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Oviduct represents the original place of fertilisation and early embryo development 
in all the domestic animals. In past time it has been considered a mere channel but 
new reproductive biotechnology approaches suggested the need of structurally 
and functionally efficient oviductal environment for in vitro embryo production. 
Recreating the oviductal microenvironment in IVP systems represents a paradigm 
shift in reproductive biotechnology. By incorporating reproductive fluids and 
utilising advanced 3D culture models could be reduced adverse IVP outcomes, 
and bring assisted reproduction closer to its natural counterpart.
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The oviduct: more than a mere channel

In vitro embryo production (IVP) technologies often fail to fully replicate the highly 
dynamic and selective environment of the oviduct, leading to suboptimal outcomes such as 
reduced embryo quality and developmental anomalies. Can mimicking the oviductal 
microenvironment resolve these limitations and improve success rates? To answer this 
question, it is essential to first understand the complex physiological and anatomical 
characteristics of the oviduct that support natural fertilization and early embryonic 
development. The oviduct, also known as the salpinx or Fallopian tube in humans, is a highly 
specialized reproductive organ essential for fertilization and early embryo development. 
Previously considered a simple conduit for gamete transport, it is now recognized for its 
crucial roles in sperm selection, capacitation, fertilization, and early embryonic support (1–3).

Anatomically, the oviduct consists of distinct regions. The uterine-tubal junction (UTJ) 
acts as a selective barrier, allowing capacitated spermatozoa with specific surface markers, such 
as members of ADAMs (a disintegrin and metalloprotease) protein family, particularly 
ADAM3 to pass through, thereby ensuring optimal fertilization to occur (4–7). The isthmus 
serves as a sperm reservoir and a site for capacitation. The ampulla is the primary site of 
fertilization, where gamete fusion occurs. The infundibulum captures the ovulated oocyte via 
fimbriae and directs it into the oviduct. These regions exhibit specialized structures that 
optimize reproductive processes. The isthmus’s narrow, convoluted structure facilitates sperm 
storage, while the ampulla’s wider lumen and folded mucosa create an ideal environment for 
fertilization and early embryonic development (1, 2). These region-specific adaptations raise 
the question: what if such in  vivo conditions could be  replicated in  vitro to improve 
embryo quality?

This mini-review aims to summarize the key structural and functional features of the 
oviduct, highlight the limitations and pathological consequences of current IVP protocols, and 
discuss emerging strategies that aim to mimic in vivo conditions through the integration of 
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reproductive fluids (RFs), extracellular vesicles (EVs), and three 
dimensional (3D) culture systems. The reviewed literature includes 
studies conducted on humans, livestock species (primarily bovine and 
porcine), and laboratory animals (notably mice and rabbits). The 
relevance and limitations of animal models in representing human 
reproductive processes are also briefly addressed.

Oviductal cells and their functions

The oviductal epithelium consists of ciliated cells and secretory 
cells. Ciliated cells play a pivotal role in gamete transport by generating 
directional flow through rhythmic ciliary beating. This motility is 
tightly regulated by hormonal cues: estrogen significantly enhances 
ciliary beat frequency and promotes ciliogenesis, while progesterone 
downregulates this activity during the luteal phase (8). In parallel, 
estrogen also stimulates the proliferation and activity of secretory 
cells, increasing the synthesis and release of oviductal fluid (OF), 
which provides biochemical support for sperm capacitation, 
fertilization, and early embryo development. The composition of OF 
dynamically changes in response to ovarian signals, mainly steroids 
such as 17 beta-estradiol (E2) and progesterone (P4), and uterine 
signals; in fact the vascular supply of the oviduct, via ovarian and 
uterine arteries, ensures communication between oviduct, ovary, and 
uterus through exchanging of metabolites, hormones and signaling 
molecules, modulating the reproductive microenvironment (9, 10).

Oviductal fluid: a crucial medium for 
gametes and embryo

Oviductal fluid is a complex biochemical medium containing 
nutrients, enzymes, hormones, and signaling molecules (3, 11). Its 
movement is governed by the activity of the secretory cells, 
predominantly in the isthmus, ciliary beating, and oviductal peristalsis. 
These movements are not only mechanical but also under precise 
hormonal regulation. The release of oviductal fluid is hormonally 
regulated estrogen enhances the activity of secretory and ciliated cells, 
promoting fluid production and ciliary beating, while progesterone 
generally downregulates secretion during the luteal phase. Estrogen and 
progesterone influence oviductal peristalsis and fluid dynamics, which 
in turn facilitate gamete interaction and synchronize embryo transport 
with uterine implantation window (4, 12–16). Prior to fertilization, OF 
undergoes key modifications that facilitate gamete interaction and 
fertilization. Changes in viscosity regulate sperm motility, while the 
release of chemotactic agents guides sperm toward the oocyte. Viscosity 
greatly influences the chemotaxis of sperm in the oviduct by altering 
their motility and facilitating navigation through viscous fluids. Sperm 
exhibit increased linear and progressive movements in high-viscous 
fluid compared to the low viscosity environments. The interplay between 
change of viscosity, flow (rheotaxis) and temperature (thermotaxis) 
seem to enhance the energetic efficiency sperm motility (3). 
Thermotaxis, which relies on temperature gradients, aids sperm 
migration to the ampulla (9). Polyspermy is regulated through zona 
pellucida modifications (cortical/zona reaction) and the release of 
repellent-like molecules (i.e., osteopontin) immediately after fertilization 
by the oviduct. Emerging studies highlight the impact of OF on 
epigenetic modulation, potentially mitigating IVP-associated anomalies 

(1, 17). Addressing these challenges requires media formulations that 
are dynamic and customized to each developmental stage, possibly using 
bioengineered substrates and time-controlled factor release systems.

Negative outcomes of IVP: the need for 
more natural conditions

Despite technological advancements, IVP techniques such as 
ovum pick-up (OPU) and intracytoplasmic sperm injection (ICSI) still 
struggle to match natural fertilization success rates (18–21). Common 
negative outcomes include large offspring syndrome (LOS), which is 
characterized by macrosomia, dystocia, prolonged gestation, and 
congenital abnormalities and is due to perturbation of the environment 
the embryo has to face with (18, 22, 23). One of the main known 
environmental disruptors is serum, accelerating embryo development 
and increasing the number of blastocysts produced but reducing their 
quality (23–25). Metabolic dysregulation is another concern, leading 
to altered glucose metabolism, increased systolic blood pressure, and 
higher adiposity (26, 27). Epigenetic alterations are also observed, 
causing deviations in gene expression that affect long-term health (22, 
28). Bovine LOS, analogous to Beckwith-Wiedemann syndrome in 
humans, underscores the importance of optimizing IVP conditions to 
minimize epigenetic disruptions (17, 28). During the IVP there is the 
need of a continuous equilibrium, if developmental speed is prioritized 
the embryo’s quality will be affected (Figure 1). In future research, 
reducing reliance on serum-based media and developing dynamic, 
stage-specific alternatives may improve outcomes.

Mimicking in vivo conditions: the role of 
reproductive fluids and organoids

To enhance in vitro production (IVP) outcomes, researchers are 
exploring the addition of reproductive fluids to IVP media to improve 
embryo viability and reduce aberrant growth patterns (29). Mimicking 
natural conditions in in vitro cultured systems is a key factor to obtain 
high-quality embryos. This can be achieved by supplementing the 
culture media with different nutritive factors (such as proteins) or by 
co-culturing embryos with oviductal epithelial cells, which has 
demonstrated beneficial effects on embryo development (30).

To better resemble the natural environment of the embryo, 
reproductive fluids (RFs), such as oviductal fluid (OF) and uterine 
fluid (UF), have been added to in vitro systems. At low concentrations, 
RFs support embryo development and improve quality: OF has been 
shown to enhance embryo cryotolerance and upregulate the 
expression of development-related genes, while UF exhibits 
antioxidant properties (24, 31, 32). However, higher concentrations 
may exert dose-dependent adverse effects.

RF supplementation aims to reproduce the complex maternal-
conceptus communication that occurs in vivo, which involves multiple 
“omics” pathways, paracrine/autocrine signals, and stage-specific 
molecular cues. These interactions are dynamically influenced by the 
presence of gametes and embryos and evolve throughout development 
(33–35). Therefore, the culture medium must be tailored to match the 
changing needs of the developing embryo.

Recent attention has also focused on extracellular vesicles (EVs) 
found within RFs. EVs differ between oviductal regions and act as 

https://doi.org/10.3389/fvets.2025.1617740
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Dalle Palle et al.� 10.3389/fvets.2025.1617740

Frontiers in Veterinary Science 03 frontiersin.org

key messengers in embryo–maternal communication. Studies 
suggest that supplementing in vitro culture systems with OF-derived 
EVs can enhance embryo quality and/or development by 
influencing, among other, gene expression and lipid metabolism 
(25, 36).

Additionally, mimicking natural mechanical stimulation in the 
oviduct is gaining interest. Innovative culture systems that simulate 
physical forces using tilting platforms, microfluidics, vibration 
systems, or soft substrate materials have shown promise in replicating 
the biomechanical environment of the oviduct (35).

A summary of these approaches is presented in Table 1.

Advancements in 3D culture systems

Unlike 2D cultures, which rapidly lose cellular differentiation and 
function, 3D cultures maintain essential characteristics such as 
polarity, ciliary activity, and secretory function resembling in vivo 
conditions (9). Embryonic development is enhanced with improved 
blastocyst formation rates and a more favorable inner cell mass to 
trophectoderm ratio (37). Organoids are composed of key 
components, including adult stem cells (ASCs) or induced pluripotent 
stem cells (iPSCs), an extracellular matrix (ECM) that provides 
structural support, and growth factors that maintain cellular 
differentiation and function (38). Future directions in this field include 
3D bioprinting to recreate oviductal microstructures and the use of 
microfluidic systems to simulate dynamic hormonal and gamete 
interactions (39). For instance, Belda-Perez et al. (37) demonstrated 
that 3D-printed culture materials can improve the performance and 
biocompatibility of in vitro embryo development systems.

Challenges and limitations

Current models cannot fully mimic complex parameters such as 
sperm selection by uterine-tubal junction (UTJ), time-dependent EV 
changes, or dynamic hormonal fluctuations. Ethical and biosafety 
implications are underdeveloped: potential risks include 
immunological reactions and regulatory concerns related to using 
biological fluids or stem-cell derived structures in vitro.

Translational models

A table summarizing the current advances per species (see 
Table 2) has been provided to highlight translational opportunities. 
Ethical frameworks and cost–benefit analyses will be  essential to 
transition these innovations from laboratory settings to routine 
clinical or production applications.

Integration with artificial intelligence (AI)

Many types of AI models have been proposed for the optimization 
of in vitro embryo productions. Despite the undoubtable value of the 
algorithms created to reduce the subjectivity of embryo assessment, 
shortening the training curve for new embryologists, and improving 
consistency across practitioners not yet shared AI models are available. 
To validate the performance of an AI model in a clinical context and 
to reveal any improvements over current practices are necessary 
randomized controlled trials (40–42).

Conclusion

Recreating the oviductal microenvironment in in vitro production 
(IVP) systems represents a major advancement in reproductive 
biotechnology. However, calling it a “paradigm shift” requires further 
substantiation—perhaps in reference to changing how future embryo 
technologies are conceptualized and regulated. To bring assisted 
reproduction closer to its natural counterpart, future research should 

FIGURE 1

Impact of accelerated in vitro conditions on embryo quality: a developmental trade-off. As shown, during the IVP there is the need of a continuous 
equilibrium, if developmental speed is prioritized the embryo’s quality will be affected.

TABLE 1  Comparative evaluation of biomimetic strategies for enhancing 
IVP outcomes.

Approach Advantages Limitations

RF Supplementation Enhances cryotolerance, gene 

expression

Dose-dependent adverse 

effects

EV Addition Supports communication, 

improves quality

Media-dependent 

efficacy

Microfluidics Replicates mechanical cues Technically complex
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prioritize the standardization of reproductive fluid supplementation 
(25), scalable organoid systems (38), and the validation of microfluidic 
technologies under field conditions (17, 37).

To date, the integration of biophysical cues, molecular signals, and 
cellular architecture in IVP remains fragmented. Coordinated multi-
disciplinary efforts are needed to create fully biomimetic systems that 
reflect the temporal and spatial complexity of the 
oviductal environment.

In addition, creating species-specific protocols and cross-
comparison models using data from bovine, porcine, rabbit, and 
human studies will be critical to fine-tuning these technologies.
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