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Advance on establishment of 
pathological model of ulcerative 
colitis
Lan Yang †, Han Gao † and Dacheng Liu *

College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China

Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative 
colitis (UC), is a chronic, relapsing inflammatory disorder of the gastrointestinal 
tract with multifactorial etiology. The etiology and pathogenesis of ulcerative colitis 
are diverse, so it is crucial to explore the pathogenesis through animal models. 
Selecting appropriate animal models is critical for advancing our understanding 
of UC pathogenesis and therapeutic strategies. This review discusses various UC 
animal models and compares their characteristics in relation to disease mechanisms 
and therapeutic research.
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Introduction

Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that typically begins 
in the rectum and progresses proximally in a continuous pattern, affecting the mucosal layer 
of the colon (1). Patients usually present with abdominal pain, diarrhea, and bloody stools, 
with the latter being a hallmark of UC. The development of appropriate animal models is 
essential to understand the pathogenesis of UC and evaluate new treatments.

Exploration of the pathogenesis of disease

Experimental models of ulcerative colitis can simulate the development and progression 
process of the disease, enable detailed investigation of the role and interrelationship of immune 
response, intestinal microbiota, genetic susceptibility and environmental factors in the 
pathogenesis of UC. For example, dextran sulfate sodium DSS—induced UC models allow 
researchers to study pathological changes in intestinal tissue and cytokine responses to better 
understand mucosal barrier disruption and inflammatory activation (1, 2). The 
neurotransmitters secreted by intestinal neurons, such as 5-hydroxytryptamine, also modulate 
mucosal barrier function and contribute to gut inflammation (3).

Facilitating drug development

The animal models of ulcerative colitis can be constructed to provide an effective platform 
for drug development, which can be used to test the efficacy and safety of various new drugs, 
accelerating the drug development process, and improving the success rate of development. 
For example, a model of ulcerative colitis established by a team from Kyoto University in Japan 
using human induced pluripotent stem cell-derived colonoid organs provides a promising 
platform for testing therapeutics such as tofacitinib (4).
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Toward precision medicine

Different animals or patients with ulcerative colitis may have 
individual differences. Animal models can simulate distinct UC 
subtypes and disease stages, offering valuable insights for designing 
personalized treatment strategies. This approach supports the 
development of precision medicine aimed at improving treatment 
efficacy and patient prognosis.

Pathogenesis of ulcerative colitis

Environmental factors

In some developed countries, the incidence of UC has shown a 
significant increasing trend, which may indicate that environmental 
triggers are an important influencing factor in the development of 
UC (5). Lifestyle changes, dietary inconsistencies, and use of certain 
medications such as nonsteroidal antiinflammatory drugs (NSAIDs) 
and antibiotics are considered contributing factors to UC (6). 
Interestingly, smoking has been observed to reduce the incidence of 
UC, possibly due to the effects of carbon monoxide and nicotine on 
mucosal immune responses (7). In addition, there is evidence that the 
pathogenic factors of IBD show a clear negative correlation with 
breastfeeding methods, reproduction modes, and individual animal 
factors (8).

Gut microbiota

The gut microbiome is a relatively complex community that 
lives in symbiosis with its host in the gastrointestinal tract. The 
development of multiple diseases may be associated with dysbiosis 
of the gut microbiome. For example, dysbiosis of the gut microbiota 
can damage the intestinal mucosal barrier, disrupting intestinal 
permeability, enabling pathogenic microorganisms to exert 
inflammatory effects through the barrier, and thus leading to the 
development of UC. Moreover, an imbalance in the gut microbiota 
can cause some harmful bacteria to proliferate massively. This has 
been linked to chronic inflammation and the release of 
pro-inflammatory factors, increasing the risk of developing 
UC. For patients with UC, the most striking change is an imbalance 
in the gut microbiota, characterized by a decrease in the abundance 
of Firmicutes and Bacteroidetes (9). In patients with UC, the 
damage of the intestinal mucosal layer causes bacterial invasion of 
the submucosa and massive proliferation of bacteria in the 
submucosa, leading to inflammation (10, 11). The inflammation 
results in further damage to the mucosal layer of the intestinal wall, 
more bacteria invade and cause the submucosal layer to rupture, 
producing a vicious cycle (10). The Human Microbiome Project 
found that the levels of short chain fatty acids (SCFAs), 
Ruminococcaceae and Lachnospiraceae in the gut of UC patients 
was markedly reduced, and the abundance of pro-inflammatory 
microorganisms, such as Enterobacteriaceae, was significantly 
increased (12, 13). Therefore, the imbalance of gut microbiota is a 
major influencing factor in the development of UC.

Genetic factors

While genetic susceptibility contributes to UC development, no 
single mutation fully accounts for disease onset, as the recombinant 
protein IL23 receptor (IL23R), the intracellular receptor NOD2 and 
the leukocyte antigen HLA have the strongest genetic effects (14). 
Relevant studies have shown that the development of UC is associated 
with genetic susceptibility, and the incidence of relatives and twins of 
UC patients is significantly higher than that of other normal 
population. These studies have helped us to better understand the 
pathogenesis of UC. Mayberry and other scholars found in 1980 that 
the children and siblings of UC patients had a 30-fold higher risk of 
developing UC later compared with normal people (15). Monsén et al. 
(16) also found a significantly higher incidence of UC in immediate 
family members of UC patients compared with the others in their 
families. To explore the genetic factors of UC, a genome-wide 
association study (GWAS) or meta-analysis was performed to 
formulate relevant immunoarrays to pinpoint the relevant 
susceptibility loci of UC, which can help us identify relevant genetic 
variations in IBD and UC (14, 17, 18).

Abnormal immune response

A hallmark of UC histology is the presence of a ‘crypt abscess’, 
which is formed by neutrophil infiltration into the colonic crypt (6). 
During the inflammatory process, neutrophils first pass through the 
colonic epithelium and eventually undergo apoptosis in the crypts of 
the colon (19). Neutrophils may survive the inflammation by the 
hypoxia-inducible factor HIF-1α, but prolonged neutrophil survival 
may lead to excessive release of reactive oxygen species and 
pro-inflammatory mediators (20–22). Calprotectin is present in 
neutrophils. It is released through the patient’s blood or feces and 
serologically reacts with the patient’s perinuclear anti-neutrophil 
antibodies (23–25). Thus, after the onset of the disease, inflammatory 
neutrophils and monocytes and their pro-inflammatory factors 
generate an inflammatory response that promotes the pathological 
process (6, 26). Such an environment contributes to the subsequent 
neutrophils, monocytes, maintenance of their functional and survival 
efficiency, and affects the patient’s ability to resolve the inflammation 
and to redress their homeostasis (27, 28).

Mitochondrial abnormalities

The latest research on ulcerative colitis is a direct exploration of 
the intestinal mucosa (29, 30). Some experts found that the expression 
of genes responsible for energy production in mitochondria (gene 
encoding mitochondrial oxidative phosphorylation components) was 
significantly reduced, which suggests that abnormalities in 
mitochondria can lead to the development of ulcerative colitis (6, 27). 
Mitochondria are special membrane-bound intracellular 
compartments that are considered the “powerhouse of the cell,” as they 
produce a large amount of ATP that is used to power the cell’s 
biochemical reactions. Previous studies have demonstrated that the 
mitochondria are involved in the inflammatory response (31, 32), and 
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that loss of mitochondrial function or mitochondrial dysfunction is 
also an important factor in the development of ulcerative colitis. The 
studies on mitochondrial function have found that mitochondria are 
usually located in a specific environment (33, 34), and mitochondrial 
dysfunction may trigger oxidative stress, reduce ATP production, and 
release mitochondrial DNA, which acts as a danger-associated 
molecular pattern (DAMP), amplifying inflammation (35–37). The 
above studies help us understand the relationship between 
mitochondria and ulcerative colitis and find a new approach to treat 
ulcerative colitis, for example, anti-oxidative stress therapy targeting 
the mitochondria of UC patients.

Extraintestinal manifestations of UC

Types of extraintestinal manifestations

Extraintestinal manifestations (EIMs) are the main factors that 
lead to complications and decrease the chance of survival in patients 
(38). Kilic et al. (39) categorized EIMs into two groups: those directly 
associated with intestinal inflammation (e.g., arthritis, iritis) and those 
considered independent autoimmune manifestations (e.g., primary 
sclerosing cholangitis).

Characteristics of extraintestinal 
manifestations

Due to cross-reactivity of antigens, the gut microbiota may trigger 
systemic immune responses that affect extraintestinal sites such as 
skin and joints (40). Disruption of the intestinal barrier allows 
bacterial antigens to trigger systemic immune responses, including 
cross-reactivity with skin and joint epitopes (41). The generation of 
autoimmune responses is directly correlated with immune 
susceptibility related to leukocyte antigens (42). In UC, prolonged 
course of the disease, reduced quality of life, intestinal fibrosis, and 
increased incidence and mortality are strongly associated with 
untreated EIMs. The gut is the preferred site for the treatment of EIMs. 
Active treatment of EIMs in early-stage UC has now been shown to 
be effective in preventing catastrophic outcomes.

UC model construction methods and 
evaluation criteria

Chemically induced models

DSS-induced UC model
DSS is a polyanionic derivative that appears as a white powder, is 

odorless, and gives a clear solution when dissolved in water. It is one 
of the most common and effective drugs for UC induction (2). In 
DSS-induced intestinal inflammation generally occurs in the lamina 
propria of the intestine (43). Sulfated polysaccharides in DSS exert a 
toxic effect on the colonic epithelium, which disrupts the epithelial cell 
barrier of the intestine, leads to epithelial injury and loss of mucosal 
barrier integrity and induces immune responses (44). DSS can induce 
UC by affecting host DNA replication, inhibiting the overproliferation 
of intestinal epithelial cells, enhancing the release of inflammatory 

factors, and disrupting the balance of the gut microbiome (45). The 
partial pathogenic factors are shown in Table 1.

Generally speaking, high molecular weight DSS does not lead to 
colitis, whereas low molecular weight (5 KDa) DSS induces 
inflammation (43). DSS is not easily soluble in water, so DSS is added 
to distilled water heated to 37°C in advance. The DSS aqueous solution 
should be stirred thoroughly with a sterilized glass rod to ensure that 
DSS is completely dissolved before administration. If DSS is not 
sufficiently dissolved, the undissolved salt will block the mouth of the 
bottle, resulting in difficulty in drug administration or insufficient drug 
intake of the animals, and thus failure of the model construction. It is 
also necessary to check the clarity of the liquid before administration. 
Cloudiness may indicate microbial contamination; Fresh DSS solution 
should be prepared under sterile conditions. In this case, the bottle 
should be cleaned or replaced with a new one to prepare new DSS 
aqueous solution. This is very important. Careless check may lead to 
wrong test results. While the test group is administered the drug, the 
control group should be given the same quality of water.

During the test period, some points are worth paying special 
attention to, as follows.

	•	 On Day 0, the mice in the administration group and the control 
group should be marked with a marking pen. This is to avoid 
potential inaccuracy of the subsequent test results, as earmarking 
may cause stress in the animals, affecting their normal feeding 
and drinking.

	•	 To avoid fighting between the test mice (which may cause their 
injuries and thus affect the test results), the mice with gentle 
disposition should be selected and reared in separate cages to 
participate in the test.

	•	 The administration method needs to be  determined. Rectal 
administration may lead to stress reaction in mice, intragastric 
administration may lead to death of mice due to incorrect 
operation, and free drinking may lead to insufficient drug intake. 
Therefore, the determination of the administration method is an 
important factor influencing the test results.

	•	 During the first 3 days of the test, the weight of the mice in the 
administration group may increase, and start to gradually 
decrease with the occurrence of bloody stools. Since there is no 
clear requirement on when to sacrifice the mice, the investigators 
can determine when to sacrifice the mice for the subsequent test 
according to the weight loss or the severity of bloody stools (46).

TNBS-induced UC model
2,4,6-Trinitrobenzenesulfonic acid (TNBS) is a hapten that 

becomes immunogenic after binding to host proteins. TNBS induces 
an immune response in the host when it binds to the host. The model 

TABLE 1  Pathogenic factors of DSS-induced UC.

Test 
animal

Pathogenic 
conditions

Influencing factors

Mouse Susceptibility gene CARD15 (59)

Cytokine TNF-α, IL-1β (60, 61), INF-γ (62)

Toll-like receptor NOD2 (63), Flagellin/TLR5 (64)

Adhesion molecule ICAM1 (65), CD98 (66), VCAM-1 (67)

T cell TH17 cell (68)
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induced with TNBS is characterized by short modeling time, 
reproducibility, and simplicity of induction. TNBS is a typical chemical 
substance used to induce ulcerative colitis models. The mechanism of 
TNBS as an inducer is as follows: TNBS acts as a hapten, penetrating 
ethanol-damaged mucosa and binding to host proteins to form 
neoantigens that trigger a Th1-dominant immune response (47). This 
model is an immune response mediated primarily by the helper T cell 
TH1, characterized by infiltration of CD4 + cells, neutrophils, and 
macrophages, which ultimately leads to transmural colitis (43).

When TNBS is used as an inducer, ethanol is commonly used as 
its solvent, and the administration is generally intrarectal. Ethanol can 
first disrupt the intestinal mucosal barrier and assist TNBS in causing 
intestinal inflammatory injury (48, 49). However, there is no 
consensus among scholars on the choice of TNBS and ethanol doses. 
Park et  al. (50) used 0.8 mL of 5% TNBS as an inducer and 50% 
ethanol solution as a solvent, while Isik et al. (51) used 1 mL of 3% 
TNBS as an inducer and 40% ethanol as a solvent.

Induction of UC by gene knockout 
technology

The use of genetic engineering technologies for model 
establishment is an important turning point in the research of UC 
(52). In the 1990s, Kühn R and his team were the first to propose the 
construction of a colitis model by knocking out the gene that 
interferes with the production of IL-10 in the mouse. The emergence 
of this technology was reported as the establishment of the first 
spontaneous colitis mouse model (53). Polymorphisms in the IL-10 
gene are associated with increased UC susceptibility (54), and genetic 
polymorphism at the IL-10 gene locus promotes the development of 
ulcerative colitis (55). Anderson C et al. demonstrated that IL-10 gene 
knockout mice would develop spontaneous colitis 3 months after 
knockout (56), with inflammation concentrated in the duodenum, 
proximal jejunum, and ascending colon (53). The IL-10 gene 
knockout-induced colitis model is mainly characterized by massive 
infiltration of macrophages, neutrophils, and lymphocytes (53). Some 
scholars found that the mice subject to knockout of MUC2 and IL-10 
genes showed shortened time to disease and more severe symptoms 
compared with the mice receiving knockout of IL10 gene. Such a 
model constructed by double-knockout technology is suitable for the 
study of UC. Dual knockout mice lacking MUC2 and IL-10 developed 
severe colitis, growth retardation, bloody diarrhea, and intense 
mucosal inflammation at 4 weeks of age – very similar to human 
UC. Thus, the model established by this technology was able to 
mimic the clinical symptoms of UC patients (57). In addition, 
deletion of the IL-10 gene in T-cells, especially in regulatory T-cells, 
contributes to the development of colitis. Therefore, IL-10 plays a 
critical role in intestinal homeostasis (58). Other UC-relevant models 
include oxazolone-induced colitis, which models Th2-dominated 
inflammation, and adoptive T-cell transfer models, which are 
valuable for dissecting chronic adaptive immune responses.

Model evaluation criteria

The UC models constructed through different methods have 
different evaluation criteria, as shown in Table 2.

Limitations and future directions

At present, despite their utility, current UC animal models have 
important limitations due to differences in induction mechanisms, 
species biology, and lack of standardization. For example, 
chemically induced models still rely on exogenous chemical 
substances to damage animal intestinal mucosa, which is different 
from the natural onset of UC. For instance, DSS-induced models 
rely on chemical injury to the epithelium and produce short-term 
acute inflammation, whereas UC in humans is typically chronic and 
relapsing. Acute inflammation is its main pathological feature, 
while the pathological process of UC is usually chronic and 
recurrent; TNBS requires ethanol pre-treatment to facilitate 
haptenation, resulting in a Th1-dominated response more typical of 
Crohn’s disease than UC, which is confined to the mucosa and 
associated with Th2/Th17 profiles. In addition, the degree of 
inflammation development in chemically induced models is greatly 
affected by external factors such as drug concentration, animal 
species, and gender. Different methodologies also lead to significant 
differences in the results, and the standardization level is 
relatively insufficient.

Therefore, based on the limitations of existing UC models, in the 
future, we  need to consider multiple factors and precision when 
constructing UC pathological models. A more comprehensive 
modeling approach could combine chemical induction with gene 
editing and microbiota manipulation to better recapitulate the 
pathogenic cascade---from epithelial barrier disruption to immune 
dysregulation and microbial imbalance.

At present, the UC model has laid a certain foundation for 
exploring the pathogenesis and related drug development, but it still 
has certain limitations. Further integration of biotechnology—
including gene editing, organoid systems, and microbiome 
transplantation—may improve model fidelity and enable more 
accurate simulation of UC pathogenesis. This, in turn, could accelerate 
translation from model systems to clinical therapies.

Conclusion

Against the background of the development of new drugs and 
the prevention and intervention of such diseases, the development 

TABLE 2  Evaluation indicators for different UC models.

Model type Evaluation 
dimensions

Specific indicators

DSS model Clinical indicators Weight loss rate, bloody stool 

score (0–4 points), diarrhea 

severity score (0–3 points)

Pathological indicators Degree of crypt destruction and 

grading of inflammatory cell 

infiltration (mucosal/submucosal)

Gene Knockout 

model

Molecular biology 

indicators

The mRNA expression levels of 

IL-10 and TNF - α, as well as the 

degree of neutrophil infiltration 

detected by 

immunohistochemistry
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and refinement of UC models remains central to preclinical research 
and drug discovery. Despite their widespread use in human 
medicine, these models remain underutilized in veterinary research. 
Improved model systems can advance translational applications 
across species.
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