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The integration of artificial intelligence, particularly large language models (LLMs), 
into veterinary education and practice presents promising opportunities, yet their 
performance in veterinary-specific contexts remains understudied. This research 
comparatively evaluated the performance of nine advanced LLMs (ChatGPT o1Pro, 
ChatGPT 4o, ChatGPT 4.5, Grok 3, Gemini 2, Copilot, DeepSeek R1, Qwen 2.5 Max, 
and Kimi 1.5) on 250 multiple-choice questions (MCQs) sourced from a veterinary 
undergraduate final qualifying examination. Questions spanned various species, 
clinical topics and reasoning stages, and included both text-based and image-based 
formats. ChatGPT o1Pro and ChatGPT 4.5 achieved the highest overall performance, 
with correct response rates of 90.4 and 90.8% respectively, demonstrating strong 
agreement with the gold standard across most categories, while Kimi 1.5 showed 
the lowest performance at 64.8%. Performance consistently declined with increased 
question difficulty and was generally lower for image-based than text-based questions. 
OpenAI models excelled in visual interpretation compared to previous studies. 
Disparities in performance were observed across specific clinical reasoning stages 
and veterinary subdomains, highlighting areas for targeted improvement. This study 
underscores the promising role of LLMs as supportive tools for quality assurance in 
veterinary assessment design and indicates key factors influencing their performance, 
including question difficulty, format, and domain-specific training data.
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Introduction

The role of artificial intelligence (AI) in healthcare has become a prominent focus in recent 
scholarly discussions (1–4). This attention is driven by rapid advancements in large language 
models (LLMs), a subset of AI systems capable of generating human-like natural language 
responses from textual input (3). Among current LLMs, ChatGPT, a chat-generative pre-trained 
transformer developed by OpenAI, has emerged as especially relevant due to its sophisticated 
deep-learning architecture, trained on extensive datasets, enabling it to produce coherent, 
contextually appropriate responses to user prompts (5, 6). ChatGPT demonstrates capabilities 
beyond knowledge recall, with reports of deductive reasoning and chain of thought (CoT) (5). 
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This facilitates broader applications of ChatGPT (and other comparable 
AI tools) within the medical field, such as answering medical questions 
(7), writing medical reports (8), information retrieval (9), aiding study (6, 
10) and professional development (11). In 2022, with no specialized 
training, ChatGPT performed at or near the United  States Medical 
Licensing Exam (USMLE) passing threshold of 60% accuracy (12). Apart 
from that, ChatGPT has passed general medical licensing examinations 
from Australia (13), Peru (14) and Iran (15), and has also exceeded passing 
scores in sub-specialties such as dermatology (16) and radiology (17).

Going forwards, LLMs are predicted to impact all aspects of 
society, including education and the training and assessment of 
healthcare professionals (18–20). Recently, more LLMs such as Grok, 
DeepSeek or Copilot, have shown strong performance in effectively 
addressing a wide range of queries (21). However, all these LLMs 
have shown varying proficiency across different healthcare disciplines 
(21–26), and additional concerns have been raised regarding their 
understanding of questions, depth of responses and ability to deal 
with nuanced and context dependent data (2, 11, 27).

Currently, our understanding of the capabilities of LLMs in veterinary 
science is limited. Few studies have specifically examined the performance 
of ChatGPT within this context (28–30), and therefore conclusive 
evidence regarding the accuracy of LLMs in answering veterinary-specific 
examination questions is lacking. Accuracy in clinical decision-making, 
whether in human or veterinary medicine, is paramount, as even minor 
inaccuracies may lead to serious clinical consequences. Given that LLMs 
primarily function as language-generation systems rather than structured 
knowledge bases, concerns regarding the accuracy and reliability of their 
outputs are particularly critical (31, 32). Furthermore, comparative 
evaluations of LLMs have predominantly focused on human medicine or 
related healthcare disciplines, with veterinary medicine largely excluded 
from these assessments (26).

In veterinary education, veterinary graduates are required to 
demonstrate proficiency across multiple domains, including 
knowledge, problem-solving, clinical skills, communication, and 
professionalism (33–35). Although various assessment methods are 
simultaneously employed to evaluate competence holistically, multiple-
choice questions (MCQs) remain extensively utilized as a summative 
assessment format (36–38). Notably, MCQs constitute the primary 
format of the North American Veterinary Licensing Examination 
(NAVLE; International Council for Veterinary Assessment, 2025) (39). 
Such examinations typically emphasize clinical decision-making, a 
multifaceted cognitive process that integrates veterinary knowledge, 
clinical reasoning, the ability to synthesize information from diverse 
species, and the capacity to apply evidence-based practices.

In this study, we aimed to investigate the potential of LLMs in 
answering MCQs in veterinary knowledge according to species, 
subject, type of MCQ (image vs. text-based), clinical reasoning and 
difficulty levels. The hypothesis was that LLMs would present different 
accuracy and that would change according to the type of question 
(species, subject, type of MCQ, clinical reasoning and difficulty levels).

Materials and methods

Large language models

Nine widely recognized LLMs were evaluated in this study 
between January and February 2025. The models assessed were: (1) 

ChatGPT o1Pro (OpenAI), (2) ChatGPT 4o (OpenAI), (3) ChatGPT 
4.5 (OpenAI), (4) Grok 3 (xAI), (5) Gemini 2 (Google), (6) Copilot 
(Microsoft), (7) DeepSeek R1 (DeepSeek), (8) Qwen 2.5 Max (Alibaba 
Cloud), and (9) Kimi 1.5 (Moonshot AI). These specific versions were 
chosen because they represented the most advanced and updated 
iterations available during the study period, optimized for reasoning 
capabilities. Models from OpenAI and xAI were accessed via paid 
subscription services, whereas the other models were freely accessible 
to the public at the time of the evaluation.

Multiple-choice questions design and 
inclusion

The MCQs utilized in this study were derived from the final 
qualifying examination for the Bachelor of Veterinary Medicine 
(BVM) Program at the City University of Hong Kong. A total of 250 
MCQs were included, each structured as a clinical vignette with a 
single best answer selected from five options, comprising one correct 
response and four plausible distractors. These questions were 
developed to assess knowledge and cognitive skills expected from Day 
1 veterinary graduates, aligning with international competency 
frameworks such as the Australasian Veterinary Boards Council 
(AVBC) Attributes (35), Royal College of Veterinary Surgeons (RCVS) 
Day One Competences (33), and the World Organization for Animal 
Health (WOAH) Competencies of Graduating Veterinarians (40).

The MCQs underwent external benchmarking with peer 
institutions from the United  Kingdom, Australia, and the 
United States, mirroring the format of the NAVLE. The inclusion and 
selection criteria for MCQs included reliability, reproducibility, 
fairness, objectivity, credibility, simplicity of administration, and 
potential for facilitating constructive feedback.

Content validity was ensured through a comprehensive 
competency-based educational blueprint, created by three independent 
expert groups consisting of five subject matter experts each, aligning 
closely with NAVLE guidelines. This blueprint accounted for the 
relative importance and instructional hours dedicated to each subject 
area and animal species within the veterinary curriculum.

MCQ writers, including veterinary specialists and faculty 
members, received training in best practices for MCQ development. 
Initial MCQ drafts underwent critical review and individualized 
feedback from external experts in veterinary education, ensuring 
adherence to established quality standards. Questions identified as 
non-compliant were revised and resubmitted until they met the 
quality criteria. Reliability was investigated through beta-testing by 
qualified veterinarians (faculty and teaching staff), accompanied by 
psychometric analysis, including item facility, discrimination indices, 
and point-biserial correlation, conducted using Speedwell examination 
software (Speedwell Software Ltd., United Kingdom).

The standard-setting process was conducted using the modified 
Angoff method (41), where a panel of veterinarians (i.e., instructors) 
with diverse subject matter expertise, including specialists and 
general practitioners, were trained on standard-setting principles and 
inter-rater agreement before establishing the minimum passing score. 
This criterion-based pass mark ensured fairness and objectivity, 
independent of candidate group performance. Post-examination 
psychometric analyses verified the ongoing validity, reliability, and 
alignment with the veterinary competency framework.
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For analytical purposes, MCQs were further classified according 
to their difficulty levels (low difficulty [≥70% of instructors expect 
students to answer correctly]), (medium difficulty [40–69% of 
instructors expect students to answer correctly]), (high difficulty 
≤39% of instructors expect students to answer correctly); species 
(Canine, Feline, Equine, Bovine, Other Production Animals 
[including small ruminants and swine], and Exotics [including 
birds, reptiles, amphibians, and small mammals]); image or text-
based questions; clinical reasoning stages (e.g., diagnostic 
interpretation, diagnostic plan, treatment/prognosis, clinical 
assessment, and prophylaxis); and specific veterinary subdomains 
(e.g., cardiology, oncology, dentistry, anesthesia/pain management, 
diagnostic imaging, behavior, and soft tissue surgery) for 
subsequent analysis.

LLM performance

To ensure that the evaluation was unaffected by prior interactions, 
each LLM chatbot was assessed using a newly created account with no 
previous conversation history. A standardized, structured prompt 
(“Which of the following is the most appropriate answer for this question: 
1, 2, 3, 4 or 5?”) was consistently inputted into each AI model, followed 
by clear separation before presenting the MCQs and their 
corresponding options numbered from 1 to 5. The structured prompt 
was specifically designed to maintain consistency across chatbot 
interactions and minimize bias. The MCQs required selecting only the 
best answer from the given options, without providing any additional 
justification. Several questions included visual elements (images), 
which were directly attached as JPG files within the chatbot interface. 
MCQs were systematically delivered in batches of five to prevent 
potential chatbot overload or context loss. Each chatbot’s responses 
were documented via manual transcription for subsequent analysis.

Statistical analysis

Responses provided by each chatbot were compared to the gold 
standard (correct answer sheet), and performance was expressed as 
agreement percentages (%). Cohen’s kappa coefficient (κ) (42, 43) was 
calculated to assess overall agreement between each chatbot and the 
gold standard. Further analyses using Cohen’s kappa coefficient were 
conducted to evaluate agreement within specific subcategories, 
including question difficulty levels (low, medium, and high), species, 
type of clinical reasoning required, presence or absence of images, and 
clinical categories. Cohen’s kappa values were interpreted following 
established guidelines: 0–0.20 indicating no agreement, 0.21–0.39 
minimal, 0.40–0.59 weak, 0.60–0.79 moderate, 0.80–0.90 strong, and 
>0.90 almost perfect agreement (42, 43). All statistical analyses were 
performed using RStudio version 2022.07.1–554 (44).

Results

In general, ChatGPT o1 Pro and ChatGPT 4.5 models had the 
highest agreement rate, followed by Copilot, DeepSeek R1 and 
ChatGPT 4o, all showing a strong agreement level. None of the models 
achieved almost perfect agreement (Cohen’s kappa values of >0.90). 

Kimi 1.5 model performed the worst with a weak level of agreement, 
and a rate of correct responses of only 64.8% (Table 1).

Agreement rate between LLMs according 
to level of difficulty

There was almost perfect agreement between all chatbots and the 
gold standard at low difficulty level (κ = 1.0). At a medium difficulty 
level, the agreement from ChatGPT o1Pro and ChatGPT 4.5 remained 
almost perfect; however, agreement was strong to the other chatbots, 
except Grok 3, Gemini 2 and Kimi 1.5, which presented moderate 
agreement. At a high-level difficulty ChatGPT o1PRO, ChatGPT 4.5, 
ChatGPT 4o and Copilot showed moderate agreement whereas Kimi 
1.5 presented minimal agreement (Figure 1).

Agreement rate between LLMs based on 
image-based and non-image-based 
questions

The agreement between OpenAI chatbots and the gold standard 
was strong for both text-based and image-based questions. In contrast, 
Kimi 1.5 showed weak agreement with the gold standard, achieving 
κ = 0.46 for image-based questions and κ = 0.57 for text-based 
questions (Table 2). Although the categorical agreement levels for each 
LLM did not differ between image-based and text-based questions, 
overall performance tended to be lower on questions containing images.

Agreement rate of chatbots with the gold 
standard according to species

ChatGPT o1Pro showed almost perfect agreement with “Bovine” 
and “Other Production Animals,” while ChatGPT 4.5 exhibited 
almost perfect agreement with “Feline.” Both chatbots maintained 
strong agreement levels with the other species. DeepSeek R1 
presented strong agreement with four species. In contrast, Kimi 1.5 
had the lowest performance, showing minimal agreement with 

TABLE 1  Agreement percentages (performance) of different LLMs 
compared to the gold standard (correct answers) on 250 veterinary MCQs.

Chatbot Correct 
answers (%)

Cohen’s kappa 
coefficient

ChatGPT o1 Pro 90.4 0.88

ChatGPT 4o 85.5 0.81

ChatGPT 4.5 90.8 0.88

Grok 3 79.2 0.73

Gemini 2 77.2 0.71

Copilot 85.6 0.82

DeepSeek R1 85.6 0.82

Qwen2.5 Max 79.6 0.74

Kimi 1.5 64.8 0.56

Results are presented as percentages (%) of correct answers and Cohen’s kappa coefficients 
(κ) for overall agreement; 0–0.20 indicating no agreement, 0.21–0.39 minimal, 0.40–0.59 
weak, 0.60–0.79 moderate, 0.80–0.90 strong, and >0.90 almost perfect agreement.
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“Exotic” and weak agreement with three species (Figure 2). When 
comparing species, “Feline” and “Other Production Animals” 
demonstrated the strongest agreement rates among the chatbots, 
while “Canine” and “Exotics” categories had the lowest agreement 
rates (Figure 2).

Agreement rate of chatbots with the gold 
standard according to clinical reasoning

ChatGPT o1Pro, ChatGPT 4.5, and DeepSeek R1 demonstrated 
the highest overall agreement rates with the gold standard across all 
categories, while Kimi 1.5 exhibited the lowest overall agreement. 
“Diagnostic Interpretation” and “Diagnostic Plan” showed the highest 
agreement rates among chatbots, whereas “Prophylaxis” had the 
lowest level of agreement (Figure 3).

Agreement rate of the chatbots with the 
gold standard according to subdomains

ChatGPT o1Pro and ChatGPT 4.5 had almost perfect agreement 
in nine and eight subdomains, respectively. Copilot and DeepSeek R1 
showed perfect agreement in six subdomains. Conversely, Kimi 1.5 
had minimal agreement in six subdomains and non-agreement in one.

When evaluating agreement by subdomains, the highest overall 
agreement percentages were observed in Endocrinology/Metabolic 
Diseases, Cardiology, Oncology, and Ophthalmology. In contrast, the 
lowest agreement levels occurred in Dentistry, Behavior, Anesthesia/
Pain Management, Diagnostic Imaging, and Soft Tissue Surgery.

Discussion

In this study, we evaluated the performance of nine LLMs using a 
dataset of MCQs sourced from the final qualifying examination for 
the BVM Program at the City University of Hong Kong. To our 
knowledge, this represents the first comparative evaluation of LLMs 
targeting veterinary clinical knowledge. Notably, ChatGPT o1Pro and 
ChatGPT 4.5 outperformed the other chatbots assessed in our study. 
These results may be explained by OpenAI’s recent efforts to enhance 
deductive reasoning and critical judgment capabilities through 
advanced prompting techniques such as CoT (45, 46). CoT prompts 
allow these models to systematically deconstruct complex problems, 
enhancing their ability to interpret questions accurately and provide 
precise answers.

DeepSeek R1 achieved agreement rates similar to ChatGPT 4o 
and Copilot, the latter being based on ChatGPT 4o’s architecture, 
especially considering its relatively recent development. This 
comparable performance is particularly notable given differences in 
the underlying architecture and training approaches of these models. 
OpenAI utilizes reinforcement learning from human feedback 
(RLHF), a technique where models are fine-tuned using human-
generated reward signals to optimize output quality and alignment. 
This approach is combined with supervised fine-tuning (SFT), where 
models learn from labeled datasets containing input–output pairs 
provided by human annotators. These methods are employed in their 
advanced models during the pre-training phase. In contrast, DeepSeek 
integrates reinforcement learning and SFT applied to pre-trained data 
within a mixture-of-experts architecture (47). On the other hand, 
Kimi 1.5 had weak agreement and the lowest performance when 
compared with the other LLMs. In previous studies, Kimi 1.5 
performed better than ChatGPT 4o and equal to ChatGPT o1 (48) 
with respect to reasoning; however, our study did not corroborate 
these findings. This may be due to the build-in model architecture. 
Kimi’s reinforcement learning (RL) approach avoided questions such 
as MCQs, because these could be answered correctly without good 
reasoning which could hack the reward model, potentially leading to 
a possible worse performance with MCQs (48).

FIGURE 1

Heatmap shows the agreement of chatbots with the gold standard using Cohen’s kappa coefficients at questions defined as low, medium, and high 
difficulty levels. In the heatmap, a darker box color indicates lower agreement, while a lighter color indicates higher agreement.

TABLE 2  Agreement of chatbots with the gold standard for photo and 
non-photo questions.

Chatbots Cohen’s kappa 
coefficients for 
image-based 

questions

Cohen’s kappa 
coefficients for 

non-image-
based questions

ChatGPT o1 Pro 0.82 0.88

ChatGPT 4o 0.82 0.81

ChatGPT 4.5 0.81 0.89

Grok 3 0.63 0.75

Gemini 2 0.62 0.74

Copilot 0.72 0.79

DeepSeek R1 0.78 0.79

Qwen2.5 Max 0.72 0.74

Kimi 1.5 0.46 0.57

The values in the table represent Cohen’s kappa coefficients (κ).
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High accuracy of LLMs in veterinary knowledge has become 
increasingly important as a growing number of pet owners rely on 
these platforms for guidance regarding their pets’ health (49). 
Although these systems can enhance pet owners’ general knowledge 
and understanding, they also carry significant risks of misinformation, 
which may lead to detrimental outcomes (50). Our study, which 
evaluated some of the newest LLMs known for advanced reasoning 
capabilities, yielded findings consistent with previous research that 
compared ChatGPT 3.5 and ChatGPT 4 in answering MCQs and true/
false questions, reporting accuracy rates of 55 and 77%, 
respectively (30).

When comparing the agreement levels of different LLMs with the 
gold standard across low, medium, and high difficulty MCQs, our 
results indicate that all models achieved almost perfect agreement at 
low difficulty levels. However, agreement levels decreased as question 
difficulty increased. ChatGPT o1Pro and ChatGPT 4.5 maintained a 
moderate level of agreement even at higher difficulty levels. These 
findings align with previous research showing that ChatGPT’s 
performance on the United States Medical Licensing Examination 
declined as question difficulty increased (7). Our results also parallel 
higher LLM performance on the primary-care-level National 
Certificate Examination for Primary Diabetes Care in China compared 
to specialist-level Specialty Certificate Examination in Endocrinology 
and Diabetes administered by the Royal College of Physicians of the 
United Kingdom (21). This decline in performance at higher difficulty 

levels is likely due to limitations in the models’ logical reasoning 
capabilities. As questions become more challenging, correct answers 
depend on domain-specific knowledge and sound logical reasoning 
capabilities, which can become strained when cognitive demands 
exceed the model’s current training and reasoning capacities (7).

A distinctive aspect of our study is the inclusion of both text-
based and image-based questions, reflecting the integral role of visual 
assessment in veterinary practice. LLMs had similar agreement levels 
when comparing text and image-based questions. However, there was 
an overall lower performance with image-based questions using 
almost all models. OpenAI models were the only LLMs to consistently 
achieve a strong agreement level across both question types. These 
findings align with other healthcare studies, which similarly observed 
decreased performance of LLMs on image-based questions compared 
to text-based questions (51, 52). However, when comparing our 
results to previous evaluations of OpenAI models, our study 
demonstrates a significant improvement. The agreement performance 
increased from 57% on image-based questions in a study assessing 
ChatGPT 4 on the Fellowship of the Royal College of Surgeons 
Trauma and Orthopedics examination (53) to 89% accuracy with 
OpenAI models in our study. This notable advancement could indicate 
a substantial progress in these models’ capacity to analyze and 
interpret image-based data, a critical skill, particularly in specialties 
such as diagnostic imaging. The observed improvement likely results 
from enhanced training techniques and larger, more diverse visual 

FIGURE 2

Heatmap shows the agreement of chatbots with the gold standard using Cohen’s kappa coefficients according to species. In the heatmap, a darker 
box color indicates lower agreement, while a lighter color indicates higher agreement.

FIGURE 3

Heatmap shows the agreement of chatbots with the gold standard using Cohen’s kappa coefficients according to clinical reasoning. In the heatmap, a 
darker box color indicates lower agreement, while a lighter color indicates higher agreement.
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datasets, enabling AI models to learn effectively from a broader 
spectrum of visual inputs (54, 55).

While our study highlights the strong performance of multiple 
LLMs across various veterinary domains, we  also observed 
inconsistencies across clinical reasoning (Figure 3) and subdomains 
(Figure 4). Specifically, within clinical reasoning, the areas of treatment/
prognosis and prophylaxis demonstrated the lowest levels of agreement. 
Additionally, subdomains including dentistry, behavior, anesthesia/
pain management, soft tissue surgery, and diagnostic imaging exhibited 
comparatively lower agreement levels across all LLMs. Several factors 
may explain these discrepancies. First, the broad and interdisciplinary 
nature of these subdomains can introduce ambiguity due to extensive 
and overlapping content across multiple species. Second, rapid 
advancements in specialized areas such as anesthesia, pain 
management, and soft tissue surgery may result in knowledge gaps if 
the training datasets of these LLMs are not sufficiently up-to-date. 
Third, decreased performance in diagnostic imaging aligns with our 
earlier findings that LLMs exhibit inherent limitations in accurately 
analyzing and interpreting image-based data. Additionally, although 
LLMs are trained on extensive datasets encompassing various domains, 
human health represents a significantly larger portion of available data 
compared to veterinary medicine (30). This disproportionate focus on 
human medical data could contribute to disparities in accuracy 
between veterinary and human health responses (30). Finally, it is 
possible that these questions require additional internal audit. Our 

findings suggest that despite the demonstrated potential of certain 
LLMs in veterinary medicine, further targeted training and model 
development are essential to achieve consistent and reliable 
performance across all veterinary subjects.

Our evaluation of LLM performance relied on MCQs, a format 
known to often contain inherent imperfections known as item-writing 
flaws (IWFs) (56). Although flaws may seem minor, they can influence 
how learners interpret and respond to questions, potentially leading to 
misleading results (57, 58). IWFs could partially explain why, out of the 
250 MCQs used in our study, there were six questions that all evaluated 
LLMs answered incorrectly, and 21 questions where more than 50% of 
the models failed to provide correct answers. Upon subsequent 
individual assessment by faculty authors, we determined that several of 
these incorrectly answered questions did indeed contain IWFs, 
potentially creating ambiguous or misleading scenarios. The occurrence 
of IWFs in MCQs can often stem from differences in academic training, 
variation in clinical expertise among educators in question-writing 
practices (59), or from constraints such as insufficient time to adequately 
develop high-quality MCQs (60). Thus, enhancing MCQ quality through 
targeted interventions appears valuable. This challenge also creates an 
opportunity for integrating LLMs into veterinary education as supportive 
tools for quality assurance and internal audit, helping educators with the 
identification and revision of MCQs that warrant additional scrutiny (61).

This study has several limitations. First, we evaluated nine LLMs 
available at the time of the study. Given the rapid evolution and 

FIGURE 4

Heatmap illustrates chatbot agreement with the gold standard using Cohen’s kappa coefficients according to subdomains. In the heatmap, darker 
color indicates lower agreement, while lighter color represents higher agreement.
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continuous updates of LLM technology, our findings may not fully 
represent the latest performance of these or other models. Second, our 
dataset comprised a limited sample size of 250 MCQs, distributed across 
six veterinary species, potentially insufficient to comprehensively 
represent the extensive knowledge base of LLMs. Third, we did not have 
access to the average scores of veterinary students who took the original 
examination, which prevented direct comparison of student 
performance with LLMs outcomes. Fourth, although MCQs are widely 
utilized to assess foundational knowledge, we  did not evaluate the 
reasoning processes underlying the models’ decision-making. 
Consequently, our study does not reflect the models’ capabilities in 
handling complex, open-ended clinical scenarios. Lastly, as indicated in 
prior research, the reproducibility of answers provided by LLMs has 
been inconsistent, resulting in variable responses upon repeated 
questioning (62). Nevertheless, recent studies have noted significant 
improvements in reproducibility among newer LLMs (63). Furthermore, 
previous studies have demonstrated that LLM performance significantly 
decreases when responding to prompts in languages other than English, 
likely due to the dominance of English-language data in their training 
datasets (64). Consequently, the findings presented here may not directly 
extrapolate to multilingual veterinary education settings, highlighting 
the need for future research to assess LLM accuracy across different 
languages and to enhance multilingual support for equitable global use.

In conclusion, this comparative evaluation of LLMs highlights 
their varied strengths and weaknesses across different veterinary 
domains, with ChatGPT o1Pro and ChatGPT 4.5 demonstrating the 
strongest overall performance. Most of the evaluated LLMs exhibited 
improved accuracy compared to previous veterinary-focused studies. 
Key factors influencing performance included question difficulty, with 
higher complexity significantly reducing model accuracy, and 
question format, with image-based questions generally yielding lower 
performance than text-based ones. These findings highlight the 
potential role of LLMs as valuable supportive tools in veterinary 
education, particularly for quality assurance in assessment design 
and implementation.
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