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Introduction: Mycoplasma hyopneumoniae (Mhp) infection significantly 
challenges Guangxi’s pig farms, yet its prevalence and molecular characteristics 
remain poorly understood. This study aimed to define circulating Mhp genotypes 
and their distribution in the region.

Methods: From 2022–2023, 1,362 pig lung samples were randomly collected 
from 14 Guangxi regions. Mhp was detected using TaqMan Real-time PCR. 
Strong positive samples underwent multilocus sequence typing (MLST) of adk, 
rpoB, and tpiA genes to assess genetic relationships.

Results: Of 1,362 samples, 655 (48.1%) were Mhp-positive. MLST amplification 
succeeded for 61 samples, revealing 27 sequence types (24 novel) across all 14 
regions. Phylogenetic analysis indicated predominant circulation of Mhp types I and 
V. High Mhp incidence and substantial genetic diversity were observed.

Discussion: This study provides comprehensive analysis of Mhp in Guangxi, 
revealing high prevalence and genetic diversity dominated by types I and V. 
These findings expand understanding of Mhp epidemiology in China and offer 
a theoretical foundation for developing prevention and control strategies in 
Guangxi.
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Introduction

Mycoplasma hyopneumoniae (Mhp) is the etiological agent of Mycoplasma pneumonia 
(MPS), also called enzootic pneumonia (EP) in swine, commonly referred to as porcine 
“wheezing disease” (1). This disease exhibits high morbidity but low mortality, and can 
appear year-round. Clinical signs primarily include dyspnea, abdominal breathing, 
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lethargy, and coughing, along with decreased growth performance 
and increased feed conversion ratio (2, 3). Mhp can also act 
synergistically with other pathogens (4, 5), such as porcine 
circovirus type 2 and porcine reproductive and respiratory 
syndrome virus, to produce porcine respiratory disease complex 
(PRDC) (6, 7), thereby complicating prevention and control 
efforts, and presenting a challenge to the worldwide swine 
industry. Guangxi Province, a critical region for swine production 
in China, faces challenges due to Mycoplasma hyopneumoniae 
(Mhp) infections across its diverse pig farms. Zhang et  al. 
identified Guangxi as a high-prevalence area for Mhp in China 
during a 2019 outbreak, reporting substantial genetic diversity, 
including eight novel ST types. Li (8) reported widespread Mhp 
infection across Chinese pig farms, with a national antigen-
positive rate of 19.19%. Guangxi contributed the largest sample 
size, exhibiting an infection rate comparable to the national 
average. However, a comprehensive understanding of the 
prevalence and molecular characteristics of these infections 
throughout the region remains elusive. Multilocus sequence typing 
(MLST) has emerged as the gold standard for high-resolution 
molecular epidemiology of Mhp, enabling robust strain 
differentiation, phylogenetic analysis, and inter-study comparisons 
via global databases (9, 10). This method defines stable sequence 
types (STs) based on nucleotide variations in core housekeeping 
genes. The analysis of the adk, rpoB, and tpiA genes specifically 
provides discriminatory power equivalent to the original 7-gene 
scheme for Mhp (11), making it highly practical for large-scale 
surveillance and genotyping directly from clinical samples.

This study randomly sampled 1,362 pig lung tissue from 14 cities 
in Guangxi for pathogen detection. The targeted gene sequences 
obtained by sequencing were connected in series according to the 
order of adk-rpoB-tpiA. Genetic evolution tree was drawn for genetic 
polymorphism analysis to explain the genotype and distribution of 
Mhp in Guangxi pig herds.

Materials and methods

Samples

Between 2022 and 2023, 1,362 lung samples (one per pig) were 
collected opportunistically from swine at various abattoirs across 14 
municipalities in Guangxi Province, negating the need for ethical 
approval. In order to ensure the scientificity and fairness of sampling 
and minimize selection bias, we carried out meticulous and rigorous 
sampling work in 14 cities in Guangxi Province according to multi-
dimensional factors such as geographical distribution characteristics, 
breeding scale and production capacity. In the process of pig farm 
selection, we  comprehensively referred to the breeding record 
information provided by the agricultural departments of various cities 
and divided all farms into three categories: large, medium and small 
according to the breeding scale. Then, a stratified sampling method is 
used to randomly select a certain number of farms from each level 

according to an equal proportion, so as to ensure that farms of 
different sizes have the opportunity to be  included in the 
sample category.

At the same time, the geographical span of each city is fully 
considered to ensure that the selected farms cover all major 
breeding clusters to avoid bias caused by geographical 
concentration. Specifically, samples originated from the following 
locations: Nanning (n = 282), Liuzhou (n = 42), Guilin (n = 81), 
Wuzhou (n = 110), Beihai (n = 76), Fangchenggang (n = 80), 
Qinzhou (n = 49), Guigang (n = 99), Yulin (n = 97), Baise (n = 98), 
Hezhou (n = 15), Hechi (n = 100), Laibin (n = 168), and Chongzuo 
(n = 65).

DNA extraction, RT-qPCR detection

Lung tissue (0.5 g) was collected in a 2 mL enzyme-free Eppendorf 
tube and minced. Four grinding beads and approximately 1 mL of 
physiological saline were added to the tube. Each sample was 
homogenized twice at 70 Hz for 70 s utilizing a tissue homogenizer. 
DNA from Mhp was extracted from the homogenates utilizing an 
Automatic Nucleic Acid Extraction Machine (Zybio Technology 
Company, Chongqing Province, China). Mhp was detected utilizing 
a highly specific and sensitive qPCR assay (12). Primers and probe 
sequences were as follows: Mhp  183-F: CAAAGCGAGTATGA 
AGAACAAGAAA; Mhp 183-R: GTCATCATTGGGTGGCTAAGT; 
Mhp183-ROX-TCCAGGAAGTCAAGGTAACTAGTGACCA-BHQ.  
qPCR reactions were carried out in a 20 μL reaction volume consisting 
of 10 μL 2× Taqman Fast qPCR Mastermix (Sangong, Shanghai, 
China), 0.4 μL each of primers Mhp 183-F and Mhp 183-R, 0.3 μL of 
probe Mhp 183-P, 4 μL of cDNA, and 4.8 μL of nuclease-free water. 
Samples exhibiting strong positive results (Ct-value <30) were eligible 
for direct genotyping (13).

The reaction system is as follows:

Name Volume

2× TaqMan Fast qPCR Master mix 10

Mhp183-F 0.4

Mhp183-R 0.4

Mhp183-P 0.3

cDNA template 2

Nuclease-free Water 6.9

The reaction system is as follows:

Procedure Temperature 
(°C)

Time (s)

Predegeneration 94 120

Degeneration 94 30

30cycles






Anneal 57 30

Extend 72 60

Terminal extension 72 420

Predegeneration 94 120

Abbreviations: EP, Enzootic pneumonia; MLST, Multilocus sequence typing; ST, 

Sequence type; Mhp, Mycoplasmahyopneumoniae; PRDC, Porcine respiratory 

disease syndrome.
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MLST

Nucleotide sequence data for the adk, ropB, and tpiA genes were 
generated from Mhp-positive samples through Sanger sequencing. 
These genes were amplified utilizing primers and conditions 
previously described by Mayor et  al. Amplicons were resolved by 
electrophoresis on a 1.5% agarose gel and purified utilizing the 
SanPrep Column DNA Gel Extraction Kit (Sangon, Shanghai, China).

Sequencing was performed by Sangon Biotech (Shanghai, China). 
The resulting sequence data were deposited in the PubMLST database 
for sequence type (ST) assignment. Each housekeeping gene receives 
a unique allele number, and the combination of the three alleles 
determines a specific ST.

Guangxi, China

Guangxi Province is located in southern China, bordered by 
Yunnan to the west, Guizhou to the north, Hunan to the northeast, 
and Guangdong to the southeast. Its topography comprises a diverse 
range of landscapes, from mountains and karst formations to rivers 
and fertile plains. As presented in Supplementary Figure  1, the 
northern region of Guangxi (Baise, Hechi, Liuzhou, and Guilin) is 
primarily mountainous. Guangxi plays a crucial role in China’s pork 
production; the region has a large agricultural sector, with pig farming 
as a major component. In effect, Guangxi ranks as a leading province 
for pig farming and is a significant contributor to the national 
pork supply.

Data analysis

We obtained the allele data for adk, rpoB, tpiA and ST from the 
PubMLST database.1 We calculated Simpson’s index of diversity values 
utilizing the website.2 We carried out sequence alignment and cluster 
analysis through Molecular Evolutionary Genetics Analysis (MEGA 
version 6.0) utilizing the neighbour-joining method (Kimura 
2-parameter model).

Results

Survey on Mhp positivity rate in Guangxi

Based on fluorescence quantitative PCR results, we identified 655 
Mhp-positive samples out of 1,362 lung tissue samples collected from 
14 municipalities in Guangxi. Six regions demonstrated notably high 
positive rates: Liuzhou 85.71% (36/42), Hezhou 80.00% (12/15), 
Laibin 85.12% (143/168), Hechi 68.00% (68/100), Guigang 64.65% 
(64/99), and Guilin 58.02% (47/81). These six regions all maintained 
positivity rates above 50%. Across the entire Guangxi region, the 
overall Mhp positivity rate reached 48.09% (655/1,362). We discovered 

1 https://pubmlst.org

2 http://www.comparingpartitions.info/index.php?link=Tool

three regions with low Mhp positivity rates: Yulin 29.90% (29/97), 
Wuzhou 28.18% (31/110), and Beihai 25.00% (19/76), with all these 
regions indicating rates below 30% (Table 1). Our spatial analysis 
indicated that in the northern part of the Guangxi region, Laibin, 
Liuzhou, Hezhou, Guilin, and Hechi displayed higher Mhp positivity 
rates. In contrast, the southeastern areas of Wuzhou, Yulin, and Beihai, 
which lie next to Guangzhou, demonstrated relatively lower Mhp 
positivity rates (Figure 1). Our terrain analysis demonstrated that the 
northern regions of Guangxi, which had the previously mentioned 
higher Mhp-positive rates, featured higher terrain and primarily 
mountainous landscapes (Figure 2).

Of 655 PCR-positive samples (Ct <30) subjected to amplification 
of key MLST genes (adk, rpoB, tpiA), only 61 (9.3%) were successful, 
yielding a 90.7% failure rate. Figure  3 presents the gel 
electropherograms depicting the simultaneous amplification of these 
three housekeeping genes. Analysis of the alleles from the successfully 
amplified samples indicated the identification of two novel adk alleles 
(56, 57), 10 novel rpoB alleles (72, 73, 74, 75, 76, 77, 79, 80, 81, 82), and 
three novel tpiA alleles (82, 83, 84). These 61 samples were grouped 
into 27 ST types based on the allelic profiles of adk, rpoB, and tpiA 
(128, 147, 159, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 
205, 207, 208, 209, 211, 212, 213, 218, 219, 225, 226, 227, 229). Of 
these STs, 24 are newly described. Specifically, ST147 and ST128 were 
prevalent, observed in six geographically proximate cities (Baise, 
Chongzuo, Nanning, Fangchenggang, Yulin, and Guigang) and five 
more geographically dispersed cities (Nanning, Guilin, Laibin, 
Fangchenggang, Beihai, and Yulin), respectively. In addition, ST197, 
ST199, and ST203 were found in multiple regions. The Simpson index 
of diversity for STs is 0.939 (Table 2). Phylogenetic analysis of ST 
sequences resolved the 61 strains into five genotypes (types I, II, III, 
IV, and V). Type I comprised strains from Switzerland, Hungary, and 
Thailand, as well as two strainsfrom this study. Type II comprised 10 
strains from this study, representing seven regions of Guangxi: 
Nanning, Hechi, Chongzuo, Guilin, Wuzhou, Laibin, and Guigang. 
This distribution suggests that type Mhp is prevalent in half of 
Guangxi. In addition, a phylogenetic relationship was observed 
between the UK strain J, the US strain 232, and the following strains 
from this study: ST194, ST227, ST225, ST198, ST199, and ST159. Type 
III was found only in the Nanning area, along with strains from 
Thailand, Canada, Australia, and South Korea. Type IV consisted of 
eight strains from this study, detected in Liuzhou, Laibin, Guigang, 
Wuzhou, Hezhou, and Baise. These strains demonstrated a closer 
evolutionary relationship with a 2016 French strain, a 2017 Thai 
strain, and a 2020 Jiangsu strain than with the Swiss strains belonging 
to a different genotype. Type V, the largest genotype in this study, was 
identified in nearly every region of Guangxi. This genotype also 
included a 2018 Jiangxi strain (JX486), 2019 Guangxi strains (GX23, 
GX8-2, and GXF10), 2020 Guangdong strains (GD-22, GD-18), and 
a 2020 Jiangsu strain (JS-10) (Figure  4). Geospatial analysis 
demonstrated a limited distribution of type I, exclusively in Laibin and 
Liuzhou, whereas type II exhibited a broader presence across Guangxi, 
represented by an “x” shaped distribution across the northeastern and 
southwestern regions. The four type III strains originated from a 
single farm located in Nanning. Type IV was primarily located in the 
northeastern quadrant of Guangxi, including Liuzhou, Hezhou, 
Wuzhou, Laibin, and Guigang. Type V was observed in all areas with 
the exception of Wuzhou and Hezhou (Figure 5).
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Discussion

A total of 1,362 samples were randomly collected from 14 
different regions throughout Guangxi Province. Analysis by 

real-time fluorescence quantitative PCR identified 655 samples as 
positive for Mycoplasma hyopneumoniae (Mhp). This finding 
clearly demonstrates a serious Mhp infection problem in Guangxi. 
In particular, the positive rates in Liuzhou, Laibin, Hezhou, Hechi, 

TABLE 1 Positive detection of Mhp in various cities in Guangxi.

Regions Positive count of Mhp Positivity rate of Mhp

Liuzhou 36/42 85.71%

Laibin 143/168 85.12%

Hezhou 12/15 80.00%

Hechi 68/100 68.00%

Guigang 64/99 64.65%

Guilin 47/81 58.02%

Chongzuo 32/65 49.23%

Qinzhou 22/49 44.90%

Baise 41/98 41.84%

Nanning 114/282 40.43%

Fangchenggang 28/80 35.00%

Yulin 29/97 29.90%

Wuzhou 31/110 28.18%

Beihai 19/76 25.00%

Guangxi 655/1362 48.09%

FIGURE 1

The distribution of Mhp positive rate in Guangxi Province.
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Guigang, and Guilin exceeded 50%, indicating that these areas are 
the most severely affected by Mhp infection in Guangxi. The 
relatively high positive rates in Liuzhou, Laibin, Hezhou, Hechi, 

and Guilin may be  closely related to their geographical 
characteristics. Compared to southern Guangxi, the northern part 
of the province has a higher latitude, lower temperatures, more 

FIGURE 2

The topographical map of Guangxi Province.

FIGURE 3

Agarosegel electrophoresis of PCR amplification of Mhp housekeeping gene adk, tpiA, and rpoB.
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TABLE 2 The summary of positive herds by date and genotyping result.

Herd ID Country and region of herd Year adk rpoB tpiA ST

GX-GL221020-h15 Guilin, Guangxi, China 2022 23 59 57 128

GX-LB221123-N3 Laibin, Guangxi, China 2022 23 59 57 128

GX-FCG221201-P10 Fangchenggang, Guangxi, China 2022 23 59 57 128

GX-BH221220-S6 Beihai, Guangxi, China 2022 23 59 57 128

GX-YL220915-e24 Yulin, Guangxi, China 2022 23 59 57 128

GX-CZ220726-c54 Chongzuo, Guangxi, China 2022 16 15 59 147

GX-NN220817-d6 Nanning, Guangxi, China 2022 16 15 59 147

GX-YL221115-L3 Yulin, Guangxi, China 2022 16 15 59 147

GX-CZ221115-L6 Chongzuo, Guangxi, China 2022 16 15 59 147

GX-FCG221201-P8 Fangchenggang, Guangxi, China 2022 16 15 59 147

GX-BS221220-W3 Baise, Guangxi, China 2022 16 15 59 147

GX-YL220915-e29 Yulin, Guangxi, China 2022 16 15 59 147

GX-YL220915-e30 Yulin, Guangxi, China 2022 16 15 59 147

GX-GG230329-XJ11 Guigang, Guangxi, China 2023 16 15 59 147

GX-GG230329-XJ18 Guigang, Guangxi, China 2023 16 15 59 147

GX-GG230329-XJ23 Guigang, Guangxi, China 2023 16 15 59 147

GX-GG230329-XJ27 Guigang, Guangxi, China 2023 16 15 59 147

GX-GL221020-h18 Guilin, Guangxi, China 2022 41 15 58 159

GX-GG220526-G2 Guigang, Guangxi, China 2022 56 15 50 194

GX-GG220526-094 Guigang, Guangxi, China 2022 20 72 58 195

GX-YL220524-YL-1 Yulin, Guangxi, China 2022 23 73 59 196

GX-QZ220705-b23 Qinzhou, Guangxi, China 2022 23 15 59 197

GX-CZ220817-d9 Chongzuo, Guangxi, China 2022 23 15 59 197

GX-QZ221115-L5 Qinzhou, Guangxi, China 2022 23 15 59 197

GX-NN230315-82 Nanning, Guangxi, China 2023 23 15 59 197

GX-NN230329-LQ13 Nanning, Guangxi, China 2023 23 15 59 197

GX-NN220705-b30 Nanning, Guangxi, China 2022 16 59 58 198

GX-CZ220705-b34 Chongzuo, Guangxi, China 2022 16 74 15 199

GX-NN220705-b55 Nanning, Guangxi, China 2022 16 74 15 199

GX-GL221020-g1 Guilin, Guangxi, China 2022 16 74 15 199

GX-HC221030-K12 Hechi, Guangxi, China 2022 16 74 15 199

GX-NN230315-7 Nanning, Guangxi, China 2023 16 15 84 200

GX-NN230315-17 Nanning, Guangxi, China 2023 16 15 84 200

GX-NN230315-40 Nanning, Guangxi, China 2023 16 15 84 200

GX-NN230315-47 Nanning, Guangxi, China 2023 16 15 84 200

GX-CZ220726-c65 Chongzuo, Guangxi, China 2022 16 75 59 201

GX-NN220726-c48 Nanning, Guangxi, China 2022 16 76 57 202

GX-QZ220726-c49 Qinzhou, Guangxi, China 2022 41 77 57 203

GX-LB221025-J5 Laibin, Guangxi, China 2022 41 77 57 203

GX-LZ221025-J11 Liuzhou, Guangxi, China 2022 41 77 57 203

GX-BH221220-S9 Beihai, Guangxi, China 2022 23 23 57 204

GX-NN220817-d14 Nanning, Guangxi, China 2022 16 79 57 205

GX-LB221014-f6 Laibin, Guangxi, China 2022 41 54 83 207

GX-HZ221220-T1 Hezhou, Guangxi, China 2022 16 81 76 208

GX-HZ221220-T3 Hezhou, Guangxi, China 2022 16 81 76 208

(Continued)
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mountainous terrain, and greater humidity. Previous work by 
Goodwin (14) and Browne et al. (15) has presented that Mhp is 
more likely topersist in environments with low temperatures and 
high humidity (16). Studies have demonstrated a strong 
association between the prevalence of this pathogen and seasonal 
variations, as well as a significant effect of climate factors (17, 18). 
For instance, research conducted in Belgium and the Netherlands 
found that the infection rate of Mycoplasma hyopneumoniae in 
swine differed seasonally, with a significantly higher infection rate 
in pigs born in autumn (19). Moreover, environmental factors, 
including temperature and humidity, greatly affect disease 
transmission. The spread of the pathogen may be facilitated by the 
creation of bioaerosols (20), notably during cold and wet seasons 
(18, 21). While vaccination has significantly offered some 
protection to pigs against Mhp, these protective effects are known 
to differ significantly across pig herds. This variability may arise 
from a range of factors, including the Mhp infection level in the 
herd, the age of infection onset in pigs, and even potential 
variations among Mhp isolates (22, 23). Notwithstanding such 
variability, vaccination is still broadly considered the most 
effective method for managing Mhp infection (24). These vaccines 
primarily reduce clinical signs by stimulating an immune 
response; however, they cannot entirely prevent infection or viral 
shedding (25, 26). It is important to understand that, while 
vaccination can successfully reduce clinical signs and lung lesions 
in infected pigs, its ability to limit the transmission of Mhp is quite 
restricted (22, 27). This limited capacity to control Mhp spread 
may be a key factor contributing to the challenges in effectively 
managing and controlling Mhp. In addition, a positive Mhp test 
result currently does not restrict the commercial trade of live pigs. 
Guangxi is a major pig-producing province in China, and live pig 

trade extends to adjacent provinces such as Guangdong and 
Jiangxi. This expansive trade network may contribute to the 
spread of Mhp across different regions. Pig trade is also an 
important route for the spread of pathogens between countries, 
which is common on many continents (28). Currently, Mhp is 
widespread in Guangxi Province. Specifically, Mhp positive rates 
in Guigang, Chongzuo, and Nanning are comparatively high. This 
might be due to that these areas are major pig production hubs in 
Guangxi. These combined factors likely contribute to the high 
Mhp infection rate and genetic diversity in the province. In this 
research, we performed a detailed genotyping analysis analyzing 
Mhp strains located in Guangxi, China. In our collection of 655 
positive samples, we  observed that 61 samples demonstrated 
concurrent amplification patterns of the adk, rpoB, and tpiA 
genes. When conducting multilocus sequence typing (MLST) 
assays of Mhp, the standard protocol traditionally requires that 
seven housekeeping genes must be amplified in a parallel fashion. 
Nevertheless, extensive research has consistently demonstrated 
that the discriminatory capabilities of the three genes mentioned 
above match those achieved with all seven housekeeping genes 
(29–31). For an overwhelming number of samples in this study, 
we  regularly encountered situations where, likely due to 
insufficient nucleic acid content of Mhp present in the tissue 
samples or because of various PCR inhibitors in the samples (9, 
32), we could not achieve successful simultaneous amplification 
and sequencing of all seven housekeeping genes. Our analysis 
indicated new sequence type (ST) distribution patterns throughout 
the 14 regions that constitute Guangxi Province. We discovered 
that particular ST classifications, specifically ST197, ST199, and 
ST203, were located across multiple separate regions. Across 
Guangxi Province, a considerable distance of approximately 520 

Herd ID Country and region of herd Year adk rpoB tpiA ST

GX-LB221025-J1 Laibin, Guangxi, China 2022 16 58 59 209

GX-LZ221025-J10 Liuzhou, Guangxi, China 2022 16 58 59 209

GX-NN230315-67 Nanning, Guangxi, China 2023 23 59 84 211

GX-LB221025-J3 Laibin, Guangxi, China 2022 16 58 82 212

GX-LZ221025-J17 Liuzhou, Guangxi, China 2022 16 58 82 212

GX-BS221220-W6 Baise, Guangxi, China 2022 57 82 59 213

GX-LZ221025-J19 Liuzhou, Guangxi, China 2022 16 80 59 218

GX-HC221030-K2 Hechi, Guangxi, China 2022 57 15 59 219

GX-HC221030-K3 Hechi, Guangxi, China 2022 57 15 59 219

GX-HC221030-K5 Hechi, Guangxi, China 2022 57 15 59 219

GX-HC221030-K9 Hechi, Guangxi, China 2022 57 15 59 219

GX-WZ221123-M21 Wuzhou, Guangxi, China 2022 38 59 58 225

GX-WZ221123-M23 Wuzhou, Guangxi, China 2022 16 18 57 226

GX-LB221123-N6 Laibin, Guangxi, China 2022 38 15 58 227

GX-LB221123-N20 Laibin, Guangxi, China 2022 38 15 58 227

GX-FCG221201-P7 Fangchenggang, Guangxi, China 2022 16 59 59 229

Simpson index 0.656 (CI: 

0.549–0.763)

0.750 (CI: 

0.644–0.855)

0.739 (CI: 

0.648–0.831)

0.939 (CI: 

0.907–0.972)

TABLE 2 (Continued)

https://doi.org/10.3389/fvets.2025.1619301
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zhou et al. 10.3389/fvets.2025.1619301

Frontiers in Veterinary Science 08 frontiersin.org

kilometers separates Guilin (in the northeast) and Chongzuo (in 
the southwest). This geographic distribution suggests that distance 
alone does not significantly impede Mhp transmission.

Infected and asymptomatically infected pigs are the primary 
infection reservoirs, with sows and latently infected pigs 
representing the key vectors in farms. Mhp spreads horizontally 
across long distances through direct pig contact, or through 
contaminated excretions, oral secretions, and even aerosols (33, 
34). Therefore, the inter-regional movement of pigs likely 
contributes to Mhp dissemination. Zhang et al. (35) first identified 
ST147 in Guangxi in 2019. However, another study indicated that 
ST128 was the major ST circulating in Guangxi during that 
period. By early 2022, Yiming (36) confirmed ST128 as the 
epidemic strain across seven infected pig farms in Guangxi. This 
study also identified ST197, ST199, and ST203 in various locations 

throughout Guangxi. Considering the limited sample size, 
we could only establish a preliminary prevalence trend for these 
STs. Future research with a larger sample cohort is necessitated to 
confirm and further investigate the concurrent dominance of 
multiple STs in Guangxi Province (37). Analysis of the genetic 
evolutionary tree confirmed the classification of the 61 tested 
strains into five genotypes (I, II, III, IV, and V). The results 
indicate that genotype V first appeared in other regions of China 
several years ago (35) and is now widely distributed throughout 
both Guangxi and Guangdong Provinces. In addition, the strong 
genetic similarity observed between the strains isolated in 
Guangxi and those in other provinces is likely connected to 
Guangxi’s prominent role as a major pig-producing region in 
China. The transport and sale of pigs from Guangxi to other 
provinces, including Guangdong and Jiangxi, may offer a 

FIGURE 4

The neighbor-joining tree of selected sequence types (STs) based on the adk, rpoB, and tpiA sequences of Mhp in Guangxi. ● Represents the isolates in 
this experiment.
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mechanism for the spread of Mhp. This interprovincial movement 
of pigs offers a plausible explanation for the observation that the 
majority of genotype V strains from Guangxi analyzed in this 
study demonstrate a close genetic relationship with strains 
identified in Guangdong. In the preceding study, we identified 
ST128 and ST147  in 5 and 6 different regions across Guangxi, 
respectively, with both indicating significant prevalence 
throughout the entire province. Our analysis also indicated that 
ST199, ST197, and ST203 were detected across multiple regions, 
indicating clear patterns of epidemic spread in Guangxi. A critical 
point to emphasize is that these five ST types all originated from 
genotypes II and V. However, our research demonstrated no 
significant correlation between the geographical origins of the 
samples and the ST types of the isolated strains, as we  found 
various ST types present in individual regions, while the same ST 
types appeared across different geographical locations. These 
observations align closely with findings documented in the 
majority of international research papers (29), indicating 
widespread and extensive dissemination of Mhp across Guangxi 
Province. Our data also demonstrated that Mhp has maintained 
its presence in Guangxi over an extended time period, leading to 
the formation of unique independent clusters. Based on these 
comprehensive findings, we can draw the logical conclusion that 
the genetic diversity of Mhp observed in Guangxi acts as one of 
the key factors contributing to the high infection rates of Mhp 
observed throughout this geographical area.

Conclusion

Based on the analysis of 1,362 randomly collected samples from 
Guangxi, China, our results indicated a high incidence rate of Mhp in 
the region. The study identified ST147 and ST128 as the primary 
genotypes, which were detected across six and five regions of Guangxi, 
respectively. Among the newly identified STs, ST197, ST199, and 
ST203 demonstrated up as the current trending genotypes in Guangxi. 
All these ST types fell in cluster II and cluster V, which represented the 
main genotypes currently spreading throughout Guangxi. This 
research stands as one of the most thorough analyses into the 
genotypes and geographical distribution of Mhp in Guangxi’s swine 
populations. Our findings have significantly advanced our knowledge 
regarding the incidence rates and molecular typing of Mhp in this 
region, contributing valuable data to China’s local Mhp 
epidemiological database while offering a scientific foundation for 
implementing Mhp control and prevention strategies in 
Guangxi, China.
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FIGURE 5

Distribution of the five genotypes of Mhp in Guangxi Province.
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