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Detection of pathogens in dogs 
with respiratory disease during 
winter 2023–2024 using 
multiplex qPCR/RT-qPCR assays 
and next-generation sequencing
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Canine Infectious Respiratory Disease Complex (CIRDC), caused by a diverse range 
of viral and bacterial pathogens, is the leading cause of respiratory illness in dogs. 
In the winter of 2023–2024, the United States experienced a noticeable increase 
in cases consistent with CIRDC. This study investigated the potential association 
of emerging pathogens with CIRDC cases. It involved the analysis of 50 clinical 
specimens collected from CIRDC-suspected dogs from six US states between 
December 2023 and February 2024. All clinical cases presented with respiratory 
illness characterized mainly by coughing (78%), nasal and ocular discharges (30%), 
and sneezing (22%). Specimens were tested for 12 known CIRDC-associated 
pathogens using a previously described panel of one-step TaqMan® multiplex 
qPCR/RT-qPCR assays designed to detect eight viral and four bacterial pathogens. 
Specimens were also subjected to next-generation sequencing (NGS) to confirm 
qPCR/RT-qPCR results and identify potential emerging pathogens. In this study, 64% 
of samples tested positive for various canine respiratory pathogens. Mycoplasma 
canis was the most frequently detected agent (n = 20), followed by M. cynos 
(n = 9), canine respiratory coronavirus (n = 3), canine parainfluenza virus (n = 3), 
and Bordetella bronchiseptica (n = 3). Additionally, canine adenovirus type 2, 
canine herpesvirus 1, and canine distemper virus were also detected in some 
samples. NGS also identified canine calicivirus, canine circovirus, and, for the first 
time, vientovirus in a CIRDC-affected dog. This study indicates that CIRDC cases 
observed in the winter of 2023–2024 were not associated with the emergence 
of any new pathogens. The clinical relevance of the detection of vientovirus in a 
single dog remains unknown.
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1 Introduction

Canine Infectious Respiratory Disease Complex (CIRDC), 
commonly known as kennel cough, is a highly prevalent and 
contagious respiratory condition in the dog population worldwide (1, 
2). Outbreaks most commonly occur in settings where dogs are 
housed or gathered nearby, such as boarding facilities, animal shelters, 
and dog daycares (3, 4). CIRDC manifests as a multifactorial 
syndrome characterized by acute respiratory signs, including 
coughing, nasal or ocular discharge, sneezing, fever, and respiratory 
distress, that generally lasts up to 2 weeks (1). The disease is primarily 
transmitted through direct dog-to-dog contact and airborne 
transmission via respiratory secretions (2). Most infections are self-
limiting, with affected dogs typically recovering within a few days to 
a few weeks. CIRDC is a complex disease involving a wide array of 
viral and bacterial agents, including canine adenovirus 2 (CAdV-2) 
(5), canine distemper virus (CDV; Morbilivirus canis) (6), canine 
herpesvirus 1 (CaHV-1; Varicellovirus canidalpha1) (7), canine 
influenza virus (CIV) (8), canine pneumovirus (CnPnV) (9, 10), 
canine parainfluenza virus (CPiV) (11), canine respiratory coronavirus 
(CRCoV) (12, 13), Bordetella bronchiseptica (14), Mycoplasma canis 
(15), M. cynos (16), and Streptococcus equi zooepidemicus (17, 18). 
Additionally, sporadic infections with other canine viruses were also 
reported, including canine calicivirus, canine circovirus, and canine 
hepacivirus (19–22). Co-infections and certain host factors can 
contribute to more severe clinical outcomes (23–26). Vaccines 
targeting specific pathogens associated with CIRD, such as 
B. bronchiseptica, CAdV-2, CDV, and CPiV, are available in the United 
States and are commonly administered to puppies (27). Nevertheless, 
outbreaks continue to be frequently reported (28, 29).

Accurate aetiologic diagnosis of CIRDC is challenging due to the 
overlapping clinical presentations among pathogens and the frequent 
occurrence of asymptomatic carriers. For example, B. bronchiseptica, 
M. cynos, CaHV-1, and CRCoV are often found in both healthy and 
clinically ill dogs (12, 30). As such, their contribution to the clinical 
signs observed in dogs remains uncertain. Asymptomatic dogs 
significantly contribute to the spread of infections and illnesses among 
susceptible dogs and may also serve as a reservoir for pathogens 
between disease outbreaks. Most pathogens have a short incubation 
period, typically from a few days up to 2 weeks (2). However, given the 
similarity in clinical signs induced by these pathogens, diagnosis 
cannot rely solely on history and clinical signs. Thus, laboratory 
confirmation is essential to confirm clinical diagnosis by accurate 
pathogen identification. Molecular diagnostic methods such as 
polymerase chain reaction (PCR) and quantitative PCR (qPCR or 
reverse transcriptase-qPCR [RT-qPCR]) are widely used for detecting 
CIRDC agents (31–33). These assays offer high sensitivity and 
specificity, enabling the detection of active infections. Multiplex 
qPCR/RT-qPCR platforms, in particular, allow simultaneous detection 
of multiple pathogens in clinical specimens, making them well-suited 
for investigating the complex etiology of CIRDC (26, 34). 
Furthermore, next-generation sequencing (NGS) has become a rapid 
and comprehensive technique for identifying and characterizing 
multiple pathogens, including the detection of novel agents in clinical 
specimens (35). Therefore, these novel molecular techniques 
(multiplex qPCR/RT-qPCR and NGS) offer high sensitivity, specificity, 
and quick turnaround time compared to classical virology and 
bacterial isolation and characterization methods.

In late 2023, veterinarians in several states across the US reported 
cases of an unusual respiratory illness in dogs, referred to as atypical 
canine infectious respiratory disease complex (aCIRDC). These cases 
raised alarms about the possible emergence of a new pathogen (36–39). 
Unlike typical infections seen in previous years, affected dogs experienced 
prolonged and severe respiratory clinical signs. Notably, the animals often 
tested negative for common pathogens associated with canine infectious 
respiratory disease (CIRD). The atypical nature of CIRDC was further 
underscored by its poor response to standard antibiotic treatments and a 
noticeable rise in mortality rates (40). This study aimed to investigate a 
potential emerging pathogen associated with CIRDC cases during the 
winter of 2023–2024. A comprehensive one-step multiplex qPCR/
RT-qPCR assay was employed to detect the most common CIRDC 
pathogens, including CAdV-2, CDV, CaHV-1, CIV, CnPnV, CPiV, 
CRCoV, B. bronchiseptica, M. canis, M. cynos, and S. equi subsp. 
zooepidemicus, and SARS-CoV-2. Furthermore, specimens were tested 
for the possible presence of novel or emerging pathogens by NGS.

2 Materials and methods

2.1 Clinical specimens

Between December 2023 and February 2024, a total of 50 clinical 
specimens (pooled nasal and nasopharyngeal swabs) from dogs 
suspected of having CIRDC were submitted for routine diagnostic 
testing to the Louisiana Animal Disease Diagnostic Laboratory (LSU 
Diagnostics) in Baton Rouge, Louisiana, United States (Table  1). 
Primary practicing veterinarians submitted all specimens to LSU 
Diagnostics for routine testing; thus, IACUC approval or owner 
consent was not required for this study. Only samples collected from 
dogs with respiratory signs were included in this study, regardless of 
age, body weight, reproductive status, sex, or breed. Both nasal and 
oropharyngeal specimens were collected by the primary veterinarian 
using 15 cm sterile flocked collection swabs (VWR, Radnor, PA). The 
specimens were pooled in 2 mL of BHI Broth (Hardy Diagnostics, 
Santa Maria, CA) and shipped overnight at 4°C to the LSU 
Diagnostics. The diagnostic laboratory provided collection swabs and 
BHI broth along with instructions on how to collect the specimens for 
the primary practicing veterinarians to ensure optimal sample 
collection and consistency. The specimens in BHI Broth were packed 
in ice, and either hand-delivered or submitted vial overnight courier 
service to LSU Diagnostics for molecular testing. Upon receipt, the 
samples were immediately processed for molecular diagnostic testing 
(i.e., multiplex qPCR/RT-qPCR). The remaining BHI broth from each 
sample was then aliquoted into 500 μL aliquots and stored at −80°C 
for further use in NGS analysis. Virus and bacteria isolation were 
not performed.

2.2 Detection of canine respiratory 
pathogens using one-step multiplex qPCR/
RT-qPCR

Each BHI Broth tube with the swabs was vortexed, spun down, 
and nucleic acid was extracted using the taco™ mini nucleic acid 
automatic extraction system (GeneReach, Taichung, Taiwan) 
following the manufacturer’s recommendations. Nucleic acid was 
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TABLE 1  Signalment of the samples included in this study (n = 50).

Animal number Breed Sex Age State (USA) Date  
received

Clinical signs (if known, duration in days) Treatment (started before 
sample collection)

2318341 Labrador Retriever F 3 Years GA 12/01/2023 Coughing (7) ND

2318397 Lhasa Apso MC 13 Years TX 12/04/2023 Coughing Doxycycline, then trimeprazine with 

prednisolone

2318470 Doberman Pinscher MC 4 Years LA 12/05/2023 Coughing and high respiratory rate, crackles on lung 

auscultation (13)

ND

2318471 Mini Australian Shepherd MC 4 Years TX 12/05/2023 Coughing (44) Doxycycline, then maropitant citrate 

and amoxicillin with clavulanate 

potassium

2318520 German Shepherd F 2 Months CO 12/06/2023 Coughing and nasal discharge (2) ND

2318618 Goldendoodle MC 1 Year LA 12/07/2023 Coughing, white foam, lethargy, harsh lung sounds, bronchitis 

(X-ray) (5–6)

ND

2318777 Boxer MC 20 Months LA 12/11/2023 Coughing and nasal discharge (1) ND

2318794 Terrier mix M 9 Months TX 12/12/2023 Coughing (7–10) ND

2318800 Beagle mix FS 1 Year LA 12/12/2023 Coughing and heavy breathing (7) ND

2318902 Dachshund MC 12 Years CO 12/13/2023 Dry cough, sneezing, nasal discharge, fever, lethargy and increase 

respiratory effort

ND

2318903 Doodle mix MC 1 Year CO 12/13/2023 Coughing, lethargy and clear nasal discharge (42) ND

2318904 Australian Shepherd F 4 Months CO 12/13/2023 Coughing/sneezing (2) ND

2318905 Puggle MC 1 Year CO 12/13/2023 Coughing (3) Doxycycline and hydrocodone

2318906 Shih Tzu Mix FS 4 Years TX 12/13/2023 Signs of respiratory infection (no specific signs indicated upon 

submission)

ND

2319063 Labrador Retriever FS 10 Years LA 12/15/2023 Coughing (42) Doxycycline

2319126 Golden Retriever MC 2 Years LA 12/18/2023 Coughing, sneezing, nasal and ocular discharges (42) Doxycycline

2319134 Black Mouth Cur mix MC 3 Months TX 12/18/2023 Coughing and nasal discharge (1) ND

2319135 Mix M 3 Years LA 12/18/2023 Signs of respiratory infection (no specific signs indicated upon 

submission)

ND

2319218 Giant Schnauzer MC 4 Years CO 12/19/2023 Coughing and nasal discharge (30) ND

2319220 French Bull M 6 Months CO 12/19/2023 Coughing, sneezing and episodes of difficulty breathing (7) Amoxicillin and acide clavulanique

2319305 Mix FS 5 Years LA 12/21/2023 Coughing, lethargy (few days) ND

2319322 Bernese Mountain Dog F 2 Years CO 12/21/2023 Coughing and nasal discharge (12) ND

(Continued)
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(Continued)

TABLE 1  (Continued)

Animal number Breed Sex Age State (USA) Date  
received

Clinical signs (if known, duration in days) Treatment (started before 
sample collection)

2319336 Cocker Spaniel F Unknown TX 12/21/2023 Coughing (13) ND

2319515 Boxer MC 16 Months LA 12/29/2023 Coughing, mucoid nasal discharge and fever ND

2400075 Bernese Mountain Dog M 2 Years LA 01/02/2024 Low appetite, nasal discharge, sneezing, depression Doxycycline and clindamycin

2400135 Pitbull MC 5 Years NE 01/03/2024 Signs of respiratory infection (no specific signs indicated upon 

submission)

ND

2400136 Labrador Retriever M 6 Years CO 01/03/2024 Coughing (1) ND

2400178 Greater Swiss Mountain 

Dog

FS 3 Years LA 01/03/2024 Coughing, lethargy (2) ND

2400265 Labrador mix MC 2 Years TX 01/04/2024 Coughing (14) Doxycycline and prednisone

2400309 Cocker Spaniel FS 9 Years CO 01/05/2024 Coughing, sneezing, increase respiratory effort (1) ND

2400381 Mix MC 10 Years GA 01/08/2024 Coughing (2) ND

2400382 Pitbull M 1 Year TX 01/08/2024 Coughing, clear nasal and ocular discharge (7) ND

2400423 Dachshund F 2 Months CO 01/09/2024 Coughing (2) ND

2400502 Border collie M 3 Years LA 01/09/2024 Sneezing, hacking, mucoid nasal discharge (7) ND

2400833 Poodle mix M 4 Months CO 01/17/2024 Nasal discharge, vomiting, decreased appetite (1) ND

2400897 Staffordshire Bull Terrier 

mix

MC 10 Years CO 01/18/2024 Coughing, difficulty breathing, lethargy, weakness (30) ND

2401225 Cavalier King Charles 

Spaniel

MC 1 Year TX 01/23/2024 Coughing and sneezing (3) ND

2401535 Rhodesian Ridgeback MC 6 Years CO 01/29/2024 Coughing, sneezing, vomiting white foam, difficulty breathing ND

2401536 Bulldog MC 1 Year CO 01/29/2024 Coughing, hacking, lethargy (1) ND

2401770 American Bully M 7 Months AR 2/2/2024 Chronic respiratory disease (no specific signs indicated upon 

submission)

ND

2401814 Pekingese mix FS 3 Years TX 2/2/2024 Coughing, sneezing, White/green nasal discharge, gagging, 

choking (2)

ND

2402033 French Bull MC 13 Years LA 2/6/2024 Signs of respiratory infection (no specific signs indicated upon 

submission)

ND

2402110 German Shepherd MC 12 Years CO 2/7/2024 Coughing ND
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Animal number Breed Sex Age State (USA) Date  
received

Clinical signs (if known, duration in days) Treatment (started before 
sample collection)

2402427 Hound mix N 3 Years LA 2/12/2024 Signs of respiratory infection (no specific signs indicated upon 

submission)

ND

2402508 Boxer F 5 Months TX 2/15/2024 Coughing, labored breathing, mucoid nasal and ocular discharge 

(10)

ND

2402850 Labrador Retriever MC 14 Years TX 2/21/2024 Coughing, dry sneezing (5) ND

2402880-7 Shepherd mix F 11 Months LA 2/20/2024 Signs of respiratory infection (no specific signs indicated upon 

submission)

ND

2402880-5 Shepherd mix M 11 Months LA 2/20/2024 Intermittent Coughing, louder breathing (42) ND

2402880-3 Pitbull mix M 1 Year LA 2/20/2024 Coughing ND

2403404 Bernese Mountain Dog M 3 Years LA 2/29/2024 Upper respiratory tract infection (no specific signs indicated 

upon submission)

ND

F, female; FS; female spayed; M, male; MC, male castrated; ND, Not data available; AR, Arizona; CO, Colorado; GA, Georgia; LA, Louisiana; NE, Nebraska; TX, Texas.

TABLE 1  (Continued)
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extracted from 100 μL of BHI Broth and then eluted in 100 μL of 
elution buffer following the manufacturer’s instructions. The 
extracted nucleic acid from each sample was immediately used in 
multiplex qPCR/RT-qPCR testing, and the remaining nucleic acid 
was archived at −80°C. Routine diagnostic testing was conducted 
using multiplex one-step qPCR/RT-qPCR assays to detect 12 canine 
respiratory pathogens, including CAdV-2, CDV, CaHV-1, CIV, 
CPiV, CPnV, CRCoV, SARS-CoV-2, B. bronchiseptica, M. canis, 
M. cynos, and S. equi subsp. zooepidemicus, as previously described 
(26). Briefly, five μl of template nucleic acid per reaction was mixed 
with the master mix in a final volume of 25 uL reaction and ran on 
a 7,500 Fast Real-Time PCR System (Applied Biosystems, Waltham, 
MA) with the following thermal profile: a reverse transcription step 
(20 min. at 50°C) followed by an initial activation step (15 min. of 
at 95°C) and 40 cycles of denaturation and annealing/extension 
(45 sec. at 94°C and 75 s. at 60°C). The cycle threshold (Ct) cut-off 
for the detection of positive/negative samples was used as previously 
described (26).

2.3 Detection of canine respiratory 
pathogens using next-generation 
sequencing

After nucleic acid extraction for real-time RT-qPCR/qPCR, the 
remaining BHI Broth samples were aliquoted (approximately 500 μL 
per vial) and stored at −80°C. Approximately 500 μL of the frozen 
archived samples were shipped on dry ice to the Animal Health and 
Diagnostic Center (AHDC) at Cornell University, NY, a leading NGS 
laboratory for NGS as previously described (41). The NGS protocol 
applied was specifically optimized for virus detection and was used 
here exclusively for research purposes, rather than routine diagnostic 
testing. Upon receipt, samples were subjected to an enzymatic cocktail 
treatment composed of 10 × DNase I buffer, DNase I, Turbo DNase, 
RNase Cocktail™ (Thermo Fisher Scientific, Waltham, MA), Baseline-
ZERO DNase (Lucigen, Middleton, WI), Benzonase (Sigma-Aldrich, 
Saint-Louis, MO) and RNase ONE™ Ribonuclease (Promega, 
Madison, WI) to deplete host and bacterial nucleic acids. Additionally, 
Mengovirus strain vMC0 (Mengo Extraction control kit, bioMérieux, 
Marcy-l’Étoile, France) was added to each sample at a concentration 
of 2.17 × 106 copies/ml, serving as an exogenous internal control for 
the NGS sample preparation, library preparation, and sequencing 
reactions (42). The enzyme cocktail, Mengovirus, and sample mixture 
were incubated for 90 min at 37°C. After enzymatic treatment, nucleic 
acid extraction was performed using the QIAamp® MinElute® Virus 
Spin Kit (Qiagen, Hilden, Germany). Purified nucleic acids were 
subjected to sequence-independent, single-primer amplification 
(SISPA) procedures modified from a previously reported protocol 
(43). In brief, 11 μL of nucleic acids were used in a reverse transcription 
reaction with 100 pmol of primer FR20RV-12 N (5′-GCCGGAGCTC 
TGCAGATATCNNNNNNNNNNNN-3′) using SuperScript™ IV 
reverse transcriptase (Thermo Fisher Scientific), followed by second-
strand synthesis using the Klenow Fragment of DNA polymerase 
(New England Biolabs, Ipswich, MA) with primer FR20RV-12 N at 
10 pmol. After purification using Agencourt AMPure XP beads 
(Beckman Coulter, Brea, CA), SISPA PCR amplification was 
conducted with TaKaRa Taq DNA Polymerase (Takara, Kusatsu, 
Japan) using the primer FR20RV (5′-GCCGGAGCTCTG 

CAGATATC-3′) at 10 pmol. Sequencing libraries were prepared using 
143 ng of double-stranded DNA as input to the SQK-LSK109 kit and 
barcoded individually using the EXP-NBD196 Native barcodes 
(Oxford Nanopore Technologies (ONT), Oxford, United Kingdom). 
The sequencing was performed on the FLO-MIN106 MinION flow 
cell r9.4.1 using the GridION Sequencer (ONT). High-accuracy base 
calling was performed by the GridION with the parameters 
“--require_barcodes_both_ends” and “--detect_mid_strand_
barcodes.” Fastq reads were then filtered by size and quality using 
Chopper (44), host-removed using NanoLyse (45), and classified using 
Kraken (v2.1.0) (46, 47) followed by relative abundance estimation 
using Bracken. Bioinformatics data analysis was performed using 
Base2Bio (Oshkosh, WI).

2.4 Detection of vientovirus by standard 
PCR and phylogenetic analysis

The presence of the vientovirus in original clinical sample was 
confirmed by two distinct PCR assays targeting capsid (Cap) and the 
replicative (Rep) open reading frames in a total volume of 25 μL 
containing 12.5 μL of AccuStart II PCR ToughMix (2X) (Quantabio, 
Beverly, MS), 2.5 μL of a forward and reverse primer mix (5 μM; F_
Cap: GATATGCATCAAGAAAGAGAGTTTATCG; R_Cap: 
ATTCTTAACACCTTTGCCAGAAATC; F_Rev: CCGTCTAGTA 
ATCTGAGGAGGA; R_Rev: TGTGGTTTCATGGAGATACAGG), 
5 μL of nuclease-free water and 5 μL of DNA template. Thermal 
cycling was performed on a Mastercycler® × 50 – PCR Thermocycler 
(Eppendorf, Hamburg, Germany) using the following conditions: an 
initial denaturation step (3 min. at 94°C) and 40 cycles of denaturation, 
annealing, and extension (30 s. at 94°C, 30 s. at 60°C, 30 s. at 70°C). 
The PCR products were analyzed by gel electrophoresis on a 1% 
agarose gel (ThermoFisher Scientific, Waltham, MA), and the 
expected band sizes were as follows: Cap: 200 bp; Rev.: 218 bp. The 
PCR products were submitted for Sanger sequencing to Eurofins 
Genomics (Louisville, KY).

3 Results

3.1 Clinical history

A total of 50 pooled nasal and oropharyngeal swab samples from 
dogs with respiratory illness were submitted to LSU Diagnostic 
Laboratory—24 in December 2023, 15 in January 2024, and 11 in 
February 2024 (Table 1). Out of the 50 samples, 35 were collected from 
male (70%) and 15 were collected from female (30%) dogs. The age 
ranged from 2 months to 13 years (average = 3.8 years). Samples were 
received from six states, including Arizona (AR; n = 1), Colorado 
(CO; n = 16), Georgia (GA; n = 2), Louisiana (LA; n = 18), Nebraska 
(NE; n = 1), and Texas (TX; n = 12). Among the clinical signs reported 
by the veterinarians, coughing was the most prevalent (n = 39; 78%), 
followed by nasal and ocular discharges (n = 15; 30%), sneezing 
(n = 11; 22%), lethargy (n = 7; 14%) and high respiratory rate/heavy 
breathing (n = 7; 14%). Other clinical signs, including fever (n = 2; 
4%), vomiting (n = 2; 4%), decreased appetite (n = 2; 4%), choking 
(n = 2; 4%), hacking (n = 2; 4%) and weakness (n = 1; 2%) were also 
reported. For six of the dogs, signs of respiratory infection were 
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indicated, but no specific signs were provided in the submission 
forms. Clinical signs were reported up to 44 days before specimens 
were collected (Interquartile range [IQR] = 11).

3.2 Pathogen identification using multiplex 
qPCR/RT-qPCR assays

Thirty samples (60%) were positive for at least one of the tested 
pathogens, while twenty samples (40%) were negative (Table 2). Eight 
different pathogens were detected, including M. canis (n = 20; 40%), 
M. cynos (n = 9; 18%), CRCoV (n = 3; 6%), CPiV (n = 3; 6%), 
B. bronchiseptica (n = 3; 6%), CAdV-2 (n = 1; 2%), CaHV-1 (n = 1; 
2%) and CDV (n = 1; 2%). Eight samples were positive for more than 
one pathogen, including seven positive samples for two pathogens 
(CRCoV and M. canis [n = 2], CPiV and M. canis [n = 2], M. cynos 
and M. canis [n = 3]) and one sample positive for five pathogens 
(CDV, CRCoV, CaHV-1, B. bronchiseptica, and M. canis). M. canis was 
detected in all the samples where more than a single pathogen 
was identified.

3.3 Pathogen identification using 
next-generation sequencing

NGS results matched those of qPCR/RT-qPCR in forty-one 
samples (82%), while discrepancies were noted in nine samples 
(18%) (Table 2). Among these, one sample was positive for M. cynos 
by qPCR, but M. canis was identified by NGS, and another sample 
was positive for M. canis by qPCR, while both M. canis and M. cynos 
were identified by NGS. In the remaining seven specimens with 
discrepancies, NGS did not detect B. bronchiseptica, M. canis, and 
CAdV-2, while qPCR/RT-qPCR did. Importantly, NGS identified 
canine calicivirus (n = 2) and canine circovirus (n = 2), two viruses 
that were not included in the multiplex qPCR/RT-PCR panel. Both 
canine calicivirus-positive samples and one of the canine circovirus-
positive samples were also positive for M. canis, while the second 
circovirus-positive sample tested positive for M. cynos. Additionally, 
vientovirus was identified in one sample collected from a dog that 
presented with coughing, difficulty breathing, lethargy, and 
weakness for 30 days, with the sample tested being collected at that 
timepoint. No other pathogens were detected in this specimen. The 
specimens that yielded contradicting results with multiplex qPCR/
RT-qPCR versus NGS were retested to confirm the validity of the 
test results. As expected, the results remained unchanged in repeat 
testing and NGS. Finally, in 18 (36%) of the samples, no pathogens 
were detected by either multiplex real-time qPCR/RT-qPCR 
or by NGS.

3.4 Confirmation of vientovirus DNA by 
standard PCR and phylogenetic analysis of 
capsid and replicative genes

To confirm the presence of vientovirus DNA in sample 2,400,897, 
two specific PCR assays targeting the capsid (Cap) and replicative 
(Rep) genes were developed based on the full-genome sequence 
obtained by NGS and the sequence was deposited in GenBank 

(Vientovirus/USA/CO/2024/2400897; GenBank accession #: 
PQ450187). These assays detected vientovirus in the original specimen 
but not in any other samples (Supplementary Figure 1A) and were 
further validated by Sanger sequencing. Phylogenetic analysis showed 
high similarity to known vientovirus isolates 
(Supplementary Figures  1B,C). To rule out human DNA 
contamination, species-level classification of 500 raw reads revealed 
that over 60% aligned with Canis lupus familiaris, 0.51% corresponded 
to the human oral-associated vientovirus AV, and only 0.25% mapped 
to human DNA (Supplementary Figure 1D).

4 Discussion

CIRDC is a complex infectious disease in dogs, attributable to 
single or synergistic actions of diverse viral and bacterial agents (1, 
23). A rapid detection of the implicated pathogens is important to 
provide the most appropriate treatment strategy and implement 
proper biosecurity measures to prevent the spread of respiratory 
infections. Moreover, the detection of emerging pathogens is essential 
to understand their epidemiology and to inform owners and public 
health officials. An increase in the number of CIRDC cases in the US 
was perceived in late 2023 and was relayed by several public news 
outlets (36–39). Between December 2023 and February 2024, 50 nasal 
and nasopharyngeal swab specimens were collected from dogs 
experiencing respiratory disease and submitted for diagnostic testing 
to LSU Diagnostics. These samples were tested for common canine 
respiratory pathogens by multiplex qPCR/RT-qPCR and by NGS to 
attempt the identification of potential emerging pathogens.

When considering both qPCR/RT-qPCR and NGS results, 32 
samples (64%) were positive for one pathogen known or suspected to 
induce respiratory infections in dogs. M. canis and M. cynos are the 
most common pathogens identified from CIRDC dogs, which is 
consistent with previous findings (24, 26, 34). Additionally, cases of 
CRCoV, CPiV, and B. bronchiseptica were reported, aligning with 
earlier reports (23, 48). The use of NGS has the advantage of allowing 
the identification of pathogens not included in the qPCR/RT-qPCR 
diagnostic panels. Here, canine calicivirus, canine circovirus and, for 
the first time, vientovirus (family: Redondoviridae) were detected in 
dogs with CIRDC. Canine calicivirus (CaCV) is an unclassified virus 
in the family Caliciviridae. CaCV was isolated and characterized for 
the first time in 1985 from the feces of a diarrheic dog in the US (49). 
Clinical signs induced by CaCV are diverse and range from the 
absence of clinical signs to severe diseases characterized by bloody 
diarrhea, hemorrhagic gastroenteritis, vomiting, and depression (20). 
However, CaCV has not been detected in respiratory tract specimens 
before. Additionally, experimentally infected dogs with different 
strains of CaCV failed to induce respiratory clinical signs (20, 49). 
Canine circovirus (species: Circovirus canine; genus: Circovirus; 
family: Circoviridae) was detected for the first time in 2011 in the 
serum of healthy dogs (50). The pathogenicity of canine circovirus is 
currently poorly understood, with the virus being mainly detected in 
fecal samples. Canine circovirus infection has been associated with 
clinical profiles of acute gastroenteritis, hemorrhagic diarrhea, signs 
of vasculitis, lymphadenitis, thrombocytopenia, neutropenia, and 
lymphopenia (51). Canine circovirus has also been associated with 
respiratory signs in dogs such as dyspnea, nasal discharge, cough, or 
rales (52). However, the virus has also been detected in samples of 
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TABLE 2  Detection of viral and bacterial agents in samples collected from dogs with respiratory disorders using NGS and qPCR/RT-qPCR.

Animal number AHDC NGS virala AHDC NGS bacterialb LADDL qPCR/RT-qPCR

2318341 ND ND M. canis

2318520 Canine calicivirus (0.98) M. canis (0.28) M. canis

2318618 ND M. canis (0.37) M. canis

2318777 Canine calicivirus (1.31) ND M. canis

2318800 ND ND M. canis

2318904 ND M. canis (0.016) M. canis

2318906 ND M. canis (0.06) M. canis

2319063 ND ND B. bronchiseptica

2319126 ND M. canis (0.36) M. cynos

2319134 ND M. cynos (0.05) M. cynos

2319220 ND M. canis (1.50)

M. cynos (0.32)

M. canis

2319322 ND M. canis (0.19) M. canis

2319336 ND M. canis (0.56) M. canis

2319515 CRCoV (9.25) M. canis (0.05) CRCoV

M. canis

2400075 ND M. cynos (4.2) M. cynos

2400136 CPiV (0.47) ND CPiV

2400178 ND ND CAdV-2

2400382 CRCoV (2.89) ND CRCoV

M. canis

2400423 CPiV (0.02) M. canis (0.35) CPiV

M. canis

2400502 ND ND B. bronchispetica

2400833 ND M. cynos (8.1) M. canis

M. cynos

2400897 Human oral-associated vientovirus (4.52) ND ND

2401225 ND M. canis (0.69) M. canis

2401536 Canine circovirus (0.08) ND M. canis

2401770 CRCoV (17.99)

CaHV-1 (2.46)

CDV (0.37)

B. bronchiseptica (7.23)

M. canis (2.1)

CRCoV

CaHV-1

CDV

B. bronchiseptica

M. canis

2401814 ND M. canis (0.8)

M. cynos (0.2)

M. canis

M. cynos

2402427 CPiV (8.47) M. canis (0.14) CPiV

M. canis

2402508 Canine circovirus (0.16) M. canis (0.03)

M. cynos (24.00)

M. canis

M. cynos

2402850 ND M. canis (0.006) M. canis

2402880-7 ND M. cynos (0.002) M. cynos

2402880-5 ND M. cynos (0.95) M. cynos

2402880-3 ND M. cynos (1.2) M. cynos

Specimens collected from animals 2,318,397, 2,318,470, 2,318,471, 2,318,794, 2,318,902, 2,318,903, 2,318,905, 2,319,135, 2,319,218, 2,319,305, 2,400,135, 2,400,265, 2,400,309, 2,400,381, 
2,401,535, 2,402,033, 2,402,110, and 243,404 were negative for viral and bacterial agents related to respiratory infection by NGS and qPCR/RT-qPCR. AHDC, Animal Health and Diagnostic 
Center, Cornell University; LADDL, Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University; ND, Not detected; NGS, Next Generation Sequencing.
aPercentage of reads classified.
bRelative abundance.
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asymptomatic dogs, so its role in clinical disease and its pathogenesis 
is not clearly defined. It is interesting to note that M. canis, which is 
commonly found in the respiratory tract of healthy dogs, was detected 
in all samples that tested positive for CaCV and canine circovirus. 
Although it is not yet clear whether M. canis contributes to secondary 
infections in the upper airways, it is generally considered a commensal 
or opportunistic cofactor in respiratory and urogenital tract diseases 
in dogs (15). In this study, vientovirus DNA was found in a nasal/
pharyngeal swab from one dog with prolonged respiratory illness 
(30 days) with no other detectable pathogens. Vientovirus (Torbevirus 
viento), a member of the Redondoviridae family (53), has so far been 
identified only in human respiratory samples through metagenomics, 
with no confirmed detection in animals (such as pigs, chickens, ducks, 
and dogs) or the environment (freshwater, marine environments, or 
soil) (54, 55). The transmission of this virus from humans to animals 
or animals to humans has not yet been demonstrated. Although prior 
infection with common respiratory agents cannot be ruled out for the 
dog positive for vientovirus DNA, the relevance of this virus to the 
clinical signs remains uncertain. Both NGS and PCR confirmed its 
detection. However, sample collection occurred late in the illness, and 
no other samples were found to be  positive. While human DNA 
contamination was considered, it is unlikely due to the low human 
read counts and the inability to detect this virus in other specimens, 
simultaneously processed and tested by the same technicians. 
However, the detected viral sequence showed greater than 90% 
similarity to human-associated strains. Without supporting 
pathological or serological data, the role of the vientovirus virus in 
canine disease remains unclear.

Our results indicate that dogs from different states were infected 
with several known canine pathogens during the winter of 2023–2024, 
originating from six states in the US. Previously, studies have focused 
on detecting the nasal virome in dogs, which identified similar 
pathogens, including a novel Taupapillomavirus (CPV21–23) (56). 
Similarly, studies have focused on identifying and comparing the 
canine microbiome, which has revealed numerous bacterial taxa (57). 
It is important to highlight that the NGS protocol employed in this 
study was specifically optimized for viral detection, showing 
concordant results with the multiplex qPCR/RT-qPCR. Although the 
NGS protocol was not optimized for bacterial identification, it was 
applied for this purpose, which may partly explain the differences 
observed between the two methods in detecting bacterial pathogens, 
particularly the reduced bacterial detection by NGS. The nucleic acid 
extraction method, which includes a step to deplete host nucleic acids, 
may have contributed to the failure to detect certain bacteria. While 
our findings highlight several pathogens detected during the outbreak, 
it is important to consider factors that may influence diagnostic test 
results and the interpretation of negative findings. The quality of test 
results depends on the timely collection of appropriate samples during 
the infection. A negative qPCR/RT-qPCR or NGS test result means 
that the target virus or bacteria were not detected in the specimen. 
This could be due to the sample being collected too early or too late in 
the course of infection, resulting in insufficient target DNA or RNA 
for detection, or because no infection was present. In this study, 38% 
of the samples yielded negative results. The absence of pathogen 
identification in these cases could be attributed to several factors, 
including, but not limited to, lower respiratory tract infections, nucleic 
acids depletion techniques used during samples preparation for NGS 
(i.e., specific for bacteria detection), pathogen clearance before sample 

collection, antibiotic treatment by veterinarians, or non-infectious 
causes that the attending veterinarians may have considered. Based on 
available information, antibiotic treatment had been initiated in eight 
dogs before sample collection, which may have influenced the results 
by reducing the detectability of primary bacterial pathogens at the 
time of sampling. Follow-up was not possible for these cases, which 
limited the ability to gather additional clinical data or repeat testing to 
clarify the etiology of illness. Further investigation into the other 
respiratory causes of these negative cases could provide valuable 
insights and may be an important area for future research. Given the 
limited number of samples available during the Winter 2023–2024 
outbreak (n = 50), it is essential to note that the relatively small sample 
size does not represent the overall US canine population, and the 
findings of this study should be considered exploratory. Nevertheless, 
the results provide valuable preliminary insights that may inform 
future, larger-scale investigations into CIRDC-associated pathogens. 
Additionally, the vaccine status of these animals was unknown. For 
these reasons, the association of other known or new respiratory 
pathogens in CIRDC cases across the country cannot be ruled out. 
Finally, nasal and pharyngeal swabs were pooled together before 
performing the diagnostic assays; therefore, the comparison of the two 
collection methods was not possible in this study. The SISPA method 
is a valuable tool for viral and bacterial metagenomic studies (58–60); 
however, like other NGS methods, it has limitations that affect its 
sensitivity. A key challenge is the requirement for high viral loads for 
adequate amplification, as lower concentrations lead to non-specific 
products and poor genome recovery. SISPA is also prone to 
amplification biases, frequently resulting in incomplete viral genome 
assemblies, particularly when viral titers are low (61). Additionally, 
background contamination from host nucleic acids can reduce 
sensitivity, necessitating stringent preprocessing and 
enrichment strategies.

While Mycoplasma species were detected at a high rate in these 
samples, we believe it is unlikely that they were the primary pathogen 
responsible for the outbreak. Instead, it may have acted as a secondary 
pathogen, contributing to the overall disease burden. Future studies 
focusing on viral and bacterial co-infections, as well as the timing of 
pathogen detection relative to clinical signs, would be valuable in 
further elucidating the role of Mycoplasma in CIRDC.

In summary, our results suggest that the increase in CIRDC cases 
observed in the winter of 2023–2024 is unlikely to be attributed to a 
single pathogen or the emergence of a novel viral or bacterial 
pathogen. No conclusive evidence of a new causative agent was 
identified in this study.
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