure of the data. Splitting this measure into the two
hierarchy levels, we get ICCp,, = 0.03 for the pen level and
ICCompartment = 0.50 for the compartment level, which drives the
decision to do not take the pen-level into further consideration.

This leaves us with Bayesian models with random intercepts for
the compartment level and all explanatory variables. Within these
we accounted for different kinds of (non- and high informative) prior
distributions to our models as outlined in Table 6.

To explicitly incorporate prior knowledge into our hierarchical
Bayesian models, we defined informative priors for key parameters
based on expert knowledge in the field. The rationale for using
informative priors was twofold: first, to stabilize estimation in the
presence of limited or noisy data, and second, to restrict the model in
biologically plausible parameter spaces. We acknowledge that prior
selection can substantially influence posterior inference, particularly
in complex hierarchical settings. Therefore, we conducted a sensitivity
analysis, demonstrating that the main conclusions of the model
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TABLE 6 Overview of prior distributions used in Bayesian logistic
regression models.

Model |

BM 1 (non-hierarchical)

Prior distributions

Lo~ N(O,SO)
PBrse-Bis NN(O,IOO)

BM 2 (hierarchical) (non-informative)

Bo~N(0,50)

B fis ~ N (0100)
oo ~ InvGamma(0.01,0.01)
og; ~ InvGamma(0.01,0.01)
6 ~ InvGamma(0.01,0.01)

BM 3 (hierarchical) (non-informative)

o ~ N'(0,100)
Bis-s s ~ N (0,1000)
o4 ~ InvGamma(0.01,0.01)
og; ~ InvGamma(0.01,0.01)
oo ~ InvGamma(0.0l,0.0l)

BM 4 (hierarchical) (high-informative)
Bo~N(01)

Bir-Bis ~ N (0,10)
oy~ InvGamma(l,l)
oo ~ InvGamma(l,l)

oo ~ InvGamma(l,l)

BM 5 (hierarchical) (high-informative)
Bo~N(0,1)

Bise-sBis ~ N (01)
oy ~ InvGamma(0.5,0.5)
oo ~ InvGamma(0.5,0.5)
oo ~ InvGamma(0.5,0.5)

BM 1: non-hierarchical; BM 2 - BM 3: hierarchical with non-informative priors; BM 4 - BM
5: hierarchical with highly informative priors.

remained robust across a range of plausible prior specifications. The
improved performance of model BM 5, which used highly informative
priors, should thus be interpreted as a consequence of the coherent
integration of data and prior information, rather than being solely
driven by the prior itself.

The resulting estimated odds ratios and their associated 95%
credibility intervals were as follows (Table 7): for stocking density in
BM 1 (non-hierarchical), it was estimated at 3.84 with a credibility
interval of [2.97, 4.96]. In contrast, BM 2 (hierarchical;
non-informative) showed an odds ratio of 9.30 [6.23, 13.89], while BM
3 (hierarchical; non-informative) had an odds ratio of 9.28 [6.19,
13.91]. For BM 4 (hierarchical; highly informative), stocking density
yielded an odds ratio of 9.34 [6.15, 14.19], and BM 5 (also hierarchical;
highly informative) resulted in an odds ratio of 6.33 [4.35, 9.22].

In our analysis, floor condition emerged as a significant variable
influencing the occurrence of cough in pigs. The assessment
categorized floor condition into two levels: “new” and “worn” The
data revealed that 3.84 odds ratio (OR) for worn floor conditions
indicates that pigs housed in compartments with worn flooring have
approximately four times higher odds of exhibiting coughing
symptoms compared to those in pens with new flooring.

This finding suggests that the quality of the flooring has a direct
impact on respiratory health. Worn or degraded flooring can
contribute to increased dust and pathogen exposure, leading to higher
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instances of respiratory issues among livestock. In this context, it is
crucial for farm management practices to prioritize maintaining good
floor conditions within pig housing facilities as part of overall
biosecurity and animal welfare strategies. The results highlight the
importance of addressing environmental factors such as floor
condition when evaluating animal health outcomes.

In terms of model specificity measures comparing Bayesian
Models (BM 2-5), Table 8 summarizes key statistics including
estimated random effects variance (& compartments) Which was
estimated at 2.36, 2.37, 2.36, and 2.21 across models BM 2 through BM
5, respectively.

Figure 3A shows the posterior densities for different models (BM
2 - BM 5) in relation to floor condition. Most models are very similar in
their density distribution, with the exception of BM 5, which has a higher
peak concentration. All models show a main distribution around a
positive effect area, which indicates that floor properties have an overall
positive influence on the target variable under consideration. The dashed
zero reference line marks the boundary between positive and negative,
i.e., here preventive effects. None of the models has a substantial density
in the negative range, which indicates that restrictions in floor quality
always result in increased respiratory problems.

All models (BM 2-BM 5) for the variable “stocking density”
(Figure 3B) show similar distributions centered close to zero. This
suggests that the overall influence of stock density on the outcome is
small or directionless. As the densities cluster around the dashed zero
reference line, stocking density appears to play only a minor role for
coughing in this collective of farms.

It is noticeable that BM 5 (purple) has a slightly narrower
distribution and a greater maximum value than the other models,
which could indicate less uncertainty in this estimate. The remaining
models (BM 2 - BM 4) show a wider distribution, which could
indicate greater uncertainty or variability in the estimate of the effect.

Overall findings indicate that while both hierarchical and
non-hierarchical models provided insights into factors affecting cough
incidence in pigs, modeling approaches that incorporate random
effects offer more robust estimates by accounting for underlying
data structures.

3.4 Evaluation results

At the beginning, three hierarchical frequentist models (FMs)
without explanatory variables were fitted to assess the impact of the
data’s clustering structure. The model estimates indicated that, in an
“average” pen, pigs have a 35% probability of coughing without
accounting for other influencing factors. Subsequently, models
incorporating explanatory variables identified significant predictors —
namely, stocking density and floor condition - as influential on the
incidence of coughing among pigs.

Next, our approach was extended using Bayesian methods. First,
all explanatory variables were included in non-hierarchical models,
which revealed that stocking density and floor condition significantly
influenced coughing incidence. Recognizing the hierarchical structure
of the data, intercept-only models with varying intercepts across pen
and compartment levels were estimated. These models showed an
intra-class correlation (ICC) indicating that 53% of the variation was
attributable solely to clustering effects, with the compartment level
being dominant. The resulting estimated odds ratios across different
Bayesian models highlighted significant variations, particularly with
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TABLE 7 Odds ratios with 95% credible intervals from Bayesian logistic regression models.

BM 1 non- BM 2 hierarchical

non-informative

Factor

hierarchical

Stocking density (in 3.84 [2.97,4.96] 9.30 [6.23, 13.89]

animals/m?)

BM 3 hierarchical
non-informative

BM 4 hierarchical
highly-
informative

BM 5 hierarchical
highly-
informative

9.28 [6.19, 13.91] 9.347 [6.15, 14.19] 6.33 [4.35,9.22]

Pen size (in m?) 0.96 [0.73, 1.27] 1.01 [0.58, 1.76]

1.01 [0.57, 1.76] 1.01 [0.57, 1.76] 0.98 [0.59, 1.63]

age (in days) 1.02[0.79, 1.32] 1.04 [0.66, 1.61]

1.04 [0.66, 1.62] 1.04 [0.66, 1.63] 1.03 [0.69, 1.56]

Floor condition (as 3.84[2.03,7.28] 7.29 [1.66, 32.93]

new vs. worn)

7.57 [1.79, 34.22] 7.46 [1.72 34.69] 3.45[1.16, 10.18]

Water flow rate (in ml/ 1.00 [0.76, 1.31] 1.00 [0.58, 1.73]

min)

1.00 [0.57, 1.76] 1.00 [0.57, 1.76] 1.00 [0.60, 1.66]

air pressure (in Pa) 1.00 [0.77, 1.29] 1.00 [0.46, 2.19]

1.00 [0.46, 2.18] 1.00 [0.45, 2.20] 1.02[0.52, 1.98]

CO,-value (in ppm) 1.00 [0.75, 1.33] 1.00 [0.52, 1.92]

1.00 [0.52, 1.92] 1.00 [0.52, 1.93] 1.00 [0.57, 1.76]

NH;-value (in ppm) 0.97 [0.77,1.21] 1.05 [0.52, 2.14]

1.05[0.51, 2.17] 1.05 [0.50, 2.20] 1.05 [0.56, 1.96]

Temperature (medium 2.59 [0.63, 11.43] 3.66 [0.34, 39.97]

vs. high)

3.78 [0.34, 42.82] 3.84[0.35, 46.82] 1.66 [0.37, 7.42]

Relative humidity (in
%)

1.00 [0.75, 1.32] 0.90 [0.44, 1.86]

0.90 [0.44, 1.86] 0.90 [0.43, 1.89] 0.92 [0.49, 1.75]

Skin lesions 1 (none vs. 1.22[0.73, 2.03] 0.98 [0.43, 2.25]

low)

0.98 [0.43, 2.27] 1.02 [0.43, 2.33] 0.97 [0.47, 1.98]

Skin lesions 1 (none vs. 0.94 [0.49 1.77] 0.78 [0.29, 2.04]

high)

0.79 [0.30, 2.06] 0.79 [0.30, 2.16] 0.75 [0.33, 1.68]

Animal contamination 0.86 [0.47, 1.61] 1.16 [0.45, 3.20]

1 (none vs. low)

1.19 [0.45, 3.42] 1.21 [0.46, 3.30] 1.24[0.57,2.71]

Animal contamination 0.73 [0.35, 1.55] 0.56 [0.16, 2.07]

2 (none vs. high)

0.58 [0.16, 3.42] 0.59 [0.16, 2.07] 0.74 [0.27, 2.09]

BM 1: non-hierarchical; BM 2 - BM 5: hierarchical with random intercepts for compartments (BM 4 - BM 5 use highly informative priors). Credible intervals are based on the posterior
distribution and are not directly comparable to frequentist confidence intervals. Bold values indicate statistically significant results (p < 0.05).

TABLE 8 Model-specific measures from Bayesian models BM 2—BM 5.

BM 2 BM 3 BM 4 BM 5
B0 compartments 2.36 237 236 221
ICC,y 0.64 0.64 0.66 0.62
ICCpag; 0.53 0.54 0.55 0.54

©”%: estimated variance of the random compartment effect; ICC,q;: adjusted/conditional
intraclass correlation; ICC,,q;: unadjusted ICC.

regard to stocking density; inflated estimates were observed when the
hierarchical structure was not accounted for, compared to models that
did include random effects.

The loo package in R was used to perform Leave-One-Out Cross-
Validation (LOO), thereby assessing the out-of-sample predictive
performance of the hierarchical Bayesian models. Using the loo()
function, expected log pointwise predictive density (elpd) scores were
computed. The model comparison analysis based on LOO resulted in
elpd differences for five Bayesian models. The results are summarized
in Table 9.

Generally model BM 5 served as the reference with the best
predictive performance, while BM 1 showed a substantial drop in
performance.  Convergence diagnostics were monitored
using the Rhat statistic derived from MCMC samples generated with
tools like Stan (via the rstan package in R). All chains converged well

(Rhat < 1.01), confirming the reliability of the parameter estimates.
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Additionally, Bayes R* values were computed to assess the
proportion of variance explained by the models. Table 10 summarizes
the Bayes R? estimates for various models with and without the
inclusion of random effects:

In summary, the Bayes R* results indicate that models including
random effects provide significantly higher explained variance
compared to models without them, especially evident in the FMs
which exhibit no explanatory power without random effects.

4 Discussion

The investigation presented here shows an extended version of a
model building process for respiratory health in pig production.
Therefore, in the discussion section we want to reflect on the
implications of our findings in two dimensions by comparing different
modeling approaches and their suitability for analyzing complex,
hierarchical data first, and by discussing the findings from the
viewpoint of veterinary advice to the farmers.

4.1 The model selection process and its
characteristics

The model selection was based on multiple criteria, including
model fit, convergence issues, and the interpretability of results as
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FIGURE 3

Posterior density distribution for different models (BM 2 — BM 5) in relation to floor condition (A) and stocking density (B).
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TABLE 9 Leave-one-out cross-validation results for Bayesian models BM
1-BMS5.

Model elpd_diff se_diff
BM5 0.0 0.0
BM4 -28 1.7
BM2 -3.1 1.9
BM3 34 1.8
BM1 —52.0 10.1

elpd_diff: difference in expected log pointwise predictive density compared to the best model
(BM5); se_diff: standard error of elpd_diff.

recommended in Burnham and Anderson (32). Frequentist models
offer a straightforward interpretation with clear estimates and
confidence intervals, making them widely used in applied research
(33). However, they can struggle with complex hierarchical structures
and small sample sizes, potentially leading to biased estimates when
the assumption of independence is violated (34).

In contrast, Bayesian models integrate prior knowledge into the
analysis, allowing for a more understanding of the data and the ability
to handle hierarchical structures effectively (35). They provide credible
intervals that more accurately reflect uncertainty, especially in small
samples or complex models (35). The trade-offs, however, include a
need for careful prior selection, which can be subjective and context-
dependent (36), as well as increased computational intensity due to
iterative simulation methods such as MCMC (37). Hierarchical
models, which account for the nested structure of data, further
improve precision by modeling variability across different levels (4).
While these models yield more stable and realistic estimates, they also
introduce additional complexity in both model fitting and
interpretation, requiring advanced diagnostics and greater
computational resources (11).

The study compared four basic model types, summarized in
Table 11.
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TABLE 10 Bayes R? estimates (posterior median and 95% credible
intervals) for models with and without random effects.

Model Estimate Est. Q2.5 Q97.5
error
Random effects included
BIM 1 0.343 0.047 0.242 0.429
BIM 2 0.357 0.041 0.279 0.436
BIM 3 0.363 0.042 0.280 0.441
BM1 0.137 0.023 0.092 0.181
BM 2 0.428 0.037 0.356 0.502
BM 3 0.432 0.038 0.360 0.507
BM 4 0.444 0.035 0.375 0.511
BM 5 0.424 0.037 0.352 0.496
Random effects not included
BIM 1 0.000 0.000 0.000 0.000
BIM 2 0.000 0.000 0.000 0.000
BIM 3 0.000 0.000 0.000 0.000
BM1 0.137 0.023 0.092 0.181
BM 2 0.208 0.031 0.142 0.262
BM 3 0.209 0.031 0.144 0.264
BM 4 0213 0.031 0.148 0.267
BM 5 0.188 0.031 0.122 0.243

BM 1: non-hierarchical model; BM 2 - BM 5: hierarchical models with random intercepts
for compartments (BM 4 - BM 5 with informative priors). BIM 1 - BIM 3: Bayesian
intercept-only models with random intercepts for pens (BIM 1), pens and compartments
(BIM 2), and pens, compartments, and farms (BIM 3). Credible intervals reflect uncertainty
from the posterior and are not equivalent to confidence intervals.

Convergence issues were observed in models with a high number
of explanatory variables, underlining the inherent complexity of
hierarchical modeling. Notably, the Bayesian hierarchical model with
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TABLE 11 Comparison overview of the four underlying models.

10.3389/fvets.2025.1611771

Model characteristics

Flexibility Handles Handles small Includes prior Complexity
clustering data knowledge

Frequentistic

Moderate Yes No No Low
hierarchical
Bayesian non-
hierarchical non- Moderate No Yes No Moderate
informative
Bayesian hierarchical

High Yes Yes No High
non-informative
Bayesian hierarchical

Very high Yes Yes Yes Very high
highly informative

highly informative priors (BM 5) outperformed its counterparts by
delivering the highest predictive accuracy, as evaluated using Leave-
One-Out Cross-Validation, and by achieving higher Bayesian R’
values that underscored the explained variance. This model provided
robust and realistic estimates by appropriately accounting for the
hierarchical structure and avoiding the overestimation of effects
observed in non-hierarchical models such as BM 1.

The goodness-of-fit measures employed in our analysis — namely
the marginal and conditional R?, the Intraclass Correlation Coefficient
(ICC), and the AIC/AIC. - provided valuable insights into the
performance and appropriateness of our models. The marginal R
(R’m) quantified the proportion of variance explained solely by the
fixed effects, while the conditional R* (R*) captured the overall
explanatory power when both fixed and random effects were
considered. This distinction underscored the importance of
incorporating random effects to account for the hierarchical structure
inherent in our data. Similarly, the ICC offered a direct measure of the
variability attributable to clustering, highlighting the degree of within-
cluster similarity and reinforcing the necessity for hierarchical
modeling. Although the explained variance in our models — as
reflected in the R” and ICC values ranging from approximately 0.17 to
0.50 — may appear modest, such values are not uncommon in field-
based veterinary epidemiological studies. This is largely due to the
high biological, environmental, and management-related variability
inherent to real-world farm data. The primary goal of our modeling
approach was not to fully explain the outcome variable, but rather to
detect consistent and meaningful associations between risk factors
and respiratory symptoms.

In particular, hierarchical models are designed to capture both
fixed effects and random variability between nested levels (e.g.,
pens, compartments), and much of the unexplained variance may
be attributed to unobserved or unmeasurable influences such as
transient environmental fluctuations or management decisions,
which are not documented. Importantly, several risk factors — such
as floor condition and stocking density — emerged as robust
predictors across different model structures and prior specifications.
Therefore, despite moderate overall model fit metrics, the findings
remain highly relevant and applicable in the context of veterinary
field epidemiology.

This interpretation is in line with methodological guidance from
Gelman and Hill (4) and McElreath (11), who emphasize that low R?
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values in hierarchical models often reflect natural complexity rather
than model inadequacy.

Our results revealed that the Bayesian hierarchical model with
highly informative priors (BM 5) demonstrated superior performance
compared to its Frequentist counterparts. Notably, BM5 achieved
higher conditional R* and ICC values, suggesting that it more
effectively captured both the systematic (fixed) and the random
variability in the data. In contrast, the Frequentist models, while easier
to interpret, tended to produce lower R* estimates and were more
prone to inflated effect estimates when clustering was inadequately
addressed. Furthermore, model comparison through AIC and AIC.
consistently favored the Bayesian approach, albeit with the caveat that
its increased computational complexity and sensitivity to prior
specification require careful management.

Some of these recommendations support the findings of our
analysis, while others offer alternative perspectives that enrich the
discussion. For example, Burnham and Anderson (32) emphasize that
model selection should be based on multiple criteria — such as
parsimony, explanatory power, and convergence behavior - rather
than relying solely on fit indices like AIC or BIC. This aligns with our
approach of balancing interpretability and model performance.
Similarly, McNeish and Stapleton (40) caution against using complex
hierarchical models in small-sample contexts without careful
consideration, echoing our observation that hierarchical modeling can
lead to instability if not adequately supported by the data. Conversely,
other studies highlight the value of Bayesian approaches in sparse or
nested data scenarios. For instance, Gelman and Hill (4) and
McElreath (11) advocate for the use of multilevel Bayesian models,
particularly when dealing with complex data structures and
uncertainty across levels. These perspectives confirm that there is no
one-size-fits-all solution in model selection; instead, the choice
depends on the structure of the data, the research questions, and
practical  considerations such as  computational  cost
and interpretability.

In summary, the integration of these goodness-of-fit measures
into our evaluation not only validated our model selection but also
highlighted the trade-offs between the Bayesian and Frequentist
paradigms. While Bayesian models offer enhanced flexibility and
robustness in capturing complex hierarchical structures, they demand
rigorous prior selection and greater computational resources.
Conversely, Frequentist models provide simplicity and ease of
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interpretation but may fall short in accurately reflecting the underlying
data structure, particularly in the presence of significant
clustering effects.

4.2 Risk factors for coughing in selected
farms with sustainable respiratory
problems

Using “coughing in piglets” as the sole response variable has both
advantages and disadvantages that should be considered when
evaluating its validity and limitations.

On the positive side, coughing is easily observable, making it
simple for practitioners to document and collect data quickly. This
ease of observation allows for timely identification of potential
respiratory health issues, enabling early intervention which is crucial
in livestock management where rapid responses are mostly necessary.
Additionally, monitoring coughing is cost-effective, as it does not
require expensive diagnostic tests or extensive clinical examinations,
which can be particularly beneficial for farmers with limited resources.

However, there are significant drawbacks to relying solely on
coughing as an indicator. Coughing can arise from multiple factors,
including infections, allergies, environmental irritants, or stress,
making it challenging to pinpoint the exact cause without additional
clinical or even laboratory data. Furthermore, the assessment of
coughing can be subjective and may vary among different observers,
leading to inconsistencies in data collection and interpretation and
introducing an information bias. Coughing is also a non-specific
symptom that can be associated with various diseases, complicating
the diagnostic process when viewed in isolation. The presence of
coughing alone may not accurately reflect the severity of an underlying
condition, necessitating consideration of other clinical signs to gain a
more comprehensive understanding of the piglets’ respiratory
health status.

The analysis of various models revealed that both frequentist and
Bayesian approaches were able to identify key factors influencing the
occurrence of coughing in pigs, including stocking density, floor
condition, and water flow, which are clearly to report and addressed
within the farm management process. Specifically, an increase in pen
size by one square meter was associated with an odds ratio (OR) of
0.79, suggesting a preventive effect, although this result did not reach
statistical significance. In contrast, pigs housed in areas with worn
floor experienced more than five times the odds of coughing compared
to those on new floor, highlighting the crucial environmental impact
as an important surrogate for biosecurity. Additionally, an increased
water flow rate demonstrated a protective influence (OR = 0.57),
emphasizing the importance of adequate hydration.

These general results are of importance due to the farm population
studied here. It should be noted that the VASIB project was not a
representative cross-sectional study of German pig production, but
rather a highly selected collection of farms with persistent respiratory
health problems. It can therefore be assumed that the usual farm
management measures and the continuous supervision by the herd
veterinarian have already exhausted significant factors for improving
animal health. Against this background, it is particularly remarkable
that even in this collective, factors still appear to be significant which,
from the point of view of animal hygiene and the associated
biosecurity measures, can actually already be assumed to be known.
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It can be concluded that this may indicate that certain influencing
factors are either ignored in agricultural practice or cannot
be implemented at all. For example, the factor of floor condition,
which is consistently considered to be conspicuous, is a factor that
cannot be continuously improved, as this requires structural measures.
By taking the hierarchical structure into account, however, there were
indications of specific compartments with an increased impact, so that
this can ultimately also be understood as an indication for the
development of alternative hygiene concepts.

5 Conclusion and outlook

The statistical modeling conducted in this study provides valuable
insights into predicting clinical outcomes in real-world pig production
systems, with a particular focus on respiratory health in piglets. Using
both frequentist and Bayesian hierarchical approaches, we identified
key risk factors—most notably stocking density, floor condition, and
water flow rate—that significantly influence the incidence of coughing.
These findings can support veterinarians and farmers in developing
targeted management strategies to improve animal health and welfare.

Several limitations must be acknowledged. The reliability of
predictions depends strongly on the quality and completeness of the
collected data, and missing or misreported information could bias
results. Hierarchical models, although powerful, are complex to
interpret for non-specialists, and both frequentist and Bayesian
approaches rely on assumptions that may not always hold in practice.
Moreover, the farms included in the VASIB project were pre-selected
due to persistent respiratory health problems, and therefore do not
represent the wider population of German pig production systems.
This restricts the generalizability of our findings. Bayesian modeling,
while advantageous for incorporating prior knowledge and generating
predictions for farms outside the dataset, is computationally
demanding and may require close collaboration with epidemiologically
trained veterinarians for practical implementation.

From a methodological perspective, hierarchical regression
models were essential for accurately assessing respiratory health risks.
Frequentist methods demonstrated the importance of accounting for
clustering effects, while Bayesian approaches refined estimates
through the integration of prior information. In particular, the
Bayesian hierarchical model with informative priors (BM 5) achieved
the highest predictive accuracy, effectively capturing data structure
and reliably identifying significant predictors. Nonetheless, model
selection outcomes may differ under other data conditions.

From an animal health perspective, the results highlight the
importance of optimizing stocking density, maintaining flooring
quality, and ensuring adequate environmental conditions as central
strategies to reduce respiratory disease in piglet production systems
with persistent health challenges.

Looking forward, Bayesian modeling offers a promising avenue
for predictive applications in animal health, enabling risk estimation
even for farms not included in the study population. By leveraging
prior knowledge and explicitly modeling uncertainty, these approaches
can guide preventive interventions on a broader scale. Future research
should prioritize improving data quality in farm settings, simplifying
the communication of complex model outputs for practitioners, and
validating results in more diverse and representative farm populations.
With these advances, statistical modeling can become an increasingly
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practical and powerful tool for proactive health management in
livestock production.
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