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Colibacillosis associated with colistin-resistant avian pathogenic Escherichia coli 
(E. coli) poses a threat to both food security and public health. The potential 
horizontal transmission of mobilized colistin-resistant (mcr) genes facilitates the 
co-emergence of Klebsiella pneumoniae. This study aimed to determine the 
prevalence, molecular detection, analyze the antibiogram and identify associated 
risk factors for colistin-resistant E. coli and Klebsiella pneumoniae isolated from 
broiler chicken in three districts of Punjab province, Pakistan. In total, 230 visceral 
organ samples were collected from 13 different chicken farms located in Sargodha, 
Jhang and Toba Tek Singh in Pakistan. Following isolation, the broth microdilution 
test was used to confirm phenotypic colistin resistance. Polymerase chain reaction 
was used to detect mcr-1 and mcr-2 genes associated with colistin resistance. 
Antimicrobial susceptibility test against 11 antibiotics was performed using the 
Kirby-Bauer disk diffusion method. Risk factors associated with colistin-resistant 
bacteria, including host attributes, farm management practices, environmental 
and agent characteristics, were analyzed. The prevalence of colistin-resistant 
E. coli and K. pneumoniae was 24.78% (95% CI, 19.6–30.7%) and 3.04% (95% CI, 
1.5–6.1%), respectively. The prevalence of colistin-resistant E. coli varied between 
cities at 42, 23.61 and 5.55% for Jhang, Sargodha and Toba Tek Singh, respectively. 
The detection frequency of mcr-1 gene, 42.1% (24/57), was significantly (p < 0.01) 
higher than that of the mcr-2 gene, 14.03% (8/57). Phylogenetic analysis of lipid A 
phosphoethanolamine transferase sequences revealed greater similarity with mcr-
1.5 variant. Isolates were found resistant to amoxicillin-clavulanic acid (84.21%), 
cefotaxime (70.17%), and trimethoprim-sulfamethoxazole (73.68%). The multivariate 
logistic regression predicted preceding viral infection of the respiratory tract as 
a significant association (OR = 4.808, p < 0.01), whereas daily removal/culling of 
dead/diseased chicken (OR = 0.308, p = 0.01) was a protective factor against the 
emergence of colistin-resistant strains. These findings indicate that the emergence 
of colistin-resistant strains deteriorate colibacillosis control efforts in poultry and 
serves as a possible reservoir for zoonotic infections.
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1 Introduction

Avian colibacillosis is an infectious disease in chickens caused by 
avian pathogenic Escherichia coli (E. coli) (APEC). Colibacillosis is 
characterized by multisystemic expression of lesions including 
airsacculitis, perihepatitis, pericarditis, salpingitis, peritonitis, 
cellulitis, omphalitis and osteoarthritis (1). Colibacillosis poses 
significant economic losses to the poultry industry worldwide, in 
terms of mortality, weight loss, decreased egg production, lower 
hatchability, carcass contamination and costs of prophylaxis and 
treatment (2). Control of colibacillosis is reliant on strict biosecurity 
practices, vaccination and antibiotic treatment. Despite standard 
biosecurity practices adopted on poultry farms, E. coli continues to 
maintain and evolve into diverse strains within the hen house 
environment via fecal contamination, as the bacterium originates 
from the avian gut microbiota (3). Due to the diverse plethora of 
strains and vaccine efficacy only against homologous strains, no single 
vaccine is effective against all strains; thus, flock-specific autogenous 
bacterins are often developed for effective prophylaxis (4). Therefore, 
in most low- and middle-income countries, colibacillosis is treated 
with the use of antibiotics (2, 5). However, the injudicious use of 
antibiotics in poultry production and natural evolutionary 
mechanisms in pathogenic bacteria have resulted in the emergence of 
multidrug-resistant (MDR) strains of E. coli (6, 7). This situation 
intensifies the challenges of controlling avian colibacillosis.

Antimicrobial resistance (AMR) is a phenomenon of global 
concern. The use of antimicrobials in food-animal production 
accounts for 73% of the antimicrobials sold globally (8). Antimicrobials 
are consumed mainly in terms of achieving productivity goals, 
maintaining good farm hygiene, and disease control and prevention 
purposes (8). The importance of antimicrobial resistance genes 
(ARGs) can never be overemphasized when it comes to the horizontal 
transfer of genetic determinants of resistance within the populations 
of pathogenic bacteria, which is critical to the health of both humans 
and animals (9). Apart from infecting chickens, the resistant clones of 
Klebsiella pneumoniae (K. pneumoniae) and E. coli have public health 
significance, as these bacteria can be  transmitted from poultry to 
humans through poultry-origin food products and environmental 
contamination (10).

Colistin (Polymyxin E) is a cationic polypeptide, broad-spectrum 
antibiotic, mainly active against Gram-negative bacteria. Despite its 
nephrotoxicity potential, colistin is considered a last resort antibiotic 
for treating multidrug-resistant (MDR) Gram-negative bacterial 
infections due to the unavailability of new antibiotics (11). However, 
members of the Enterobacteriaceae such as E. coli, Salmonella spp., 
and K. pneumoniae are becoming increasingly resistant to colistin. 
One of the earlier known mechanisms of colistin resistance involves 

chromosomal mutations that activate the two-component regulatory 
systems PhoP-PhoQ and PmrA-PmrB, causing changes in 
lipopolysaccharide (LPS) structure, leading to loss of affinity for 
colistin attachment (12, 13). Further, in 2015, the mechanism of 
horizontal transmission of colistin resistance was first reported in 
E. coli strains of chicken and porcine origin and K. pneumoniae strains 
of human origin (14). Reportedly, a plasmid harboring the mobilized 
colistin resistance (mcr-1) gene, which encodes the 
phosphoethanolamine transferase enzyme and adds 
phosphoethanolamine to lipid A of LPS, causes a reduction in 
net-negative charge of the outer membrane of Gram-negative bacteria, 
resulting in loss of colistin affinity (14, 15). More recently, mcr gene 
variants (mcr-1 to mcr-10) have been reported in multiple bacterial 
species, originating from different sources such as animals, humans, 
food and the environment (16). These findings highlight the diversity 
and potential of mcr gene to rapidly disseminate colistin resistance.

The medical importance of colistin-resistant bacteria has been 
well understood. However, little is known about the potential of 
colistin-resistant avian pathogenic E. coli, causing colibacillosis in 
chickens in low-and middle-income countries like Pakistan. 
Considering the economic impact and dangers to food security, the 
present study was conducted to understand the gravity of colibacillosis 
caused by colistin-resistant E. coli in broiler chicken. Therefore, this 
study aimed to determine the prevalence, molecular characterization, 
antibiogram, and associated risk factors for colistin-resistant E. coli 
and K. pneumoniae in colibacillosis-infected chickens in three districts 
of Punjab province of Pakistan.

2 Materials and methods

2.1 Collection of specimens and survey 
data

In this study, 13 broiler chicken farms located in three cities, 
Sargodha, Jhang and Toba Tek Singh in Punjab province of Pakistan, 
were investigated from February 2023 to November 2023. Broiler farms 
in these specific areas were selected through purposive sampling due 
to their diagnostic records indicating sporadic colibacillosis outbreaks. 
A total of 230 multi-organ samples (liver, cecum, heart and lungs) were 
collected from necropsied broiler chickens with a history of clinical 
signs and gross lesions (perihepatitis, pericarditis, peritonitis, 
airsacculitis and omphalitis) associated with colibacillosis (Table 1). All 
tissue samples were collected in sterile vials, properly labeled and 
shipped with ice packaging to the Microbiology Research Laboratory, 
Department of Pathobiology, College of Veterinary and Animal 
Sciences, Jhang campus, University of Veterinary and Animal Sciences, 

TABLE 1 Distribution of the visceral organ samples collected from necropsied chickens in the study area.

Farm location No. of farms Sample type Total

Liver Cecum Heart Lungs

Sargodha 8 36 36 36 36 144

Jhang 3 12 14 12 12 50

Toba Tek Singh 2 8 12 8 8 36

Total 13 56 62 56 56 230
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Lahore, Pakistan. In order to study associated risk factors, information 
related to farming practices, birds’ health, medication history and farm 
biosecurity practices was collected from farm managers via a semi-
structured questionnaire-based method during interviews, followed by 
direct observation where possible. All information was gathered and 
processed in a pre-consented manner and as per the ethical guidelines 
of the intradepartmental ethical review committee of the University of 
Veterinary and Animal Sciences, Lahore.

2.2 Isolation and identification of E. coli 
and K. pneumoniae

For isolation of colistin-resistant bacteria, a previously described 
method with a few modifications was used (17). Briefly, the collected 
samples were pre-enriched by inoculation into 10 mL of tryptone soy 
broth (CM0129, Oxoid, UK) supplemented with 4 μg/mL colistin 
(Sigma-Aldrich, USA) for selective isolation of colistin-resistant 
strains and incubated aerobically at 37°C for 24 h. One hundred μL of 
pre-enriched tryptone soy broth was streaked onto MacConkey agar 
(Oxoid, Hampshire, UK) supplemented with 4 μg/mL colistin and 
incubated at 37°C for 24 h. One representative colony from each 
MacConkey agar plate was subjected to biochemical tests to identify 
E. coli and K. pneumoniae species via the analytical profile index 
(API)-20E kit (bioMérieux, Craponne, France). Aliquots of identified 
cultures were preserved and stored as 50% glycerol stocks at −21°C 
until further use.

2.3 Phenotypic confirmation of 
colistin-resistant E. coli and K. pneumoniae

For phenotypic screening of colistin-resistant isolates, isolated 
E. coli and K. pneumoniae were thoroughly swabbed on Mueller-
Hinton agar (Oxoid, Hampshire, UK) plates, a colistin disc (10 μg) 
was applied, and plates were incubated at 37°C for 20 h. All isolates 
with a diameter of zone of inhibition ≤10 mm were tested further for 
minimum inhibitory concentration (MIC). MIC was determined via 
the broth microdilution method by following the guidelines provided 
by the Clinical Laboratory Standards Institute (CLSI) (18). Briefly, 
cation-adjusted Mueller-Hinton broth with colistin concentrations 
(0.25–64 μg/mL) was used, and test cultures with adjusted turbidity 
equivalent to a 0.5 McFarland standard (1:100 dilution) were used as 
inoculum. E. coli (ATCC 8739) was used as a control organism. Test 
cultures with MIC value ≥4 μg/mL were considered as colistin-
resistant isolates (18).

2.4 Antimicrobial susceptibility test

Antimicrobial susceptibility test was performed by using the Kirby-
Bauer disk diffusion method. A panel of 11 antibiotic discs including 
Streptomycin (S-10 μg), Gentamicin (CN-10 μg), Amoxicillin-
clavulanic acid (AMC-20/10 μg), Cefotaxime (CTX-30 μg), 
Ciprofloxacin (CIP-5 μg), Enrofloxacin (ENR-5 μg), Chloramphenicol 
(C-30 μg), Tetracycline (TE-30 μg), Imipenem (IPM-10 μg), 
Meropenem (MEM-10 μg) and Trimethoprim-sulfamethoxazole 

(SXT-1.25/23.75 μg) (Oxoid, Hampshire, UK) was applied. Isolated 
E. coli and K. pneumoniae with adjusted turbidity equivalent to 0.5 
McFarland standard were swabbed on Mueller-Hinton agar (MHA) 
plates (Oxoid, Hampshire, UK)., The selected antibiotic discs were 
applied using sterile forceps and plates were left at room temperature for 
30 min, followed by incubation aerobically at 37°C for 24 h. The 
diameter of zone of inhibition was measured in millimeters and 
interpreted as resistant, intermediate, or susceptible as per the CLSI 
criteria (18).

2.5 Genomic DNA extraction and 
molecular detection of mobilized 
colistin-resistant (mcr) genes

Genomic DNA was extracted from 1 mL of an overnight 
incubated tryptone soy broth culture of colistin-resistant bacteria. 
DNA was extracted by using the GeneJET genomic DNA Purification 
kit (K0721, ThermoFisher Scientific, USA) following the 
manufacturer’s instructions. Polymerase chain reaction (PCR) was 
conducted using previously reported primer sets to detect mobilized 
colistin-resistant (mcr) genes including mcr-1 (Forward: 
5′-AGTCCGTTTGTTCTTGTGGC-3′, reverse: 5′-AGATCCTT 
GGTCTCGGCTTG-3′) and mcr-2 (Forward: 5′ AGCCGAGTCT 
AAGGACTTGATGAATTTG-3′, reverse: 5′ GCGGTATCGACAT 
CATAGTCATCTTG-3′) with generation of PCR product of 320 bp 
and 576 bp size, respectively (19, 20). Briefly, a total of 50 μL mono-
plex PCR reaction mixture was prepared by mixing 25 μL master mix 
(WizPure™ PCR 2X, W1401-2, Korea), 2 μL each primer (10 μM), 
4 μL template DNA and 17 μL of nuclease-free water. Running 
conditions for amplification in thermal cycler (Biorad, T100, USA) 
were as follows: Initial denaturation for 15 min at 94°C, 25x 
(denaturation for 30 s at 94°C, annealing for 90 s at 58°C and 
extension for 60 s at 72°C) with a final cycle of extension step for 
10 min at 72°C. Nuclease-free water was substituted for template DNA 
in PCR negative controls. DNA from multidrug-resistant (MDR) 
strains K. pneumoniae strain MASJG8 (GenBank: OP744534.1) and 
E. coli strain MASMS_A3 (GenBank: ON736876.1) was used as mcr-1 
and mcr-2 positive controls, respectively. These strains were isolated 
from our previous studies and maintained at the Microbiology 
laboratory of the College of Veterinary and Animal Sciences, Jhang. 
PCR products were electrophoresed in a 1.2% agarose gel at 100 volts 
for 45 min using the Mupid-One electrophoresis system (Nippon 
Genetics, Tokyo, Japan). Agarose gel was stained with ethidium 
bromide (0.5 μg/mL). Gel images were captured and processed using 
a gel documentation system (Syngene, Cambridge, UK).

2.6 Lipid a phosphoethanolamine 
transferase (mcr gene product) 
phylogenetic analysis

Selected PCR amplicons of mcr-1 gene were processed for Sanger 
sequencing by a commercial service provider, Beijing Genomics 
Institute (BGI), Shenzhen (518083), China. Sequencing results were 
submitted to the GenBank database of the National Center for 
Biotechnology Information (NCBI). A phylogenetic analysis was 
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performed by using corresponding partial protein sequences of lipid 
A phosphoethanolamine transferase (mcr-1 product) obtained in the 
present study, including GenBank accession numbers WPF45700.1 
and WPF45701.1. The comparator and reference sequences included 
in phylogenetic analysis were obtained from the NCBI public 
database. This selection was made using the BLAST-p program. The 
sequences included a reference sequence of mcr-1 (HBY7764053.1). 
The comparator sequences included mcr-1.3 (WP077064885.1), mcr-
1.5 (APM84488.1), mcr-1.8 (WP085562407.1), mcr-2.1 (WHI19688.1, 
WHF75690.1), mcr-2.8 (QXM27672.1), mcr-3.1 (BBA91300.1, 
WBW54110.1), mcr-4 (QDF67528.1) and mcr-4.3 (AYJ09357.1). 
Class A beta-lactamase CTX-M-1 (WHD27734.1) sequence was 
added as an outgroup. Whelan and Goldman (WAG) was computed 
by MEGA software (v 12.0.11) as the best-fit amino acids substitution 
model based on the lowest BIC (Bayesian information criterion) 
score (21). A phylogenetic tree was constructed using the maximum 
likelihood method with bootstraps (500) and the WAG substitution 
model using MEGA 12 software (22).

2.7 Descriptive statistical and associated 
risk factors analysis

Numerical data was put in Microsoft Excel 365 to calculate 
percentages and mean values. Regional and comparative prevalence 
and confidence intervals (CI) of colistin-resistant bacteria were 
determined using EpiTools (V 2.0) epidemiological calculators (23). 
Prevalence and mean difference were tested for significance by using 
one-way analysis of variance (ANOVA) and an independent t-test by 
considering p-values less than 0.05 (p < 0.05) as statistically 
significant. The association of individual risk factors with colistin-
resistant bacteria was determined by univariate logistic regression 

analysis using JASP (Version 0.17.2) (24) to calculate odds ratios 
(ORs), confidence intervals and p-values. Only risk factors with 
p ≤ 0.15  in the univariate logistic regression were selected for 
inclusion in the final multivariate logistic regression analysis. Selected 
risk factors were further analyzed via multivariate logistic regression 
in JASP, wherein both “enter” and automated “backward selection” 
models were built (24) only factors with p < 0.05 at 95% confidence 
intervals were considered significantly associated with the detection 
of colistin-resistant bacteria.

3 Results

3.1 Prevalence of colistin-resistant bacteria

Typical colibacillosis gross lesions, such as severe pericarditis, 
perihepatitis, airsacculitis and peritonitis, were consistently observed 
in chickens that died of colistin-resistant strains of avian pathogenic 
E. coli (APEC) (Figure 1). The overall prevalence of colistin-resistant 
bacteria in collected samples was 27.83% (95% CI, 22.4–33.9%). In a 
total of 230 collected samples, 57 (24.78%) and 7 (3.04%) isolates were 
identified as colistin-resistant E. coli and K. pneumonia, respectively 
(Table 2). The MIC of colistin for E. coli and K. pneumonia ranged 
between 4–16  μg/mL and 4–8 μg/mL, respectively 
(Supplementary data). The prevalence of colistin-resistant E. coli was 
24.78% (95% CI, 19.6–30.7%), which was significantly (p = 0.01) 
higher than colistin-resistant K. pneumoniae, 3.04% (95% CI, 
1.5–6.1%). The prevalence of colistin-resistant E. coli varied 
significantly (p = 0.02) between the three studied cities, with the 
highest in Jhang, 42% (21/50), followed by Sargodha, 23.61% (34/144) 
and Toba Tek Singh, 5.55% (2/36). Isolation frequency of colistin-
resistant E. coli was highest in liver samples, 41.07% (23/56), followed 

FIGURE 1

Description of various gross lesions found in necropsy examination of chicken infected with colibacillosis caused by colistin-resistant E. coli. 
(A) Multiple necrotic foci are shown on the surface of the heart and liver associated with pericarditis and perihepatitis. (B) Fibrous exudate diffusely 
deposited on the surface of the heart and liver. (C) Severe pericarditis marked by creamy fibrous discharge covering the heart surface.
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by cecum at 33.87% (21/62), heart at 14.28% (8/56) and lungs at 
8.93% (5/56).

3.2 Detection and frequency of mcr-1 and 
mcr-2 genes in colistin-resistant bacteria

The mcr-1 and mcr-2 genes were detected using PCR by 
amplification of 320 bp and 576 bp products, respectively (Figure 2). 
In E. coli isolates, the detection frequency of mcr-1 gene was 42.1% 
(24/57), which was significantly (p < 0.01) higher than that of mcr-2 
at 14.03% (8/57). However, in 7% (4/57) of E. coli isolates, the 
co-presence of both genes was observed in four isolates (7.01%) 
(Table 3). In 40.62% (26/64) colistin-resistant isolates, neither mcr-1 
nor mcr-2 genes were detected. The mcr-1 gene was identified in two 
isolates of K. pneumoniae, while the mcr-2 gene was not present in 
any of the seven K. pneumoniae isolates.

3.3 Phylogenetic analysis of lipid a 
phosphoethanolamine transferase 
sequences

The nucleotide sequences of mcr gene products were sequenced and 
submitted to the National Center for Biotechnology Information (NCBI) 
with accession numbers OR680710 and OR680711. The corresponding 
amino acid sequences of mcr gene product, lipid A phosphoethanolamine 
transferase, obtained have accession numbers of WPF45700.1 and 
WPF45701.1. The maximum likelihood-based phylogenetic tree 
presented four clades, where mcr-1 and mcr-2 were found to be the most 
closely related variants, as compared to mcr-3 and mcr-4 variants. The 
sequences of the present study were grouped in mcr-1 clade and showed 
genetic relatedness to mcr-1.5 variant (Figure 3).

3.4 Antimicrobial susceptibility test

Colistin-resistant isolates of E. coli and K. pneumoniae were tested 
for susceptibility against 11 antimicrobial agents belonging to seven 
different antibiotic classes. Isolates with relatively higher resistance 
(≥70%) levels were found resistant to amoxicillin-clavulanic acid 
(84.21%), cefotaxime (70.17%) and trimethoprim-sulfamethoxazole 
(73.68%). Colistin-resistant E. coli showed higher susceptibility to 
meropenem (98.25%), imipenem (94.74%), streptomycin (78.94%) 
and ciprofloxacin (73.7%). The susceptibility of K. pneumoniae isolates 
varied from 14.29 to 100% (Table 4).

3.5 Risk factors analysis

Risk-associated factors with colistin-resistant bacteria, 
representing host attributes, farm management practices, 
environmental factors and agent characteristics, were studied. 
Initially, univariate logistic regression analysis was performed 
(Table 5). Univariate analysis found four risk factors including the use 
of colistin without prescription and/or bacterial sensitivity test 
(p  = 0.132), daily removal/culling of dead/diseases chicken 
(p = 0.107), flock history of any preceding viral disease (p = 0.138) 
and bird age (p  = 0.106) as statistically significant factors with 
p ≤ 0.15. These four risk factors were tested with multivariate logistic 
regression analysis. The final multivariate logistic regression model 
was found statistically significant (χ2 15.64, p < 0.01) with 74% 
accuracy. Only two risk factors were found statistically significantly 
(p < 0.05) associated with colistin-resistant bacteria (Table 6). These 
included daily removal/culling of dead/diseased chicken (OR = 0.308, 
95% CI = 0.115–0.821, p = 0.019) and history of laboratory confirmed 
viral infection of the respiratory tract (OR = 4.808, 95% CI = 1.961–
11.789, p < 0.01). Daily culling was found to be protective against the 

TABLE 2 Prevalence of colistin-resistant strains of E. coli and K. pneumoniae recovered from chicken visceral organs in different cities.

Sample collection site Visceral organs No. of samples Colistin-resistant 
E. coli n (%)

Colistin-resistant 
K. pneumoniae n (%)

Sargodha Liver 36 17 (47.2) 2 (5.55)

Cecum 36 12 (33.3) 1 (2.77)

Heart 36 3 (8.3) 0

Lungs 36 2 (5.55) 0

Sub-total 144 34 (23.61) 3 (2.08)

Jhang Liver 12 6 (50) 0

Cecum 14 8 (57.14) 4 (28.57)

Heart 12 4 (33.3) 0

Lungs 12 3 (25) 0

Sub-total 50 21 (42) 4 (8)

Toba Tek Singh Liver 8 0 0

Cecum 12 1 (8.33) 0

Heart 8 1 (12.25) 0

Lungs 8 0 0

Sub-total 36 2 (5.55) 0

Total 230 57 (24.78) 7 (3.04)
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emergence of colistin-resistant bacteria. The risk of the emergence of 
colistin-resistant bacteria was found to be  4.8 times higher in 
chickens infected with viral respiratory disease than in those without 
a history of respiratory viral infection.

4 Discussion

In this study, samples were collected from broiler birds primarily 
infected naturally with colibacillosis. The postmortem findings revealed 
organ lesions indicative of pericarditis, perihepatitis, airsacculitis and 
peritonitis, typically associated with avian colibacillosis. The higher 
prevalence of E. coli in this study is attributed to the fact that avian 
colibacillosis is caused by avian pathogenic E. coli (APEC). However, the 
detection of colistin-resistant K. pneumoniae in this study highlights the 

possibility of the emergence of secondary pathogens that become active 
following a primary respiratory tract infection caused by APEC (2). It 
also indicates the possible transmission of acquired antimicrobial 
resistance via mobile genetic elements between different pathogenic 
species of bacteria (25). In the present study, the prevalence of colistin-
resistant E. coli, 24.78% (95% CI, 19.6–30.7%), was significantly 
(p = 0.01) higher than colistin-resistant K. pneumoniae, 3.04% (95% CI, 
1.5–6.1%). Isolation frequency of colistin-resistant E. coli was highest in 
liver samples, 41.07% (23/56), followed by cecum at 33.87% (21/62), 
heart at 14.28% (8/56) and lungs at 8.93% (5/56). During systemic 
manifestations of colibacillosis infection, APEC colonizes the upper 
respiratory tract, trachea, and air sacs, followed by colonization of the 
liver and pericardium via bacteremia (2;19). Bacteremia leads to the 
multiplication of APEC in organs such as the liver and spleen, where 
reticuloendothelial tissues are found abundantly (26). Therefore, 

FIGURE 2

PCR products were detected on a 1.2% agarose gel for mcr-1 and mcr-2 genes. Lane 1 and 13 (DNA ladder 100 bp, Solis BioDyne, Tartu, Estonia). Lanes 
2 and 3 contain negative controls for mcr-1 and mcr-2, respectively. Lanes 4 and 5 contain positive controls for mcr-1 and mcr-2, respectively. Lanes 
6, 7, and 10 contain positive samples for mcr-1 gene (320 bp). Lane 9 contains a positive sample for mcr-2 gene (576 bp). Negative samples (lanes 8, 11, 
and 12).

TABLE 3 Frequency distribution of mcr-1 and mcr-2 genes detected in phenotypically confirmed colistin-resistant E. coli and K. pneumoniae.

Visceral 
organs

Bacterial species No. of colistin-
resistant isolates

Genes identified

mcr-1 n (%) mcr-2 n (%) Both (mcr-1, 
mcr-2) n (%)

Liver E. coli 23 8 (37.78) 2 (8.69) 0

K. pneumoniae 2 1 (50) 0 0

Cecum E. coli 21 11 (52.3) 5 (23.8) 3 (14.2)

K. pneumoniae 5 1 (40) 0 0

Heart E. coli 8 3 (37.95) 1 (12.5) 1 (12.5)

K. pneumoniae 0 0 0 0

Lungs E. coli 5 2 (40) 0 0

K. pneumoniae 0 0 0 0

Total isolates E. coli 57 24 (42.1) 8 (14.03) 4 (7.01)

K. pneumoniae 7 2 (28.5) 0 0
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FIGURE 3

The phylogenetic tree was constructed for mcr gene product, lipid A phosphoethanolamine transferase, via MEGA (v 12.0.11) with the maximum 
likelihood method (bootstraps 500) and the WAG substitution model. Sequences obtained in the present study are marked with black squares. Node 
labels represent the bootstrap support values (percentage), and the scale bar indicates 0.50 amino acid substitutions per site.

TABLE 4 Antimicrobial susceptibility profile of colistin-resistant E. coli and K. pneumoniae.

Antimicrobial 
class

Antimicrobial agents E. coli isolates (n = 57) K. pneumoniae Isolates (n = 7)

R* n (%) I* n (%) S* n (%) R* n (%) I* n (%) S* n (%)

Aminoglycosides Streptomycin (S-10 μg) 9 (15.8) 3 (5.3) 45 (78.9) 2 (28.6) 1 (14.3) 4 (57.1)

Gentamicin (CN-10 μg) 18 (31.6) 8 (14) 31 (54.4) 3 (42.9) 1 (14.3) 3 (42.9)

β-lactam Amoxicillin-clavulanic acid (AMC-20/10 μg) 48 (84.2) 5 (8.8) 4 (7) 6 (85.7) 0 1 (14.3)

Cefotaxime (CTX-30 μg) 40 (70.2) 11 (19.3) 6 (10.5) 5 (71.4) 1 (14.3) 1 (14.3)

Fluoroquinolones Ciprofloxacin (CIP-5 μg) 9 (15.8) 6 (10.5) 42 (73.7) 1 (14.3) 2 (28.6) 4 (57.1)

Enrofloxacin (ENR-5 μg) 27 (47.4) 17 (29.8) 13 (22.8) 1 (14.3) 1 (14.3) 5 (71.4)

Phenicol Chloramphenicol (C-30 μg) 28 (49.1) 7 (12.3) 22 (38.6) 4 (57.1) 1 (14.3) 2 (28.6)

Tetracyclines Tetracycline (TE-30 μg) 37 (64.9) 11 (19.3) 9 (15.8) 5 (71.4) 0 2 (28.6)

Carbapenems Imipenem (IPM-10 μg) 1 (1.8) 2 (3.5) 54 (94.7) 1 (14.3) 0 6 (85.7)

Meropenem (MEM-10 μg) 1 (1.8) 0 56 (98.3) 0 0 7 (100)

Sulfonamides Trimethoprim-sulfamethoxazole (SXT-

1.25/23.75 μg)

42 (73.7) 3 (5.3) 12 (21.1) 5 (71.4) 1 (14.3) 1 (14.3)

*R, Resistant; I, Intermediate; S, Susceptible.
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chicken liver offers a relatively higher isolation sensitivity rate for 
APEC. The geographical location-based differences in the prevalence of 
APEC were evident from the present study, interestingly, between the 
neighboring cities of Toba Tek Singh (5.55%) and Jhang (42%). Factors 
such as local farming practices, host characteristics, biosecurity, 
antibiotic usage patterns, vector control and water source have been 
identified to contribute to the prevalence of APEC at the farm level (27, 
28). Similarly, the present study also identified the association of 
respiratory viral infections and culling management with the prevalence 
of colistin-resistant E. coli. The presence of multidrug-resistant and 
virulent strains of APEC at farms enhances the risk of transmission to 
the human population, either through direct contact or the consumption 
of contaminated chicken products (29, 30).

In this study, the mobilized colistin resistance gene mcr-1 was 
detected in 42.1% of colistin-resistant E. coli. The phylogenetic analysis 
based on two partial mcr gene product sequences showed that the 
amino acid sequences of lipid A phosphoethanolamine transferase 

were grouped into mcr-1 clade next to mcr-1.5 variant. These findings 
are consistent with the findings of previous studies in Pakistan, which 
reported mcr-1 found in bacteria isolated from a wide variety of 
sources, including colibacillosis-infected chicken (31), poultry farm 
flies and chicken meat (32). Relatively lower prevalence of colistin-
resistant E. coli, 18.95 and 7% was reported in Pakistan from healthy 
poultry birds and livestock in two different studies and only mcr-1 
gene was detected (33, 34). However, similar to our findings, a recent 
study targeting samples taken from colibacillosis-infected chicken 
reported 37% prevalence of avian pathogenic E. coli (APEC), wherein 
38% isolates were positive for mcr-1 gene (31). The mcr-1 gene has 
been reported to be associated with the IncI2 plasmid, which harbors 
multiple virulence factors and is capable of horizontal gene transfer 
among carrier E. coli (35).

Sampling from internal organs of chicken infected with 
colibacillosis, as compared to cloacal swabs or fecal samples, allows for 
isolation of genetically diverse extraintestinal pathogenic strains (36). 

TABLE 5 Univariate analysis of the association of potential risk factors with the emergence of colistin-resistant bacteria in broiler chicken farms.

Risk factor Sub-categories Colistin-
resistant* No. 

(%)

Colistin-
sensitive* No. 

(%)

Odds ratio 95% Confidence 
interval

p-value

Total: 64 Total: 166 Lower 
bound

Upper 
bound

Use of colistin without 

prescription and/or culture 

sensitivity test

No 22 (9.56) 110 (47.82) Reference

Yes 42 (18.26) 56 (24.34) 0.601 0.310 1.166 0.132**

Shed disinfectant type Fumigation 34 (14.78) 97 (42.17) Reference

liquid disinfectant 30 (13.04) 69 (30) 1.240 0.695 2.215 0.467

Bird’s drinking water 

disinfection

Yes 29 (12.6) 61 (26.52) Reference

No 35 (15.21) 105 (45.65) 0.701 0.391 1.258 0.234

Rodent and insect control 

applied

Yes 46 (20) 119 (51.73) Reference

No 18 (7.82) 47 (20.43) 0.991 0.522 1.881 0.977

Farm workers’ biosecurity 

training and use of gloves and 

forcovers

Yes 35 (15.21) 90 (39.13) Reference

No 29 (12.6) 76 (33.04) 0.981 0.550 1.751 0.949

Availability of hand washing 

facility at the farm

Yes 37 (16.08) 80 (34.78) Reference

No 27 (11.73) 86 (37.39) 0.679 0.379 1.215 0.192

Daily removal/culling of dead/

diseased chickena

No 33 (14.34) 66 (28.69) Reference

Yes 31 (13.47) 100 (43.4) 0.620 0.347 1.108 0.107**

Farming season Summer 26 (11.3) 75 (32.6) Reference

Winter 38 (16.52) 91 (39.56) 1.205 0.671 2.162 0.533

Flock history of laboratory-

confirmed viral infection of the 

respiratory tractb

No 13 (5.65) 50 (21.73) Reference

Yes 51 (22.17) 116 (50.43) 1.691 0.845 3.383 0.138**

Bird age >2 weeks 42 (18.26) 79 (34.3) Reference

≤2 weeks 22 (9.56) 87 (37.8) 0.607 0.332 1.112 0.106**

Litter type Sawdust or wood 

shavings

36 (15.65) 82 (35.6) Reference

crop remains 28 (12.17) 84 (36.52) 0.759 0.425 1.356 0.352

*E. coli and K. pneumoniae, **statistically significant (p ≤ 0.15).
aApplicability of either one or both.
bNewcastle disease, Infectious bronchitis, Avian Influenza.
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Hence, depending on the sampling origin, more diverse resistant 
strains with high sensitivity of isolation can be obtained from diseased 
chickens as compared to healthy chickens (37).

The mcr-2 gene was detected in 14.03% (8/57) of colistin-resistant 
E. coli in the present study; however, to the best of the authors’ 
knowledge, there is no report of mcr-2 gene detected in colibacillosis-
infected broilers in Pakistan previously. The mcr-2 gene was first 
reported in E. coli isolates associated with diarrhea in calves and piglets 
in Belgium (38). The mcr-2 gene harboring plasmid IncX4 is capable of 
as high as 102–105-fold transfer frequencies as compared to the 
epidemic IncFII plasmid (38). These findings explain the rapid 
horizontal transmission potential of the mcr-2 genes in E. coli. In China, 
the mcr-2 gene was detected in colistin-resistant E. coli isolated from 
pigs (46.82%), chicken (14.90%) and cattle (19.05%) (39). Similarly, the 
mcr-2 gene has been detected in 3.4% of isolates originating from the 
chicken gut (3). Furthermore, the co-occurrence of both mcr-1 and 
mcr-2 genes has also been reported in colistin-resistant isolates from 
the same source (40). A study from Egypt found the prevalence of 
mcr-2 in bacteria isolated from resident birds, migratory birds, water 
sources, and humans as 1.4, 3.6, 11.1 and 9.6%, respectively (41). These 
studies suggest that the mcr-2 gene has evolved in bacteria of multiple 
sources, including farm animals, chicken, wild birds, humans and the 
environment. We also found the co-presence of mcr-1 and mcr-2 in 7% 
of colistin-resistant E. coli. In general, the mcr-2 allele has been found 
globally to be low in prevalence, which varies geographically. In Europe, 
its prevalence varied from 0.15 to 11.4% in E. coli; moreover, the 
co-existence of mcr-1 and mcr-2 of swine origin E. coli was reported in 
Germany (42). In Bangladesh, the mcr-2 prevalence in chicken has been 
reported as 3.4%, and co-detection with mcr-1 as 1.34% (2/149) (40). 
In this study, the prevalence of colistin-resistant K. pneumoniae was 
determined as 3.04% (7/230), whereas mcr-1 gene was detected in 
28.5% (2/7) of colistin-resistant isolates. However, all K. pneumoniae 
isolates were negative for mcr-2 gene. Similarly, a study from Egypt 
found the prevalence of K. pneumoniae as 9% (9/100) in commercial 
chicken, and mcr-1 was detected in 18.9% samples (43).

In this study, 40.62% (26/64) colistin-resistant isolates possessed 
neither mcr-1 nor mcr-2 genes. The diversity of colistin resistance 

mechanisms explains the absence of mcr-1 and mcr-2 genes in colistin-
resistant bacteria. There are 10 major variants of mcr gene (mcr-1 to 
mcr-10) along with sub-variants (16). In addition, chromosomal 
mutations lead to structural modifications of lipid A, including the 
addition of 4-amino-L-arabinose or cationic phosphoethanolamine 
(pEtN) to lipid A, which results in a reduction of negative charge on 
lipid A and halting colistin coupling with lipid A (25). Such changes 
are also attributed to the mutations in lipid A biosynthesis genes or via 
overexpression of chromosomally mediated two-component system 
genes (PmrAB and PhoPQ) (25). Therefore, different colistin-resistant 
strains may possess one or multiple different underlying mechanisms 
for such a phenotype.

Colistin-resistant isolates of E. coli and K. pneumoniae were tested 
for susceptibility against 11 antibiotics belonging to seven different 
classes of antibiotics. E. coli with relatively higher resistance (≥70%) 
levels were found resistant to amoxicillin-clavulanic acid (84.21%), 
cefotaxime (70.17%), and trimethoprim-sulfamethoxazole (73.68%). 
While most of the isolates remained susceptible to meropenem and 
Imipenem. Colistin-resistant E. coli were found sensitive to 
meropenem (98.25%), imipenem (94.74%), streptomycin (78.94%) 
and ciprofloxacin (73.7%). The susceptibility of K. pneumoniae isolates 
varied from 14.29 to 100%. Similar findings of the highest antibiotic 
resistance for ampicillin (β-lactam group) were found from a previous 
study, which reported carbapenem-resistant mcr-positive E. coli 
associated with avian colibacillosis (31). However, the present study 
reports a higher resistance rate to amoxicillin-clavulanic acid, thus 
indicating a wide spectrum of resistance via possible production of 
inhibitor-resistant β-lactamases and extended-spectrum beta-
lactamase (ESBL) type enzymes by resistant bacteria (44). Detection 
of colistin-resistant and β-lactamase-producing E. coli has been 
isolated from chickens infected with colibacillosis in Tunisia (45). 
These findings explain the possible resistance mechanisms against 
third-generation cephalosporins such as cefotaxime. The colistin-
resistant E. coli in poultry may harbor various genetic determinants 
that allow for the multidrug resistance phenomenon. In a previous 
study in Bangladesh, various genetic determinants, including tetA (for 
tetracycline), sul1 (for sulfonamide), aadA1 (for streptomycin), 

TABLE 6 Multivariate analysis of the association of potential risk factors with the emergence of colistin-resistant bacteria in broiler chicken farms.

Risk factor Sub-categories Colistin-
resistant* No. 

(%)

Colistin-
sensitive* No. 

(%)

Odds 
ratio

95% Confidence 
interval

p-value

Total: 64 Total: 166 Lower 
bound

Upper 
bound

Use of colistin without prescription 

and/or culture sensitivity test

No 22 (9.56) 110 (47.82) Reference

Yes 42 (18.26) 56 (24.34) 0.804 0.271 2.379 0.693

Daily removal/culling of dead/

diseased chickena

No 33 (14.34) 66 (28.69) Reference

Yes 31 (13.47) 100 (43.4) 0.308 0.115 0.821 0.019**

History of laboratory-confirmed viral 

infection of the respiratory tractb

No 13 (5.65) 50 (21.73) Reference

Yes 51 (22.17) 116 (50.43) 4.808 1.961 11.789 <0.001**

Bird age >2 weeks 42 (18.26) 79 (34.3) Reference

≤2 weeks 22 (9.56) 87 (37.8) 0.867 0.267 2.812 0.812

(Intercept) 0.260 0.141 0.479 <0.001

*E. coli and K. pneumoniae, **statistically significant (p < 0.05).
aApplicability of either one or both.
bNewcastle disease, Infectious bronchitis, Avian Influenza.
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aac-3-IV (for gentamicin) and the two genes cmlA and catA1 (for 
chloramphenicol), were detected in chicken meat-associated 
multidrug-resistant E. coli (6).

The risk factors associated with the emergence of colistin-resistant 
E. coli and K. pneumoniae in broiler chicken flocks were studied. The 
final multivariate logistic regression analysis identified two risk factors 
that were statistically associated with colistin-resistant bacteria. The 
history of laboratory-confirmed preceding viral infection of the 
respiratory tract (Newcastle disease, Infectious bronchitis, and Avian 
Influenza) (OR = 4.808, 95% CI = 1.961–11.789, p < 0.01) was 
positively associated with colistin-resistant bacteria. While farm 
hygienic measures, daily removal/culling of dead/diseased chicken 
(OR = 0.308, 95% CI = 0.115–0.821, p = 0.019) turned out to 
be protective, they were found to be associated with reduced risk of 
emergence of the colistin-resistant bacteria. Depending on the farm 
management practices, geographical location, virulence of E. coli 
strains and immune status of birds, the risk factors associated with 
avian colibacillosis can vary (26, 33). The use of groundwater as the 
source of drinking water, failure to disinfect water channels, farms 
located in close proximity to other farms, distances greater than 20 
meters from car parking to shed and presence of wild birds within 50 
meters of the shed surrounding area were found associated with 
carriage of multidrug-resistant avian pathogenic E. coli strains (46, 
47). However, in our findings, the use of drinking water disinfectant 
or groundwater as drinking water has not been identified as a 
statistically significant factor. These findings may indicate the partial 
contribution of sewerage contamination of groundwater, with variable 
levels in different geographical locations. However, a recent study 
from Jordan identified poor farm sanitary conditions and improper 
use of antibiotics, especially doxycycline, with the emergence of mcr-1 
colistin-resistant E. coli in broilers (48). The timely and effective 
culling management, which contributes to overall farm hygiene, has 
been found to have a significant association. Similar to our findings, a 
previous study demonstrated that the association of preceding 
respiratory viral diseases caused by infectious bronchitis virus (IBV), 
Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) 
aggravated the avian colibacillosis condition caused by E. coli by 
damaging the respiratory mucosa, tracheitis and airsacculitis (49). 
Preceding viral diseases are thought to enhance host susceptibility to 
secondary bacterial infection via multiple factors, including immune 
deficiency and damage to mucosal barriers.

The present study was limited to the detection of mcr-1 and mcr-2 
genes only. To achieve a more comprehensive understanding of the 
emergence of colistin resistance in the region, future studies should 
aim to investigate both mcr-mediated and non-mcr-mediated 
resistance mechanisms.

5 Conclusion

This study contributed to the understanding of the dissemination 
of colistin-resistant E. coli and K. pneumoniae in chickens infected with 
avian colibacillosis in Pakistan. Mobilized colistin resistance gene (mcr-
1) was identified as a dominant genetic determinant. However, mcr-2 
was also detected in E. coli. Colistin-resistant bacteria were found 
resistant to 11 other types of antibiotics, predominantly amoxicillin-
clavulanic acid, cefotaxime and trimethoprim-sulfamethoxazole. This 
study also identified the association of viral respiratory diseases and 

non-frequent disposal of dead birds and poor culling management as 
risk factors for avian colibacillosis. The detection of colistin-resistant 
E. coli and K. pneumoniae in chickens not only poses a significant threat 
to food security but also contributes to zoonotic transmission of 
antibiotic-resistant bacteria. Therefore, efforts must be put in place to 
conduct genomic epidemiological studies on colistin-resistant bacteria, 
legislative controls on antibiotic use in animal production and better 
farm management practices considering associated risk factors in the 
chicken farming industry in Pakistan.
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