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Systematic review: genotypic and
phenotypic resistance of
fluoroquinolone-resistant
Salmonella in livestock in South
America (2020-2024)

Stefany Barrientos-Villegas, Maria Isabel Garcia-Alvarez,
Juana L. Vidal, Luis M. Gdmez-Osorio, Sara Lopez-Osorio and
Jenny J. Chaparro-Gutiérrez*

CIVAB Research Group, Faculty of Agricultural Sciences, University of Antioquia (UdeA), Medellin,
Colombia

Objective: To determine the frequency of phenotypic and genotypic resistance
to quinolones and fluoroquinolones in Salmonella spp. isolated from production
animals (pigs, poultry, cattle) and rodents in South America between 2020 and
2024, with the goal of providing key information on resistance in these countries
for public health and food safety.

Methods: A systematic review was conducted following the PRISMA guidelines,
using databases such as Scopus, PubMed, SciELO, and Latindex. Studies on
Salmonella spp. resistant to quinolones and fluoroquinolones in production
animals, meat products, and rodents in South America during 2020-2024 were
included.

Results: Of the 83 initialresults, 27 studies were selected. 70.4% of the studies were
conducted in Brazil. 88% of the studies (n = 24/27) used phenotypic methods,
with the disk diffusion technique being the most common. Ciprofloxacin was the
most studied antibiotic, with an overall resistance of 32.5%, followed by nalidixic
acid (60.6%) and enrofloxacin (23.7%). The average multidrug resistance (MDR)
was 62%. 44% of the studies (n = 12/27) employed genotypic methods, with
whole genome sequencing (WGS) being the most notable technique. Mutations
were reported in parC (58%), gyrA (50%), gyrB (8%), and the presence of gnr
genes (75%) and aac(6’)-1b-cr (8%). No studies on rodents were found.
Conclusion: Resistance to quinolones and fluoroquinolones in Salmonella spp. in
South America endangers public health and food safety. To address antimicrobial
resistance, monitoring and control measures must be implemented, regional
research should be promoted, and stronger restrictions should be enforced.
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1 Introduction

Salmonella spp. belongs to the Enterobacteriaceae family, with over 2,600 serotypes
reported, affecting a wide range of animals, including humans (1). The Salmonella genus
consists of two species: enterica and bongori (2). S. enterica is classified into six subspecies:
enterica (subsp. I), salamae (subsp. II), arizonae (subsp. I1la), diarizonae (subsp. IIIb), houtenae

01 frontiersin.org


https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2025.1614486&domain=pdf&date_stamp=2025-09-03
https://www.frontiersin.org/articles/10.3389/fvets.2025.1614486/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1614486/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1614486/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1614486/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1614486/full
mailto:jenny.chaparro@udea.edu.co
https://doi.org/10.3389/fvets.2025.1614486
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2025.1614486

Barrientos-Villegas et al.

(subsp. IV), and indica (subsp. VI). Subspecies I is associated with
more than 99% of the diseases caused by Salmonella in warm-blooded
animals, including gastroenteritis and enteric fever (3).

Nontyphoidal salmonellosis has been the most commonly
reported zoonotic disease in humans (4). It is acquired through three
main routes: food, animal handling on farms or carcass handling in
slaughterhouses, contact with pets (dogs and cats), and exotic animals
(birds, ferrets, lagomorphs, mustelids, reptiles, and rodents) (5).
Salmonella transmission has been primarily linked to contaminated
water and food sources, including eggs, meats, and vegetables (6). In
this context, the prevention and control of pathogens are ongoing
challenges, which is why antimicrobials are frequently used in
veterinary medicine to treat and prevent diseases (7). However, there
is growing concern that the use of these in animal production may
compromise human health through the zoonotic transfer of resistant
bacteria via contaminated animal-derived food, direct contact, and
their spread in the environment (8).

Nontyphoidal salmonellosis mainly causes self-limiting
gastroenteritis in both humans and animals (9). However, when this
infection becomes invasive, it requires antibiotic treatment. If the
pathogens show resistance, it limits the therapeutic options available
for the patient (10). Fluoroquinolones (FQ) have been widely used in
clinical practice for the treatment of salmonellosis in both humans
and animals (11) and Ciprofloxacin is the first-line antibiotic used to
treat both typhoidal and nontyphoidal salmonellosis in humans (9,
12). However, the emergence of resistance or multidrug resistance
(MDR) to these antibiotics has become a critical issue in the clinical
treatment of the disease (13). This is why the World Health
Organization (WHO) classifies fluoroquinolone-resistant Salmonella
as a high-priority pathogen to support research and the development
of new antibiotics (12, 14).

Resistance to fluoroquinolones in Salmonella can occur due to
mutations in the quinolone resistance-determining regions (QRDR)
of the chromosomal gyr and par genes, resulting in a reduced binding
affinity of the topoisomerase enzymes to quinolones (15). Secondly,
plasmid-mediated quinolone resistance (PMQR) involves the
acquisition of (i) gnr genes (qnrA, qnrB, qnrS, qnrC, gnrD), which
encode topoisomerase-binding proteins that provide physical
protection against quinolones, (ii) the aac(6’)-Ib-cr gene, which
encodes a modifying enzyme that reduces the activity of
fluoroquinolones, and (iii) oqxAB and gepA, which encode quinolone
efflux pumps. Finally, the negative and positive regulation of porins
encoded by chromosomal genes or the efflux pumps of multiple drugs
(AcrAB-TolC), respectively, reduce intracellular concentrations of
fluoroquinolones (14).

In South America, the dynamics of antimicrobial resistance
(AMR) in Salmonella within the animal sector—particularly in
production animals and across the food supply chain—are poorly
characterized. Countries such as Venezuela, Guyana, French Guiana,
and Suriname reported very limited research between 2020 and 2024,
highlighting significant gaps in AMR surveillance and data.
Understanding the current status of fluoroquinolone-resistant
Salmonella is especially critical, given the scarcity and fragmentation
of existing evidence. This study aims to consolidate available data on
phenotypic and genotypic resistance to quinolones and
fluoroquinolones in Salmonella isolated from pigs, poultry, cattle, and
rodents. The inclusion of rodents is supported by their established role

as reservoirs and amplifiers of zoonotic pathogens in agricultural
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environments. By providing a unified analysis, this review contributes
to a clearer understanding of the regional AMR landscape and
supports the development of targeted public health strategies,
including improved biosecurity and responsible antibiotic use
on farms.

2 Materials and methods

2.1 Study search

The study was conducted following the guidelines established in
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA)(16). The study populations included Salmonella
isolates from production animals such as cattle, poultry, pigs, meat
products from these animals, and rodents. The primary outcome of
interest was the reported frequencies of phenotypic and genotypic
resistance to FQ: non-susceptibility to nalidixic acid (Nal ns),
non-susceptibility to ciprofloxacin (Cip ns), non-susceptibility to
enrofloxacin (Enr ns), frequency of mutations in QRDR genes, and
the presence or absence of PMQR genes. The secondary outcomes
included MDR, reported serotypes and sequence types (ST), amino
acid substitutions in mutated genes, and the phenotypic and genotypic
techniques used. MDR was defined as resistance to three or
more drugs.

A literature search was conducted in English, Spanish, Portuguese,
and French using Boolean logic tools with the operators “AND” and
“OR” to search for relevant articles in the PubMed, Scopus, SciELO,
and Latindex databases. The search aimed to identify pertinent articles
published from January 1, 2020, to August 24, 2024. The search string
that allowed for the identification of most studies was as follows:
Salmonella AND (quinolone OR fluoroquinolone OR ciprofloxacin
OR nalidixic acid OR enrofloxacin) AND (livestock OR cattle OR
swine OR pig OR poultry OR rodent OR rat OR beef OR chicken OR
pork OR meat) AND (Peru OR Brazil OR Colombia OR Ecuador OR
Chile OR Venezuela OR Argentina OR Uruguay OR Bolivia OR
Guyana OR Paraguay OR French Guiana OR Suriname). The search
was conducted on August 24, 2024. Additional articles were also
included, manually located in the Scopus, PubMed, SciELO, and
Latindex databases. Additional articles were also included through
manual searches of reference lists from selected studies and
relevant journals.

2.2 Study selection

The study selection was carried out by two independent reviewers
(SBV and MIG), and the references were exported to the Rayyan
online application software for screening and selection. In the first
phase of review (screening), titles and abstracts were evaluated to
identify studies related to the primary outcomes of interest. At this
stage, exclusion criteria were applied to discard studies whose titles
and/or abstracts were not relevant. Discrepancies between reviewers
were resolved through discussion or, if necessary, by consulting a
third reviewer.

In the second phase (eligibility), a full-text review of the selected
articles was conducted, with detailed assessment based on the
following eligibility criteria: (i) publication in English, Spanish,
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Portuguese, or French; (ii) inclusion of phenotypic and/or genotypic
determinants of fluoroquinolone resistance; (iii) isolation of
Salmonella from production animals, meat products, or rodents; (iv)
exclusion of incomplete or unclear studies; (v) exclusion of studies
conducted outside South America; and (vi) inclusion of studies
published before August 24, 2024.

Duplicate references were identified and removed using EndNote
software prior to the screening process. Additionally, data extraction
was performed by one reviewer and independently validated by a
second reviewer to minimize errors or inconsistencies. To assess the
risk of bias and methodological quality of the included studies,
we used the Joanna Briggs Institute (JBI) Critical Appraisal Checklist
for prevalence studies. Two independent reviewers (SBV and MIG)
performed the quality assessment, and disagreements were resolved
by consensus or by involving a third reviewer. Studies were not
excluded based on quality, but the appraisal results were considered
when interpreting the findings.

2.3 Data extraction

The following data were considered and extracted: (i) study
identifier: Title, authors, year of publication, country, species
(production animals, meat animals, or rodents); (ii) Methods: sample
type, sample size, identification method, antimicrobial susceptibility
testing (fluoroquinolones or quinolones), breakpoint/interpretive
standard level, and gene detection (phenotype-based/genotype-
based); (iii) Results: number of isolates, number of isolates tested for
susceptibility, number of MDR strains, number of strains resistant to
nalidixic acid (Nal ns), number of strains resistant to ciprofloxacin
(Cip ns), number of strains resistant to enrofloxacin (Enr ns), number
of strains examined for mutation detection (gyrA, gyrB, parCy parE),
number of mutants, mutation positions, substituted amino acids,
number of strains examined for plasmid-mediated quinolone
resistance genes (PMQR) (qnrA, gnrB, qnrC, qnrD, qnrS, aac(6’)-Ib-ct,
qepA, 0qxA/B) and number of strains with PMQR genes.

2.4 Data analysis

Data were analyzed using descriptive statistics in Microsoft Excel
(Microsoft 365®). Additionally, GIS software (QGIS 3.16.15) was used
to generate maps illustrating the distribution of resistance patterns
across South America.

Inferential statistical analyses were not applied in this study due
to the high heterogeneity among the included articles in terms of
study design, sample sizes, animal species, sampling matrices, and
laboratory methodologies. As a result, quantitative synthesis through
meta-analysis was not feasible. A descriptive approach was used
instead, in line with the exploratory nature of this review.

3 Results

Our search strategy yielded a total of 83 results, with 57 found in
PubMed, 18 in Scopus, and 8 in SciELO. After excluding 46 articles
based on their title and abstract, 37 were selected for full-text reading,
and of these, only 10 were excluded, resulting in a total of 27 articles
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included in this study. The main reason for excluding articles during
the selection process was that they did not analyze the Salmonella
agent or did not focus on relevant animal matrices of interest
(Figure 1).

According to our results, 70.4% (n = 19/27) of the studies were
conducted in Brazil, followed by Argentina and Colombia with 7.4%
(n =2/27) each. Next, Paraguay, Uruguay, Chile, and Ecuador each
represented 3.7% (n = 1/27).

Regarding the species studied, 40.74% of the articles focused on
swine and its products (n =11/27), a percentage equal to that of
poultry and its products (n = 11/27). Cattle and their products were
investigated in 3.7% (n=1/27), while 14% (n =4/27) involved a
combination of matrices from different species (swine, cattle, and
poultry). No published research was found regarding rodents.

3.1 Phenotypic resistance to quinolone and
fluoroquinolone in Salmonella

Of the 27 studies, 88% (1 = 24/27) employed phenotypic methods
to detect fluoroquinolone resistance in Salmonella isolates the most
commonly method used to assess AMR was disk diffusion (17), in
75% (n = 18/24) of the studies, followed by broth microdilution (18)
in 25% (n = 6/24) of the studies, according to CLSI guidelines. The
most studied fluoroquinolone was ciprofloxacin, present in 91.6%
(n =22/24) of the studies, with an overall resistance of 32.53%. It was
followed by nalidixic acid, studied in 15 of the 24 studies, which
showed an overall resistance of 60.6%. In contrast, enrofloxacin was
the least evaluated, being analyzed in 10 of the 24 studies, with an
overall resistance of 23.74%. MDR was assessed in 17 of the 24 studies
(n = 17/24), with an overall percentage of 62%.

3.1.1 Poultry isolates

The most used sample type in poultry studies was a combination
of matrices from various sources, accounting for 37.5% (n = 3/8),
followed by feces and chicken meat. The most frequently isolated
serotype was Salmonella Heidelberg, reported in 62.5% of the studies
(n = 5/8), with average resistances in chicken meat of 96.3, 38.9% to
nalidixic acid and ciprofloxacin, respectively. In feces, resistances of
54% to ciprofloxacin were found (Table 1).

3.1.2 Pigs isolates

The most commonly used sample type in swine studies was a
combination of matrices from various sources, representing 45%
(n=5/11) of the cases. The most frequently reported serotype was
S. typhimurium, found in 81.8% (1 = 9/11) of the isolates, followed by
S. Derby, which appeared in 63.6% (n =7/11). On average, in the
mesenteric lymph nodes, the most studied individual matrix,
resistances of 44, 40, and 37% were observed for nalidixic acid,
ciprofloxacin, and enrofloxacin, respectively (Table 2).

3.1.3 Cattle isolates

According to a study conducted in Uruguay isolates with
non-susceptibility to fluoroquinolones were reported, with 77.3%
(n=58/75) of the isolates being non-susceptible to ciprofloxacin,
which is a second-generation fluoroquinolone. Additionally, in this
group, 6.6% (n = 5/75) were non-susceptible to enrofloxacin. 56%
(n =42/75) were MDR (Table 3).
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FIGURE 1

2020 and 2024.

PRISMA flow diagram for study categorization and selection of the 27 studies included in this systematic review. Data came from databases between

3.1.4 Combined matrices

Of the 24 studies that used phenotypic methods, 4 of them used
matrices involving a mixture of different species, primarily from their
meat products. The average resistance to nalidixic acid was 75%, and
to ciprofloxacin was 35% (Table 4).

3.2 Genotypic resistance to quinolone and
fluoroquinolone in Salmonella

Of the 27 studies reviewed, 44% (n=12/27) employed
genotypic techniques to detect resistance genes in Salmonella. The
most commonly used methodology was WGS, with the Illumina
MiSeq platform being the most widely used, employed in 71%
(n =5/7) of the studies that applied Whole Genome Sequencing
(WGS), followed by Illumina HiSeq. In comparison, the PCR
technique was used in a smaller number of studies, as shown below.
In all of the studies that used these techniques, mutations were
found in gyrA 50% (n=6/12), parC 58% (n=7/12), gyrB 8%
(n=1/12), gnr genes 75% (n=9/12), and aac(6’)-Ib-cr 8%
(n=1/12).
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3.2.1 Polymerase chain reaction (PCR) techniques
PCR involves DNA extraction, amplification with specific primers,
and thermal cycling, followed by detection via gel electrophoresis or
real-time PCR (19). This rapid and sensitive technique enables precise
detection of microorganisms and resistance genes, even in low-DNA
samples (20). Of the 27 studies, only 19% (n=5/27) used PCR
techniques or molecular identification of resistance genes, and all of
them correspond to different South American countries. Among the
most commonly investigated genes are PMQR genes, highlighting
qnrB, which was present in 100% of the studies that employed
molecular methods, where the most commonly used primer sequences
were: qnrb-F GATCGTGAAAGCCAGAAAGG and qnrb-R
ACGATGCCTGGTAGTTGTCC (21).

In two of these five studies, QRDRs (quinolone resistance-
determining regions) genes were identified, which are chromosomal
and result from mutations in the gyr and par genes. Of these
mutations, the most frequently investigated was in the gyrA gene,
which was analyzed in two of the five studies that used these
techniques and primarily presented mutations at position 83. The
parC gene was only investigated in one study, where mutations T57S
were found (Table 5).
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TABLE 1 Phenotypic resistance to FQ into Salmonella in poultry isolates in South America (2020-2024).

Author Country Salmonella Sample type Serotypes
isolation
Cloacal swabs, Meat n = 0/20 Meat n = 4/20
Meat 20/20
drag swabs, Poultry Poultry
Souza et al. (26) n=62 S. Heidelberg Poultry 9/10 (80.65%) (1.61%) (29.03%) 41/62
feeders, drinkers n=0/10 n=2/10 Farm
Farm 21/32
and Poultry meat Farmn=1/32 n=12/32
S. Pullorum, S. Heidelberg
Lucca et al. (30) n=22 Carcasses broilers - - 18/22 (81.82%) 2/22 (9.09%) 14/22
S. Corvalis
Poultry
production:
Surfaces
Monte et al. (32) n=108 S. Enteritidis - - 1/108 (0.93%) 20/108 (18.52%) -
Transport
Processing
Final product
Brazil S. Typhimurium, S.
Heidelberg, S. Ndolo, S.
Minnesota, 0:4,5, S.
Perin et al. (28) 98/300 Chicken meat 93/98 (94.90%) 74/78 (75.51%) - - 84/98
Thompson, S.
Schwarzengrund, S.
Abani, 0:3,10:¢,h
Moreira et al.
(25) n=25 Poultry feces S. Minnesota 7125 (28%) 4/25 (16%) - - 16/25
5
Chicken carcasses,
bird cages/ S. Heidelberg, S.
Grossi et al. (31) n=96 transport Schwarzengrund, S. - - 2/96 (2.08%) - - 6/96
boxes,and end Anatum, 0:4,5
cuts
Herrera-Sénchez S. Heidelberg, S. paratyphi
Colombia n=39 Broiler feces - - 36/39 (92.31%) 19/39 (48.72%) -
etal. (24) B.
Lapierre et al.
07 Chile 87/360 Chicken meat S. Infantis 85/87 (97,70%) 2/87 (2.30%) 3/87 (3.45%) 82/87
7

Phenotypic resistance in Salmonella, broken down by country and matrix. The ex: n = 65 in the “Salmonella Isolation”

denotes concepts not studied in that specific analysis, allowing for easy identification of areas lacking information.

column refers to previously isolated strains, while the fractions indicate the proportion of the agent isolated in the analyzed samples. The symbol “~”
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TABLE 2 Phenotypic resistance to FQ into Salmonella in pig isolates in South America (2020-2024).

Author

Country

Salmonella
isolation

Sample type

Serotypes

Azevedo et al.
) 29/100 Porcine mesenteric lymph nodes | S. Derby. S. Cerro, S. Give 19/29 65.5% 23/29 79.3% 16/23 69.6% 23/29
42
de Quadros et al.
63) 19/90 Pig carcass swabs S. Typhimurium, S. Derby, S. Infantis - - - - n=0/90 0% 9/25
D.
Environment, pig carcass, lymph
Simoni et al. (46) n =140 nodes, intestinal content, and S. Derby isolates collected over a 10-year 13/140 9.29% 0/140 0% - - -
pork
Swines samples from lairage,
S. Typhimurium §. I 4,[5],12:i:- S. Bredeney S.
barn floors, mesenteric lymph
Viana et al. (54) n=41 Brandeburgo S. Panama S. Londres S. Mbandaka - - 21/41 51.22% - - 30/41
nodes, tonsils, swine carcasses
S. Derby S. Bovismorbificans
and knives
Brazil
Possebon et al. S. Typhimurium, S. 1.4,5,12:i:- S. Infantis y S.
91/250 Swine mesenteric lymph nodes 37/91 40.66% - - - - 64/91
(43) Havana
Intestinal swine content, lymph
S. Typhimurium S. Derby isolates from 2000 to
Pissetti et al. (45) n=413 nodes, carcasses and products of 2015 - - 771413 18,64% - - -
swine origin.
Intestinal faeces, mesenteric and
submandibular lymph nodes,
Cabral et al. (52) n=29 jowl, ham and from the water for | S. Typhimurium 19/29 65.52% 19/29 0.41% 14/29 48.28% 17/29
cleaning the carcasses in swine
slaughterhouses
Kich et al. (64) 65/378 Pig carcasses S. Typhimurium, S. infantis 28/61 45.90% 1/61 1.6% - - 32/61
S. Typhimurium, S.I,4,12:i:-, S. Enteritidis, S.
Vidal et al. (67) Colombia 149/653 Pigs fecal samples Virchow, S. Bovismorbificans, S. Edinburg, S. - - 76/139 54.68% - - 61/139
Heidelberg, S. Infantis, S. Manhattan,
S. Anatum, Brandenburg, Bredeney, Choleraesuis,
Organs, feces and mesenteric Derby, Glostrup, Heidelberg, Infantis,
Parada et al. (38) n=>55 n=29/55 52.73% 10/55 18.18% - - 31/55
nodes from pigs Livingstone, Montevideo, Oranienburg, Panama,
Rissen, Typhimurium.
Argentina
S. Anatum, Typhimurium, Panama, I 1,3,19:
710:-,14,5,12: I:-, 4,5,12:d:-, Lexington,
Vico et al. (66) 241/580 Swine mesenteric lymph nodes 13/50 26.00% 0/50 0.00% 2/50 4% 43/50
Westhampton, Derby, Adelaide, Bredeney,
Corvallis, Javiana, Minnesota, Mbandaka

Phenotypic resistance in Salmonella, broken down by country and matrix. The ex: n = 65 in the “Salmonella Isolation”

denotes concepts not studied in that specific analysis, allowing for easy identification of areas lacking information.

column refers to previously isolated strains, while the fractions indicate the proportion of the agent isolated in the analyzed samples. The symbol “~”
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TABLE 3 Phenotypic resistance to FQ Salmonella in cattle isolates in South America (2020-2024).

Author Nal ns

Country  Salmonella

Sample type Serotypes Cip ns

isolation

Casaux etal. | Uruguay n=75 Calves, cows, S. Typhimurium, - - 58/75 77.33% 5175 6.67% 42/75
(41) heifer, organs, S. Newport, S.
samples from Anatum, .

environment, food | Dublin, S. Agona,

sample, udder S. Montevideo y
swab, drinking IIIb 61:i:253

water, bovine fetus

autopsy.

Phenotypic resistance in Salmonella, broken down by country and matrix. The ex: n = 65 in the “Salmonella Isolation” column refers to previously isolated strains, while the fractions indicate
the proportion of the agent isolated in the analyzed samples. The symbol “~” denotes concepts not studied in that specific analysis, allowing for easy identification of areas lacking information.

3.2.2 Whole genome sequencing (WGS)

WGS involves DNA extraction, library preparation, sequencing
(Ilumina/Nanopore), genome assembly, and bioinformatics analysis
to detect genetic variants and resistance genes (22). This high-
resolution technique enhances epidemiological surveillance and
pathogen control by identifying resistance mechanisms and
phylogenetic relationships (23).

Of the 27 studies analyzed, only 25.9% (n = 7/27) implemented
WGS, mostly in poultry isolates. Mutations in QRDR genes were
identified in all the studies, with the gyrA gene being involved in 71%
of the cases. The most frequent mutation in this gene occurred at
position 83, reported in 57% of the studies, with changes in various
amino acids. On the other hand, mutations in the parC gene were
observed in 71% of the studies, with the most common being the one
at position 57, where in all cases, a threonine to serine change was
detected. Regarding PMQR-mediated resistance genes, the gnrB19
gene was the most reported, present in 43% of the studies. Additionally,
different associated plasmid replicons were identified (Table 6).

These findings reveal a recurring pattern of specific
chromosomal mutations (gyrA S83 and parC T57) and plasmid-
mediated resistance (gnrB19) in isolates, which may indicate clonal
spread or horizontal gene transfer in the food production chain.
The frequent detection of these markers underscores the need for
routine WGS-based surveillance in high-risk reservoirs to guide
more targeted interventions in antimicrobial resistance control.

As previously mentioned, resistance to ciprofloxacin is of great
importance, as it is the most studied antibiotic in this study and the
first-line treatment for both typhoidal and non-typhoidal Salmonella
spp. infections in humans. Between 2020 and 2024 in South America,
a total of 490 Salmonella strains were found to be resistant to the
antibiotic through phenotypic antibiogram testing, out of 1,781 tested
strains, resulting in an overall resistance rate of 27.5%. Specifically, 307
resistant strains were reported in Brazil, 112 in Colombia, 58 in
Uruguay, 10 in Argentina, 2 in Chile, and 1 in Paraguay (Figure 2).

4 Discussion

4.1 Phenotypic resistance and variability
between countries and species

Phenotypic resistance to quinolones and fluoroquinolones in
Salmonella from poultry and swine in South America reveals an
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alarming trend of antimicrobial resistance that varies between countries
and production systems. This is particularly concerning, as
fluoroquinolones are classified as “highest priority” by the World
Health Organization (WHO) (12), they play a crucial role in the
treatment of serious bacterial infections in humans and animals. Their
prioritization is due to the fact that, in many cases, they are the only or
few therapies available to treat severe non-human-origin infections (24).

Phenotypic resistance in Salmonella from poultry fecal samples is
widely documented. In Brazil, resistance to nalidixic acid was reported
at 90% in cloacal swabs and 28% in other samples, while ciprofloxacin
resistance ranged from 0 to 16% (25, 26). In Colombia, resistance to
ciprofloxacin (92.3%), levofloxacin (57%), and enrofloxacin (48.7%)
was observed in poultry feces (24). Serotypes such as S. Paratyphi B,
S. Minnesota, and S. Heidelberg have been identified, with the latter
two showing multidrug resistance (MDR) rates of 64-66% (24-26).

In Chile, Salmonella isolates from chicken meat show 97%
resistance to nalidixic acid, with 94% classified as MDR (27). Similar
trends are observed in Brazil, where resistance to nalidixic acid ranges
from 94.9 to 100%, likely due to the selective pressure from extensive
antibiotic use in poultry production (28, 29). In Brazil, chicken carcass
isolates also exhibit high FQ resistence, with ciprofloxacin resistance
reaching 81.82% and MDR rates at 63.64% (30). However, other
studies report significantly lower ciprofloxacin resistance (0.93-
2.08%), suggesting possible methodological differences or evolving
resistance patterns over time (31, 32).

In Colombia, older studies reported low resistance in poultry
farms to levofloxacin, 2.3% in Cundinamarca, 0% in Santander (33),
but more recent data show a sharp increase in resistance, likely due to
continued antibiotic use (24). Genetic studies highlight Salmonella
Heidelberg (ST15) as a major concern due to its high morbidity,
resistance, and outbreak potential, posing a significant public health
risk (34-37).

4.2 Genotypic resistance and key
mutations

Genotypic studies identified key mutations in gyrA and parC,
along with the gnrB19 gene, as major contributors to
fluoroquinolone resistance (34, 35). Many ciprofloxacin-resistant
strains carried both gyrA mutations and the gnrB gene, enhancing
resistance (38). A study on S. Heidelberg from Brazilian poultry
meat imported to the Netherlands found parC mutations in all 122
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TABLE 4 Phenotypic resistance in Salmonella in combined matrices in South America (2020-2024).

Author  Country @ Salmonella Sample Serotypes MDR
isolation  type
S. Heidelberg,
Ortiz et al.
(65) Paraguay n=98 Food animals | S. Tennessee, 80/98 81.63% 1/98 1% - - -
65
S. Anatum
S. Heidelberg,
Chicken Chicken Chicken
Gomes et al. Chickenand | S. Typhimurium
571780 48/58 Pork 60.17% 43/58 Pork 51.69% - - 46/58 Pork
(48) Pork and Give,
n=23/60 n=18/60 n =30/60
S. Schwarzengrund
Swine
gallbladder,
Vilela et al. Chicken S. choleraesuis
n=>5 3/5 60% 4/5 80% - - -
(68) Brazil spleen, isolates
gallbladder
and illeum
Chicken
meat, bovine
Vilela et al.
9 n=11 meat, animal | S. Heidelberg 11/11 100% 1/11 9% - - -
B feed, and a
drag swab.

Phenotypic resistance in Salmonella spp. broken down by country and matrix. The ex: n = 65 in the “Salmonella Isolation” column refers to previously isolated strains, while the fractions
indicate the proportion of the agent isolated in the analyzed samples. The symbol “~” denotes concepts not studied in that specific analysis, allowing for easy identification of areas lacking

information.

TABLE 5 Genes conferring resistance to quinolones and fluoroquinolones identified in Salmonella spp. using PCR techniques in South America
between 2020 and 2024.

Author Country  Type of samples Number of Target genes Number of Point mutations
samples mutations (QRDR)
Organs, feces and *Amino acid
30/30 had a gyrA mutation gyrA: (S83Y, S83F,
Parada et al. (38) Argentina mesenteric nodes from 30 substitutions of QRDRs:
16/30 had a gnrB gene D87G, (S83Y + D72E))
pigs gyrA *PMQR: qnrB
Herrera-Sanchez 24/39 had a qnrB gene
Colombia Broiler feces 39 *PMQR: gnrA,B,C, D,S -
etal. (24) 1/39 aac(6’)-Ib-cr gen
Lapierre etal. (27) | Chile Chicken meat 87 *PMQR: gnrB 2/3 had a qnrB gene -
*Amino acid 0/96 had a gyrA mutation
Chicken carcasses, bird
substitutions of 96/96 had a parC mutation
Grossi etal. (31) Brazil cages/transport 96 parC: (T57S)
QRDRs:gyrA and parC 94/96 had a gnrB gene 0/96
boxes,and end cuts
*PMQR: gnrB,S had a gnrS gene
13/41 had a gqnrB gene 1/41
Ortiz et al. (65) Paraguay Food animals 41 *PMQR:qnrA,B,S -
had gnrsB+qnrS genes

(=) In this study, no QRDR mutations are reported.

isolates, with 96.7% also carrying gyrA mutations (39). Similarly,
qnrB19 was detected in S. Minnesota from Brazilian poultry meat
(35, 37). The aac(6’)-Ib-cr gene, linked to fluoroquinolone
resistance, was found in one S. Heidelberg isolate from Colombian
broiler farms, which showed resistance to ciprofloxacin and
levofloxacin (24, 40).

Antimicrobial resistance in Salmonella from swine varies across
countries, influenced by production practices, antibiotic use, and
regulations. In Brazil, de Quadros et al. (63) found that only 16% of
Salmonella strains were fully susceptible, yet enrofloxacin inhibited
100% of them. This is notable, as enrofloxacin was widely used before
2017. However, stricter fluoroquinolone regulations in pork
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production appear to have reduced resistance, indicating a positive
impact of recent policies (41).

However, Kich et al. (64) reported high nalidixic acid resistance
(45.9%) in carcasses, while studies on mesenteric lymph nodes found
resistance rates of 40.6-65.5% and MDR rates of 70.3-79% (42, 43).
In Argentina, Vico et al. (66) observed 52% resistance to
and 86%
MDR. Resistance in S. Typhimurium and S. Derby, a key serotype in

fluoroquinolones in mesenteric lymph nodes
swine and pork products worldwide, is particularly concerning (44—
46). The role of S. Derby, which is one of the most frequently reported
serotypes in swine and pork products, both in Brazil and other

regions such as the European Union and China (46, 47). In Colombia,
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TABLE 6 Genes conferring resistance to quinolones and fluoroquinolones identified in Salmonella spp. using WGS Techniques in South American countries between 2020 and 2024.

Saidenberg et al. (37)

Country Type of sample

Asymptomatic broiler

chicken feces

Sequence Type (Number of

samples)

S. Heidelberg ST15 (n = 10)
S. Minnesota ST548
(n=4)

Gene: Number
of mutations

gyrA: n=10/10 parC:
n=14/14

Chromosomal point
mutations (QRDR)

gyrA (S83F) parC (T57S)

V@]
Genes
qnrB19
(CoIRNAI):
n=3/14

Plasmids

ColRNAL IncX1, IncC, IncIl y
ColpVC, Col156, IncX4, IncFII

Swines samples from

lairage, barn floors,

S. Typhimurium ST19 (n = 16)
S.14,[5],12:i:- ST19 (n = 5)

S. Bredeney ST241 (n=9)

S. Brandeburgo ST65 (1 = 4)
S. Panama ST48

gyrA: n = 24/41

gyrA (DS7N) (SS3F) (S83Y)

qnrEl: n = 6/41
qnrS1:n=9/41

ColRNALIL INCr, Incl 1, incA/C2,
IncX4, TrfA, IncHI2,inCHI2A,
IncFIA(HI1), IncFII(S), IncFIB(S),

Viana et al. (54) mesenteric lymph nodes, (n=2) parC: n =16/41 qnrB19: n = 2/41
parC (T57S) gyrB (E466D) IncFIC(FID), incY, Col(MGD2),
tonsils, swine carcassesand | S. Londres ST155 gyrB: n=1/41 0qxA: n =2/41
IncFII(Pery), IncHI1A,
knives (n=2) 0qxB: n =2/41 IncHI1B(R27),p0111
. nc )
Brazil S. Mbandaka ST413 (n = 1) P
S. Derby ST40
(n=1) S. Bovismorbificans ST150 (n = 1)
Swine gallbladder, Chicken IncX4; IncFIB(S), IncFII(S),
gyrA: n=4/5
Vilela et al. (68) spleen, gallbladder and S. Choleraesuis ST145 (n = 5) c o5 gyrA (S83Y) parC (T57S) - IncHI2, IncHI2A, IncFIA(HI1),
arC: n =
illeum P IncHI1A, IncHI1B(R27), IncFII(S)
Chicken meat, bovine meat,
gyrA and parC: ColpVC, IncC, IncX1, and IncI1-
Vilela et al. (29) animal feed, and a drag S. Heidelberg ST15 (n = 11) gyrA (S83F) parC (T57S) -
n=11/11 I(Alpha)
swab.
Caecal content laying hens
Benevides et al. (61) S. Mbandaka ST413 (n = 6) parC:n=6/6 parC (T57S) - IncHI2A, IncN
and a laying quail
S. Dublin ST10
(n=6)
S. Typhimurium ST19 (n = 31)
Calves, cows, heifer, organs,
S. Newport ST45 (n = 24) IncFII, IncFII(S), IncFIB,
samples from environment,
S. Anatum ST64 gqnrB19 (ColE1): IncFIB(S), Col4401, Incll, IncX1,
Casaux et al. (41) Uruguay food sample, udder swab, parC: n =38/75 parC (T57S)
(n=11) n=>5/75 IncHI2A, IncQ1, Incl2,
drinking water, bovine fetus
S. Agona ST13 IncI2(Delta) IncFIC(FII)
autopsy.
(n=1)
S. Montevideo ST138 (n=1)
S. IIIb 61:i:253 ST430 (n=1)
S. Infantis ST32
(n=5) qnrBI19
n=
Burnett et al. (62) Ecuador Poultry gyrA:n=>5/7 gyrA (D87Y) (Col44011): IncFIB, Col4401I
S. Schwarzengrund ST96
n=2/7
(n=2)

() In this study, no QRDR mutations are reported.
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FIGURE 2
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10 product of ciprofloxacin-resistant
Salmonella

00 Pigs and pork

%? Poultry and chicken meat
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Combined*

*Of the 24 studies that used
phenotypic methods, 4 of them used
matrices involving a mixture of
different species, primarily from their
meat products.

Map of South America with reports of ciprofloxacin resistance percentages reported between 2020 and 2024.

Vidal et al. (67) reported 44% MDR in Salmonella from swine feces,
with 55% ciprofloxacin resistance, emphasizing the impact of
antibiotic overuse in pig farming.

Recent studies reveal distinct resistance patterns between poultry
and swine. Pigs show higher resistance to azithromycin, ampicillin,
and chloramphenicol, while poultry exhibit greater resistance to
quinolones and sulfonamides, reflecting differences in antibiotic use
between both industries (48).

Antimicrobial resistance data for cattle is limited. In Uruguay,
high non-susceptibility to FQ has been reported, with 77.3% of isolates
non-susceptible to ciprofloxacin and 6.6% to enrofloxacin (41).
Additionally, 56% of isolates exhibited MDR particularly in serotypes
like S. Typhimurium, S. Newport, and S. Anatum are notably prevalent
in intensive cattle production, causing both enteric and invasive
diseases such as septicemia (49).

Frontiers in Veterinary Science

Genotypic studies identify ST19 (S. Typhimurium) and its
monophasic variant as key serovars in swine, commonly detected in
Brazil and the European Union (50-54). S. Typhimurium is the second
most common cause of salmonellosis outbreaks in the EU, with pork
as the main source in 2014 (55).

The Ser83Phe mutation is frequently reported in pigs strains with
reduced susceptibility to CIP, which has been detected in clinical cases
in Peru (56). PMQR genes of the gnr alleles, such as the gnrBI19 gene,
are associated with the spread of Salmonella strains resistant to CIP in
the United States (57). The Thr57Ser mutation has been described as
relevant for reducing susceptibility to ciprofloxacin (58). The frequent
detection of gyrA (position 83) and parC (position 57) mutations
highlights their critical role in fluoroquinolone resistance. These
findings underscore the need for targeted surveillance and
intervention strategies to mitigate the spread of resistant strains.
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4.3 One Health implications and need for
coordinated surveillance

The antimicrobial resistance observed to quinolones and
fluoroquinolones reflects the selective pressure generated by the
use of antibiotics in intensive animal production systems. This
resistance can vary considerably between different matrices, such
as meat, feces and carcass swabs, highlighting the importance of
sampling multiple sources within the production system.
Although antibiotics remain a crucial tool for treating bacterial
diseases, the increase in antimicrobial resistance has reduced their
effectiveness (59). Resistance to fluoroquinolones is particularly
concerning, as they are commonly used to treat severe human
infections, such as systemic salmonellosis in immunocompromised
individuals (60).

These findings underscore the urgency of adopting a coordinated
One Health approach that integrates surveillance, policy, and
intervention strategies across human, animal, and environmental
sectors to effectively mitigate the spread of antimicrobial resistance in
South America.

4.4 Limitations

This study has several limitations that should be considered when
interpreting the results. First, not all South American countries
published research on quinolone- and fluoroquinolone-resistant
Salmonella between 2020 and 2024, which limits the representativeness
of the data for the entire region. In addition, there was considerable
variability in the types of samples or matrices used in the included
studies—ranging from feces, tissues, food, and in some cases pooled
samples from different animal species—making it difficult to isolate
Salmonella-specific information.

Although the study initially sought to include data on
fluoroquinolone-resistant Salmonella from rodents, no eligible studies
were found from South America during the selected period. However,
in veterinary medicine, rodents are recognized as important reservoirs
and amplifiers of zoonotic infections, including Salmonella. Their
absence in the published literature highlights a relevant knowledge
gap that should be addressed in future research.

Finally, although a predefined protocol was used to guide the
review process, it was not formally registered in a database such as
PROSPERO. This omission is acknowledged as a limitation in the
transparency of the study methodology.

Future studies should aim to include a broader range of countries
and matrices, and explore the role of rodents in the dissemination of
antimicrobial-resistant Salmonella.

5 Conclusion

The
fluoroquinolones in Salmonella from poultry, swine, and cattle in

antimicrobial  resistance to quinolones and
South America shows a concerning trend, with high rates of
resistance and multidrug resistance across several countries. The
indiscriminate use of antibiotics in animal production systems
appears to be a key factor in the accelerating pressure of the

problem, which could undermine the effectiveness of treatments
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in both humans and animals. Furthermore, resistance varies
significantly across different matrices, highlighting the need for
more comprehensive surveillance and the use of more
standardized diagnostic techniques. The findings of this study
highlight the urgent need for coordinated regional efforts to
monitor and control antimicrobial resistance in Salmonella.
Policymakers, researchers, and industry stakeholders must
collaborate to implement effective strategies that safeguard public
health and ensure food safety.
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