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Introduction: Automated assessment of pain in laboratory rats is important for
both animal welfare and biomedical research. Facial expression analysis has
emerged as a promising non-invasive approach for this purpose.

Methods: An openly available dataset, RatsPain, was constructed, comprising
images of facial expressions taken from six rats undergoing orthodontic
treatment. Each image was carefully selected from pre- and post-treatment
videos and annotated by eight expert pain raters using the Rat Grimace Scale
(RGS). To achieve automated pain recognition, a head-pose-invariant deep
learning model, PainSeeker, was developed. This model was designed to identify
local facial regions strongly related to pain and to effectively learn consistently
discriminative features across varying head poses.

Results: Extensive experiments were conducted to evaluate PainSeeker using
the RatsPain dataset. After assessing the pain conditions of each rat through
facial expression analysis, all tested methods achieved good performance in
terms of F-score and accuracy, significantly outperforming random guessing
and providing empirical evidence for the use of facial expressions in rat pain
assessment. Moreover, PainSeeker outperformed all comparison methods, with
an overall F-score of 0.7731 and an accuracy rate of 74.17%, respectively.
Discussion: The results demonstrate that the proposed PainSeeker model
exhibits superior performance and effectiveness in automated pain assessment
in rats compared with traditional machine learning and deep learning methods.
This provides support for the application of facial expression analysis as a reliable
tool for pain evaluation. The RatsPain dataset is freely available at https://github.
com/xhzongyuan/RatsPain.

KEYWORDS

facial expression of pain, pain assessment in rat, rat grimace scale, deep learning,
attention mechanism

Introduction

Rats are one of the most widely used animal species in experiments and have
made significant contributions to the progress of biological and medical research
(1). In various experiments conducted on rats, such as evaluating the effectiveness
of painkillers through animal experiments, assessing the degree of pain in rats
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is crucial and indispensable (2). Facial expressions reveal emotional
features such as intensity, valence, and persistence, and are
correlated with neuronal activity (3). However, it is necessary to
emphasize that there are certain difficulties in assessing pain in
rats. Unlike humans, rats cannot express their feelings through
language; therefore it is impossible to directly obtain feedback on
their level of pain (4). Despite this challenge, researchers have
recognized the importance of assessing pain in rats and have
developed many effective methods over the past few decades (5, 6).

Currently, behavioral tests are the primary method for assessing
pain in rats. Broadly, these methods can be classified into two
categories: induced behavioral tests and non-induced behavioral
tests (6). The Von Frey test is a well-known induction method
(7, 8) and has become a common tool for evaluating pain
responses in experimental animals, including rats. This test involves
applying a set of calibrated filaments to specific areas of the
rat (such as the paws) and gradually increasing the bending
force until the filaments slightly bend the skin. By observing
this slight bending, the degree of pain experienced by the rat
at the corresponding force threshold could be easily determined.
The Von Frey test is a widely used and relatively rapid method
for assessing the pain level of rats, but it should be noted
that this method requires repeated invasive stimulation of the
rats, which raises concerns about the welfare of experimental
animals (9).

As for non-inducing methods, wheel running analysis stands
out as a non-invasive approach that can be used to assess
the pain conditions of rats (10, 11). In this way, the running
activities of rats can be continuously and regularly monitored.
A decrease in the rats’ activity levels, such as the distance and
speed of running and the time spent playing on the wheel,
may indicate that the rats are in a painful state. However,
wheel running analysis, like many other methods for testing
spontaneous behavior, requires a significant amount of time. To
familiarize the rats with the movement of the rotating wheel, at
least 7 days of training as a preparatory step were needed (12).
Furthermore, the non-inducing behavior testing method requires
specialized experimental equipment, which increases the cost of
pain assessment. These drawbacks pose obstacles to the timely
evaluation of pain in rats and other animals.

Recently, researchers have increasingly recognized that
experimental testing methods for assessing pain in rats have
numerous limitations. Therefore, they have been striving to
explore whether it is possible to effectively and accurately evaluate
the pain status of rats within a short period of time, without
being invasive and economically feasible. This exploration benefits
from research in the fields of psychology and computer vision on
the relationship between individual pain expressions and facial
action units, which developed a tool for assessing the degree
of pain in rats called the “Rat Pain Expression Scale” (RGS)
(13, 14). The RGS is simple to operate and can be completed
using only facial expression images of rats. It quantifies the
degree of pain in rats through four facial action units (AU)
related to pain, and its convenience and effectiveness have
been confirmed. In addition, compared with actual behavioral
testing methods, RGS can conveniently and quickly assess the
pain level of rats based solely on facial expression images,

Frontiersin Veterinary Science

10.3389/fvets.2025.1619794

providing a completely non-invasive method that considers
animal welfare.

Given that research on machine learning and deep learning
methods for assessing pain in rodents (such as mice and rats)
through the observation of facial expressions has been insufficient
thus, this section briefly summarizes the latest progress in pain
scales and related automated methods for assessing pain in
laboratory rodents (mice and rats), which is highly consistent with
the focus of our work. In this study, we aimed to further develop
an automated approach for evaluating pain in rats based on facial
expressions. This method is inspired by recent advancements in
the automation of facial pain assessment in humans and other
laboratory animals (15). Compared to these species, research on the
automation of pain assessment in rats through facial expressions
is still relatively limited. This is mainly due to the lack of well-
annotated and publicly available datasets of rat data to support
research in this area. To address this gap, we introduced the
“RatsPain” dataset, which includes 1,138 carefully annotated and
high-quality facial expression images taken from six rats that
underwent orthodontic treatment. Notably, the facial expression
images of the rats in our dataset exhibit diverse and challenging
head postures, which is a common situation when capturing their
facial videos with fixed-angle cameras. Additionally, we proposed
a simple yet effective deep learning method called “PainSeeker”
for automatically assessing the pain level of rats from non-frontal
facial expression images. The basic idea of PainSeeker is to find
stable local facial regions related to pain, ensuring that it can
effectively learn features that always have the ability to distinguish
pain, regardless of changes in the rat’s head posture. Finally, we
conducted a large number of experiments to prove the effectiveness
of the proposed “PainSeeker” on the “RatsPain” dataset, thereby
demonstrating that observing the facial expressions of rats to assess
their pain conditions is feasible.

In summary, this study makes three major contributions.

1) We provide a detailed annotated dataset for pain assessment,
named “RatsPain”. RatsPain is freely available at https://github.
com/xhzongyuan/RatsPain. To our knowledge, this is the first
publicly available dataset containing facial expression images
of rodents in different head postures, aimed at supporting
research on assessing the degree of pain in rodents through
facial expressions.

2) We propose a simple yet effective deep learning method called
PainSeeker to address the challenge of assessing pain in rats with
diverse head poses using facial expressions.

3) We conduct extensive experiments on the RatsPain dataset,
which was specifically collected to demonstrate the effectiveness
and outstanding performance of the proposed PainSeeker
model in assessing the pain of rats through facial expressions.

The remainder of this article is arranged as follows: the
second part briefly reviews the latest progress of Grimace Scales
used for pain assessment in laboratory rodents (mice and rats)
and their related automated methods. The third section details
the construction process of the PainSecker dataset. The fourth
section introduces the details of the proposed PainSeeker method
and demonstrates its application in evaluating rat pain through
facial expressions. The fifth section conducts a large number of
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experiments on the RatsPain dataset to evaluate the proposed
PainSeeker method. Finally, in the sixth section, this article
is summarized.

Materials and methods

Grimace scales for pain assessment in
laboratory rodents

Humans can use various self-assessment scales to express the
degree of their pain, such as the visual analog scale (VAS) and
verbal rating scale (VRS) (16, 17). However, these scales may not
be suitable for certain populations, such as infants with language
impairment. Therefore, it is necessary to develop an alternative,
simple, and effective method for pain assessment. Fortunately,
as early as 1872, Darwin explored the possibility of using facial
expressions as indicators of pain in both humans and animals. He
discovered that various emotional states, including pain, could be
identified through facial expressions (18).

Despite this insight, there is still no objective standard
that can help people perceive and recognize facial expressions
corresponding to various emotions. To fill this gap, Ekman and
Friesen compiled a manual called the “Facial Action Coding System
(FACS)” (19). The FACS defines a set of facial AUs that describe the
movements of various facial muscles, such as raising the cheeks,
and demonstrates how combinations of these AUs can encode basic
facial expressions, such as happiness, fear, and anger. With the
assistance of FACS, numerous studies have attempted to identify
pain-related AUs and proposed various possible combinations of
AUs to encode human facial expressions of pain (19-21). This
led to the creation of many well-annotated datasets of human
facial expressions of pain and promoted the progress of automated
human pain assessment research (22, 23).

Similar to infants, laboratory rodents (mice and rats) cannot
directly express their pain sensations. Moreover, the current
mainstream methods used to assess the pain conditions of
experimental rodents have many limitations, including long
duration, high cost, and invasiveness to animals, as mentioned
before. Therefore, drawing inspiration from the principles of FACS
and the existing combinations of pain-related human AUs (20,
21, 24, 25), Langford et al. meticulously developed the Mouse
Grimace Scale (MGS), which is highly accurate and reliable and can
be used to assess the pain condition of mice through their facial
expressions. In the MGS, five pain-related AUs were defined to
encode pain in mice, including orbital tightening, ear position, nose
bulge, whisker change, and cheek bulge. Subsequently, Sotocinal
et al. (14) developed the RGS to assess the pain conditions in rats.
This system was established based on the MGS system. Notably, the
RGS includes only four pain-related AUs. This is because, in RGS,
the Aus related to the nose and cheeks have been combined. As
Sotocinal et al. discovered, in the experimental mice experiencing
pain, there was a clear flattening from the nose to the cheeks, while
a distinct bulge was observed in the mice. Currently, MGS and RGS
have been widely used by numerous researchers to assess pain in
laboratory rodents and conduct pain-related research (26).
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Automated grimace scale methods for pain
assessment in laboratory rodents

While the aforementioned Grimace Scales can effectively
address the limitations of current mainstream laboratory rodent
pain assessment methods, it is important to note that their
utilization remains labor-intensive and time-consuming. Moreover,
the subjectivity introduced by raters involved in the process
inevitably impacts the final annotated pain labels for rodents (27).
Additionally, prolonged annotation tasks can induce rater fatigue,
thereby diminishing the efficiency and accuracy of annotations
based on Grimace Scales. Consequently, in recent years, several
researchers have shifted their focus to the development of
automated grimace scale methods for assessing pain in laboratory
rodents, leveraging machine learning techniques, particularly
deep learning.

One of the earliest automated Grimace Scale methods can be
traced back to the work of Tuttle et al. (28), who presented an
automated MGS (aMGS) to assess pain in mice. In aMGS, Inception
v3 (28), a widely used convolutional neural network (CNN)
structure, was used to study the pain-discriminative features from
facial expression images of mice. Subsequently, Andresen et al.
(29) investigated the use of various CNN architectures, including
Inception v3, ResNet (30), and self-designed CNN, to automatically
assess pain in mice. Pioneering work on rats began to emerge only
in 2023 (31). In this study, the authors constructed an automated
system for pain assessment in rats via facial expressions, consisting
of a YOLOv5 model responsible for detecting the four pain-
related AUs and a Vision Transformer (ViT) model responsible for
discriminating pain (32).

While there has been promising progress in the research
of automated Grimace Scale methods for pain assessment in
laboratory rodents, they still fall short of completely replacing
the original grimace scale. The main reason for this is the lack
of well-annotated and publicly available animal facial expression
datasets, which limits the creation of powerful machine learning
and deep learning models specifically tailored for pain assessment
in laboratory rodents. It is evident that in the majority of
current studies on automated Grimace Scales for rodents, the
training data for their models are not publicly accessible.
Moreover, it is also important to note that limited by labor and
time, the authors often selectively label a portion of collected
facial expression samples or recruit few annotators for data
annotation work, which may impact the pain label quality of
established datasets.

Furthermore, it has been observed that the facial expression
images of rodents in the majority of existing works were typically
collected from an ideal scenario (28, 29, 31), meaning that rodents
exhibit head poses with frontal or near-frontal views in these
images; and hence, conventional CNN models easily achieved
satisfactory performance. However, in real-world applications,
mice and rats cannot consistently face the camera with a fixed
view owing to their active nature or experience of pain. In this
case, several pain-related AU regions may be occluded, which poses
significant challenges in assessing pain in rodents based on facial
expressions. Therefore, it is imperative to collect diverse samples
that reflect the challenges encountered in practical scenarios to aid
researchers in addressing these challenges in the future.
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It is worth mentioning that the RatsPain dataset presented in
this study is a well-annotated and challenging publicly available
facial expression image dataset that supports the development of
more practical automated methods for pain assessment in rats.
We also propose a novel deep learning approach called PainSeeker
to address the challenge of pain assessment in rats through non-
frontal facial expressions.

Ratspain dataset

Animal models and video recordings of rats

In this section, we provide a detailed description of the specific
steps for collecting and annotating facial expression images of
rodents related to pain to construct the RatsPain dataset, as
described in Figure 1. Firstly, 6 healthy male Sprague-Dawley (SD)
rodents aged ~8 weeks underwent orthodontic treatment to cause
pain, as shown in Figure la. The force applied by the orthodontic
spring used in the treatment was 0.8 Newtons. It should be noted
that each rodent was placed in a crystalline cage individually and
was equipped with a front-facing camera, as shown in Figure 1b.
Additionally, for each rodent, the video camera captured 1-h videos
before and after the orthodontic treatment. Specifically, since the
pain experienced by the mice typically peaks within ~24-48h
after orthodontic treatment (33), the post-operative video was
taken 1 day after the treatment, while the pre-operative video
was captured 1h before the treatment. The animal experiments
in this paper have been approved by the Institutional Animal Use
Committee of Nanjing Medical University, and the Ethics code
number was IACUC-2406023.

Selection of images of facial expression in
rat

After the recording was completed, we established strict
exclusion and inclusion criteria to standardize the subsequent
manual screening process for rats with high-quality facial
expressions related to pain. Specifically, the facial expression images
of rats that meet the criteria and can be included in the dataset
should clearly show the four key pain-related facial AUs: ears,
nose, whiskers, and eyes, as shown in Figure Ic. It is worth noting
that partial occlusion of one eye, whiskers, or both is acceptable
because such omission will not have a significant impact on the
assessment of the rats’ pain level based on the corresponding facial
expression images. However, during the screening process, images
depicting the rats in the process of grooming, standing, or sleeping
are excluded because these images cannot accurately assess the pain
level through the observation of facial expressions.

To carry out this screening work, five out of the seven authors
were responsible for manually collecting facial expression images
from the original videos of mice, while the other two authors were
responsible for reviewing and confirming whether the collected
facial expression images met the aforementioned standards. It
should be noted that to ensure the diversity of the samples, at
most five images per minute could be extracted from the videos
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for unified collection. Eventually, we obtained a total of 1,295
high-quality facial expression images related to pain from six mice.

Explanation of pain levels of rats

To acquire highly reliable image-level pain annotations for the
selected facial images of the experimental mice, we additionally
recruited eight well-trained undergraduate/graduate students as
pain assessors. Each student received detailed training on RGS and
was able to proficiently distinguish different pain rating levels: 0
point represents no pain, 1 point represents moderate pain, and 2
points represents severe pain, based on one of four facial AUs in
rats, as depicted in Figure lc.

Subsequently, they performed a two-stage labeling scheme
for the facial expression images of these selected laboratory rats.
Specifically, five students were assigned to the first stage, tasked
with assigning the three pain scores to each facial expression image
based on four pain-related facial AUs, respectively, thereby serving
as the pain labels for the AU levels. It should be noted that due
to potential issues with image quality, such as non-orthogonal
head postures and changes in lighting, some students inevitably
encountered difficulties in determining appropriate pain scores for
certain facial action units of the laboratory mice (such as whiskers).
To address this problem, we allowed the use of “uncertain” AU-
level pain labels to cover such situations.

During the second period, the left three students went on
giving AU-level pain scores in a low confidence manner for facial
expression images containing AUs. An AU with low confidence
is defined here as the AU for which fewer than four out of five
students assigned the same score during the first stage. Conversely,
the remaining AUs can be considered those with high confidence,
and their consistent pain scores given by four or five students
can serve as the AU-level pain labels. With the assistance of the
additional three students, we then checked over the distribution
of scores on the all of the eight pain scores of the AUs in a low
confidence manner. Besides, in this stage, only AUs that received
no less than five same scores were accepted.

Based on the two-stage labeling scheme, three or four high-
confidence AU-level pain scores for 1,138 of 1,295 images are
eventually attained. And the rounded mean of the AU-level pain
scores was hence applied as the image-level pain label for each
expression image. In addition, as for the left 157 images, their
image-level pain labels weren’t appointed because of massive low-
confident AUs.

A glimpse at the ratspain dataset

To offer readers an overview of the RatsPain dataset, we
recorded statistics in Table I. It is clear that the number of
facial expression images labeled as “Severe Pain” in our RatsPain
dataset is only six, which is significantly fewer than those labeled
as “Moderate Pain” (591 images). We consider this sample
distribution is reasonable, as orthodontic treatment typically does
not induce consistently high-intensity pain. This assertion can be
supported by the study of Liao et al. (34), in which the RGS scores
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FIGURE 1

(b) (©)

Explanation of Facial Expression Image Collection and Pain Annotation of Rats: (a) Rat receiving orthodontic treatment, (b) the environment of
shooting and equipment settings, (c) schematic representation of labeled rats’ pain levels using RGS Sotocinal et al. (14).
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TABLE 1 The sample statistics of the ratspain dataset.

Sample subset Pain label # Expression images
No 541
High Confidence Moderate 591 1,138
Severe 6
Low Confidence N/A 157
Total 1,295

of rats undergoing orthodontic-induced pain generally remain at
one or less within 1 day.

Moreover, we present the sample statistical information for
the high-confidence subset of the RatsPain dataset in Table 2. It
is revealed a prevalent class-imbalanced problem in Rats#1, #3,
#4, #5, and #6. Specifically, the number of samples labeled as
“Pain” (“Moderate” and “Severe”) is significantly larger than that
of samples labeled as “No Pain” for Rats#1, #5, and #6, while the
opposite situation exists in Rats#3 and #4.

In addition, we present a range of facial expression samples
extracted from our RatsPain dataset, illustrating various degrees
of pain, as depicted in Figure 2. The figure clearly demonstrates
noticeable alterations in the majority of the four pain-related
AUs evident in rats’ facial expressions labeled as both “Moderate
Pain” and “Severe Pain”, in comparison to those labeled
as “No Pain”. Moreover, it is worth noting that the head
poses of rats in our RatsPain dataset encompass a variety
of challenging perspectives commonly encountered in real-
world scenarios.

Painseeker for evaluating pain of rats
by non-frontal facial expressions

Basic ideas and preliminary assumptions
The basic concept of the PainSeeker model originated from

our observations of rats placed in crystal cages. We discovered
that owing to rats active nature and the discomfort caused by
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TABLE 2 The sample statistical information of the high confidence subset

in the ratspain dataset.

Sample subset Pain label # Expression images
Rat#1 No 56 221
Moderate 163
Severe 2
Rat#2 No 102 210
Moderate 108
Severe 0
Rat#3 No 148 198
Moderate 50
Severe 0
Rat#4 No 138 230
Moderate 92
Severe 0
Rat#5 No 63 182
Moderate 116
Severe 3
Rat#6 No 34 97
Moderate 62
Severe 1
Total 1,138

orthodontic treatment, they often showed irregular movements.
These movements always led to continuous changes in the head
perspective and head posture in the facial expression images
captured by the fixed-position camera. As mentioned earlier,
this resulted in the occlusion of several action units related to
pain, making it difficult to identify pain characteristics from
the mice’s facial expressions. To address this challenge, we
proposed a new deep learning method named PainSeeker, as
illustrated in Figure 3. The primary purpose of the PainSeeker
model is to find the facial local regions highly related to
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2 (Severe)

FIGURE 2

Facial images of rats expressing different pain levels from the ratspain dataset.

pain and enhance their robustness to head pose variance,
thereby facilitating more effective learning of both postural
invariance and pain differentiation features from rats’ facial
expression images.

In the next section, we will describe the PainSeeker in detail.
Firstly, we introduce a training set comprising of N images of
the rats’ facial expression illustrated as {X},-- - , Xn}. Each image,
X € R9*4%3 indicates a colored picture with three channels
and pixels d x d. The matching label is illustrated as y; € R°*!,
which is a one-hot vector created on the basis of the ground
truth pain levels scoping from 1 to c. As described in Figure 3, at
first, an expression image of one rat is passed through a suit of
convolutional layers, leading to a group of original features relevant
to K = M x M local regions of face. The characteristics can be
delineated as:

[Xi,la c ’xi’K] = Reshape (f (&), [K’ dx]) ’ )

where Reshape (-) refers the process of reshaping
the tensor f (X)) € RM>xMxdsintg a d, — by — K
matrix, f(-) stands for the operation conducted applying
layers, K denotes the
characteristic patterns in the last convolutional layer in
f(). In addition, dy
maps, respectively.

a set of convolutional size of

represents the number of feature
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Measuring contributions of rats’ facial local
regions related to pain

In the place of directly flattening these features related to the
facial local regions, as is the case with the widely used structure
of CNNs, e.g., VGG (40), our PainSeeker model incorporates the
attention mechanism (41) to appoint a Fully-connected (FC) layer
which measures out the contribution scores correlated with pain
of features relevant to different local regions of face. And it can be
formulated as:

_olebw)
510 (s )

where j = {1, -+ ,K}, g () illustrates the operation conducted

Bij (2)

by the FC layer, o (-) denotes the sigmoid function, respectively.

By resorting to these contribution scores related to pain, we
could fuse the original features of facial local regions and then
estimate the pain level of the rats’ expression image according to
its feature fusion, which can be illustrated as:

K
A = Softmax [ h| Y Bijxij 3)
j=1

where h(-) and softmax (-) represent the procedures conducted
by a FC layer and softmax function. In order to train the
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Facial Image
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FIGURE 3

Integral structure of PainSeeker for evaluating rats’ pain by facial expressions.
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PainSeeker model, we apply the cross-entropy (CE) loss to
set up the relationship between the pain label anticipated by
PainSeeker and the corresponding ground truth. The CE Loss are
illustrated as:

tor =7 (vo¥)). @

Where 7 (-) is the CE function.

Highlighting highly-contributive rats’
pain-related facial local regions

It is crucial to notice that minimizing the CE loss in
Equation (4) enables us to get a set of f;j values scoping from 0 to 1.
Large f;; values indicate strong associations of the corresponding
facial local regions with pain in rats, thus contributing highly
to learning distinguishing features for anticipating the rats’ pain
level. But the association of these highly-contributive facial local
regions may reduce due to partial occlusion caused by deviations
in head poses of rats in a frontal perspective. As a consequence,
the values of these regions, ideally large, may show a narrower
disparity in comparison with the regions that are less-contributive
in practical scenarios.

In terms of this issue, we came up with a new regularization
term named pain-related score calibration (PRSC) for the
PainSeeker model, stemming from the widely-applied triplet loss
(42). And the PRSC loss function is shown as follows:

1 Z]K:hl max{0,8 — (ﬂlhj - ﬂ_lr)}, (5)

L =
PRSC K,

In Equation (5), 3 denotes the preset margin value, /Slh]
represents the j element among the highest K, scores that are
highly related to pain, B] denotes the average value among the
K, = K — Kj resting scores relevant to the local regions of
face that are less-contributive. The concurrent minimization of

the PRSC loss and the CE loss leads to a wider disparity between
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the scores that are highly related to pain and the other scores.
This procedure highlights the features studied from local regions
of faces that are highly related to pain while restraining these
features that are less-contributive in the original fused features
shown in Equation (3). Through this calibration, the feature fusion
facilitated by the PainSeeker model becomes more robust to
variations in head pose while retaining its discriminative capability
for pain assessment.

Optimization problem for painseeker

Associating the loss functions exhibited in Equations (4) and
(5), and summing overall these N training samples, we can
obtain the total loss function for the suggested PainSeeker model.
The optimiation problem for training PainSeeker model can be
expressed as follows:

N
ming,g, g, % 2[5 (y,-,y‘f-))
i=

K —
3 maxto,5 — (B — B )))
j=1

where Qf, Og, O stands for the parameters related to the
functions conducted employing the layers £, g, and & in PainSeeker,
A is the trade-off parameter to keep the balance between PRSC and
CE losses, respectively.

Pain label prediction using the trained
Painseeker model

The optimization problem presented in Equation (6) can be
efficiently solved using widely-used optimizers such as SGD and
Adam. Once the solution is obtained, the pain label of a testing rat’s
facial expression image can be predicted using Equation (3). The
input for this equation corresponds to the set of original features
derived from the test image, obtained by applying the reshape
operation described in Equation (1).
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Experiments

Experimental protocol

During this process, we carry on extensive pain assessment
experiments on the high-confidence sample set of the RatsPain
dataset to assess the PainSeeker model. Because of the finite number
of samples labeled with severe pain, we decide to unite both
moderate and severe samples into the “Pain” category, enabling us
to take binary classification tasks. Then we applied the leave-one-
rat-out (LORO) protocol for valuation, implementing S folds of
experiments, where S acts on behalf of the quantity of rats included
in the dataset. As for every fold of the research, we will utilize the
expression images of one rat to be the testing set, in the meantime,
the expression images of the left rats are applied as the training set
at the same time.

The performance criterion used are the FI-score and Accuracy,
which will worked out by the following formulas:

2TP
F1 —score = ————, (7)
2TP + FP + EN
TN + TP
Accuracy = + 100. (8)

TP+ FP+ TN + FN

In this formulas, TP, TN, FP, and FN stands for the numbers of
expression images of rats across all the folds properly anticipated
as pain, improperly anticipated as pain, wrongly anticipated as
no pain, and anticipated as no pain labels in a correct manner,
respectively. In time of the researches, we cropped artificially every
rat’s expression image from the raw image, including the four
key pain-related AUs, as exhibited in Figure 2. Then these clipped
images were changed the size to 224 x 224 pixels.

Comparison methods and implementation
detail

In our experiments, we employ the convolutional layers of
ResNet-18 to extract original features from the local regions of face
for PainSeeker (30). The trade-off parameter A, margin value §, and
the number of local regions of face that are highly related to pain. K},
in PainSeeker are fixed at 0.1, 0.2, and 5, respectively. In the training
stage, we set the batch size to 64, employ the Adam optimizer, the
learning rate and weight decay are set to le~* and 0.01. Moreover,
we employ a sample augmentation strategy. Specifically, we first
resize each rat facial image to 256 x 256 pixels and then randomly
crop a sub-region with 224 x 224 pixels to generate more diverse
training rat facial images. The horizontal flipping operation is
also employed to double the training samples. To appraise the
performance of PainSeeker in the light of the challenge of assessing
rats’ pain by non-frontal facial expressions, we compare it with
several deep learning and machine learning methods. The deep
learning method chosen for comparison is ResNet-18. We maintain
identical settings for batch size, optimizer, learning rate, and sample
augmentation during training, as those used for PainSeeker.
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As for the machine learning methods, we employ an association
of Local Binary Pattern (LBP) and Support Vector Machine (SVM)
(35, 36). As for this approach, LBP is utilized to extract features
describing the facial expression images of rats, while SVM handles
the subsequent pain classification task. For LBP feature extraction,
following previous works in human facial expression recognition
(37, 38), we first divide the rat facial image into a set of facial local
regions with a fixed-size spatial grid, e.g., 4 x 4. LBP features are
then extracted from these facial local regions and concatenated into
a feature vector to describe the rat facial image. Note that three
types of spatial grids, including 4 x 4, 8 x 8, and 16 x 16, are used
in the experiments. Moreover, LBP has two important parameters
to be set: the number of neighboring pixels R and the radius P.
We set R =1, 3 and P = 8, resulting in six combinations of LBP
and SVM, denoted as LBPRipg (4 x 4), LBPripg (8 x 8), LBPrips
(16 X 16), LBPR3P8 (4 X 4), LBPR3P3 (8 X 8), and LBPRlpg (16 X
16). Additionally, the kernel function chosen for SVM is the linear
kernel, defined as k (x,y) = xTy, where x and y are input vectors.
The penalty coeflicient for SVM is fixed at C = 1.

Results and discussions

The experimental results of these methods were shown in
Table 3. Several interesting conclusions can be drawn from them.

First, after evaluating the pain conditions of each rat through
facial expression assessment, all methods demonstrated excellent
performance in terms of Fl-score and Accuracy. In PainSeeker,
the Accuracy, Recall rate and Fl-score are calculated based on
the confusion matrix and are used to evaluate the classification
performance of the model for animal pain expressions. The
results were significantly better than random guessing, which
provided strong research-based evidence for the view that facial
expressions can be used to assess the pain levels of rats. Moreover,
it should be noticed that our PainSeeker model outperformed all
the comparison methods, achieving remarkable comprehensive FI-
score and Accuracy of 0.7731 and 74.17%, respectively. It proved
that the proposed PainSeeker model has superior performance
and effectiveness in handling this increasingly growing and highly
significant issue compared to traditional machine learning and
deep learning methods. In other words, for the challenges involved
in assessing the pain status of rats through facial expressions,
(especially the non-positive perspective emphasized in this study),
adopting targeted methods such as the PainSeeker model is
more effective than directly applying existing traditional machine
learning and deep learning techniques.

Second, we present the Fl-score and Accuracy achieved by
every rat across all methods shown in Table 3. The results figure
out an intriguing trend, with consistently significant performance
differences exists Rats#3 and #4 compared to the remaining rats
across nearly all methods. This finding inspires us to take the
potential of a class-imbalanced problem in pain assessment via
facial expressions into account when employing samples from
these rats as the testing set. It is known that an extremely class-
imbalanced problem existing in the training set can affect the
effectiveness of machine learning approaches (39). To investigate
this aspect, we present the training and testing sample numbers
across all folds of our experiments in Table 4. Furthermore, it
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TABLE 3 Comparison of f1-score and accuracy of evaluating pain of rats by expressions under the loro protocol.

Method Rat#1 Rat#2 Rat#3 Rat#4 Rat#5 Rat#6 LORO

LBPrips (4 x 4) 0.7862/71.95 0.7292/64.29 0.5399/62.12 0.6291/65.65 0.6923/64.84 0.6087/62.89 0.6854/65.64
LBPgips (8 x 8) 0.7835/71.49 0.7396/67.14 0.4906/59.09 0.6184/65.65 0.6300/59.34 0.5493/57.73 0.6853/64.24
LBPgips (16 x 16) 0.7703/69.23 0.7068/65.24 0.4648/61.62 0.5326/62.61 0.5930/55.49 0.7000/69.07 0.6462/63.62
LBPrsps (4 X 4) 0.8014/74.66 0.7341/66.19 0.5223/62.12 0.5842/63.48 0.7184/68.13 0.7736/75.26 0.6984/67.66
LBPrsps (8 % 8) 0.7286/66.97 0.7315/67.14 0.4247/57.58 0.6193/67.39 0.7264/68.13 0.6800/67.01 0.6689/65.64
LBPrsps (16 x 16) 0.7416/68.78 0.7160/65.24 0.4460/61.11 0.5510/61.74 0.5333/50.00 0.6346/60.82 0.6235/61.69
ResNet-18 0.8802/80.54 0.7004/66.19 0.4274/66.16 0.6240/59.13 0.7905/65.93 0.8029/72.16 0.7393/68.01
PainSeeker w/o PRSC 0.8516/75.57 0.7045/62.86 0.5263/77.27 0.5689/57.83 0.7386/65.38 0.7931/75.26 0.7234/68.28
PainSeeker (Ours) 0.8944/84.62 0.7490/70.00 0.5586/75.25 0.6847/69.57 0.8000/71.43 0.8000/73.20 0.7731/74.17

TABLE 4 The sample statistical information of the training set in each fold
of experiments on ratspain dataset under the Loro protocol.

Testing Rat # Training Rat Facial Images
“No Pain” “Pain”
Rat#1 485 432
Rat#2 439 489
Rat#3 393 547
Rat#4 403 505
Rat#5 478 478
Rat#6 507 534

is evident that the gap between “No Pain” and “Pain” training
sample numbers exceeds 100 (the second most severe) for Rat#4
and surpasses 150 for Rat#3 (most severe). Consequently, all
methods exhibit inferior performance when using Rat#3 as the
testing subject compared to Rat#4, as shown in Table 4. Therefore,
further investigation is warranted to explore this aspect and
mitigate this interference in the development of both deep learning
and machine learning methods for evaluating rats’ pain through
facial expressions.

Further exploration of the Painseeker
model

In this section, we delve deeper into the proposed PainSeeker

model to provide readers with a more comprehensive
understanding of its advantages in addressing the challenge
of assessing pain in rats from non-frontal facial expressions.
Specifically, we aim to evaluate the efficacy of the meticulously
designed PRSC loss (a new regularization term designed to help
the PainSeeker model identify pain discrimination and head
posture invariant features from the rats’ expressions). To this
end, we exclude the PRSC term from the overall loss function
of the initial PainSeeker model, leading to a simplified version
referred to as PainSeeker w/o PRSC. Subsequently, we conduct

LORO investigations using the parameter configurations as those
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employed for the original PainSeeker. Table 3 presents a summary
of all the results.

As depicted in the table, PainSeeker w/o PRSC achieves a FI-
score of 0.7234 and an Accuracy of 68.28% on the RatsPain dataset.
This is significantly lower than that of the original PainSeeker
model, which had an FI-score of 0.7731 and an Accuracy of 74.17%
on this dataset. This comparative analysis clearly demonstrates
that the introduction of the PRSC loss effectively improved the
performance of PainSeeker in evaluating the pain of rats, especially
when their head postures were presented in diverse non-positive
perspectives through facial expressions.

Furthermore, we aim to clarify through experiments why, in
the PainSeeker model with PRSC added, features related to pain
can be learned from the facial expressions of mice, regardless of the
differences in the head postures of the mice. Specifically, we selected
three labeled “Pain” rat facial expression images from the first
round of tests of the previous LORO experiment. The head postures
of these images corresponded to frontal, moderately non-frontal,
and extremely non-frontal head postures. Then, we generated heat
maps for them based on the contribution scores B;; related to pain
that were learned jointly by the PainSeeker w/o PRSC and the
original PainSeeker models. The experimental results are shown
in Figure 4. The top row corresponds to the results of PainSeeker
w/o PRSC, while the bottom row corresponds to the results of the
original PainSeeker.

From the visualization results, it is evident that both models can
effectively focus attention on the key facial local areas in the facial
expression images of rodents with positive head postures, such as
the nose, whiskers, and cheeks, which are closely related to pain as
defined in the RGS. The contribution values related to pain in these
areas are significantly higher than those in less relevant facial areas.
However, for the facial expression samples of rodents with non-
positive head postures, PainSeeker w/o PRSC often fails to focus
on these key facial local areas. Moreover, there is also a significant
difference in these focus areas in terms of numerical values, being
larger compared to other areas. On the contrary, after introducing
PRCS in the PainSeeker model, it will prompt itself to focus more
on the truly pain-related facial local areas, thereby obtaining higher
values for the contribution scores related to pain. This situation
holds true regardless of whether the head posture is moderately or
extremely non-positive, thus alleviating the problem of insufficient
utilization of facial local areas related to pain.
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moderately non-frontal, and extremely non-frontal views, respectively.
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Results of pain-related contribution scores learned by PainSeeker without PRSC and painseeker for rat facial expression images with frontal,
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FIGURE 5

Results of sensitivity analysis experiments for hyper-parameters in the proposed PainSeeker model, where (a—c) correspond to the outcomes of the
trade-off parameter X, the margin value 8, and the number of highly pain-related facial local regions Kj, respectively.

DeepLabCut is a universal motion tracking tool that can mark
and analyze the 2D/3D movement trajectories of any part of an
animal’s body (such as the face, limbs, tail). Its functions are more
extensive and are applicable to multiple fields such as behavior
studies and neuroscience. In terms of analyzing facial expressions,
PainSeeker has the following advantages over DeepLabCut: First,
PainSeeker is specifically designed for the analysis of facial
expressions related to pain, focusing on identifying changes in facial
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expressions caused by pain in animals, such as frowning, changes
in ear position. It can directly quantify the intensity of pain and is
suitable for scenarios such as postoperative pain monitoring and
pain assessment of experimental animals. However, DeepLabCut,
as a general motion tracking tool, requires users to define key
points themselves, and its specificity in pain expression analysis
is relatively weak. Second, PainSeeker has preset models for pain
analysis, and the operation is simple, making it suitable for
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non-technical users to quickly get started. However, DeepLabCut
requires users to have a certain programming foundation and
manual annotation ability, and the learning curve is relatively
steep. PainSeeker may enhance the accuracy of pain assessment
by integrating multimodal data such as sounds and physiological
indicators, while DeepLabCut mainly analyzes based on video
data and is relatively limited in data fusion. Third, PainSeeker
may enhance the accuracy of pain assessment by integrating
multimodal data such as sounds and physiological indicators, while
DeepLabCut mainly analyzes based on video data and is relatively
limited in data fusion. In addition, PainSeeker directly provides
pain scores or classification results, making it easy for users to
quickly interpret the data. On the other hand, DeepLabCut outputs
key point coordinates or movement trajectories, which require
users to conduct further analysis and have higher requirements for
data processing capabilities.

Hyper-parameter sensitivity analysis for the
painseeker model

From Equation (6), it is evident that the performance of
the PainSeeker model relies on three key hyper-parameters
necessitating configuration for rats’ pain assessment effectively by
observing facial expressions: the trade-off parameter A, margin
value 8, and the number of local regions of face that are highly
related to pain Kj. This naturally leads to a question: How do
these changes in the hyperparameters affect the performance of
PainSeeker? To investigate this, we conducted a large number
of hyperparameter sensitivity analysis experiments using the
RatsPain dataset.

Specifically, we maintain one of the three hyper-parameters at
values employed in Section V-B (A = 0.1, § = 0.2, and Kj, = 5),
while allowing the other two to vary within predefined parameter
intervals: Ae [0.05, 0.1, 0.5, 1, 1.5], 8¢ [0.05, 0.1, 0.15, 0.2, 0.5], and
Kype (3, 5, 10, 15, 20). The experimental setup follows the LORO
protocol, with batch size, optimizer, learning rate, and weight decay
consistent with previous experiments. The results are presented in
Figure 5.

It is easy to see from this chart that the performance of our
PainSeeker model shows only minor differences in response when
any one of the three trade-off parameters changes. This indicates
that the PainSeeker model is relatively insensitive to fluctuations
in its hyperparameters when assessing the pain situation of rats
through facial expressions. Therefore, in practical applications, it
may not be necessary to conduct complex hyperparameter selection
for the PainSeeker model.

Limitations

However, we acknowledge that there are still many
shortcomings in our work, which need to be further improved
in the future. Firstly, the RatsPain database only covers one type
of pain stimulus for rats, namely orthodontic treatment. It is
necessary to study whether our PainSeeker can effectively process
facial expression samples of rats that have undergone other pain
stimulation methods. Additionally, we also question whether
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our PainSeeker model is applicable to rats from different strains,
genders, and age groups. Therefore, it is necessary to further
collect and analyze facial expression samples from different rats.
Therefore, we will continue to expand the RatsPain database and
evaluate the effectiveness of the PainSeeker method in assessing
rat pain in a more natural environment in the future. At the same
time, we will also strive to design more effective deep learning
methods to address the challenges of assessing rat pain in a more
natural environment.

Conclusion

Our study demonstrates the effectiveness of the proposed
“PainSeeker” model, especially its advantages in addressing
head posture variations, and provides experimental evidence
for the
expression observation.

possibility of pain assessment through facial
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