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Introduction: The resistance of Haemonchus contortus to ivermectin (IVM) poses 
a significant economic threat to the global livestock industry. This necessitates 
alternative strategies for managing the development of drug resistance in H. 
contortus.

Methods: This study employed molecular docking screening, molecular 
dynamics simulations, and in  vitro experiments to evaluate the effects of 
bioactive alkaloids from Sophora alopecuroides L. on H. contortus.

Results: Molecular docking and dynamics simulations revealed aloperine 
(ALO)’s strong binding affinity (−6.83 kcal/mol) and stable interaction with HC-
Pgp among 13 tested alkaloids. Further evaluation through larval development 
test (LDT), larval migration inhibition test (LMIT), and scanning electron 
microscopy revealed that the combined administration of ALO and IVM exerted 
significantly enhanced inhibitory effects on the development, motility, and 
morphological integrity of IVM-resistant strains compared to monotherapy 
groups. Furthermore, the Rhodamine-123 accumulation assay demonstrated 
that aloperine significantly inhibited HC-Pgp activity (p < 0.05).

Discussion: This study provides new perspectives for exploring the natural 
product ALO as an anthelmintic, HC-Pgp inhibitor, and synergist molecule. 
Further studies evaluating in vivo safety and pharmacokinetic interactions are 
required to validate these findings.
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1 Introduction

Haemonchus contortus, a pathogenic gastrointestinal nematode that parasitizes the 
abomasum of ruminants, infects hosts through a complex life cycle. The eggs of H. contortus 
are excreted in host feces and hatch into first-stage larvae (L1), and develop into the second- 
(L2) and third- (L3) stage larvae within approximately 1 week. The host ingests infective L3 
larvae while grazing, after which exsheathed L3 larvae (xL3) progress to fourth-stage larvae 
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(L4), simultaneously acquiring nutrients at the parasitic sites, and 
maturing into dioecious adults after approximately 3 weeks (1). This 
can lead to anemia and complications in livestock. In severe cases, it 
can cause extreme emaciation and even death, representing a 
significant global disease that results in considerable economic losses 
(2). Anthelmintics are currently the primary control strategy for these 
gastrointestinal nematodes, among which ivermectin (IVM) is used 
as a broad-spectrum, highly effective, low-toxicity, and low-residue 
macrolide antiparasitic agent. However, the prolonged and improper 
use of anthelmintics has facilitated the development of drug 
resistance (3); therefore, the efficacy of anthelmintics warrants 
further enhancement.

P-glycoproteins (P-gp) are hydrophobic cell membrane proteins 
with high molecular weight and lipophilicity that belong to the 
ATP-dependent transport protein family in H. contortus. P-gp expel 
exogenous substances to prevent their accumulation within cells, 
protecting against toxic molecules (4). P-gp overexpression is one of the 
mechanisms underlying IVM resistance (5). P-gp are present at various 
stages of H. contortus development, particularly abundant in L3 larvae 
in structures such as the cuticle (6). A total of 11 functional P-gp genes 
have been identified in H. contortus, namely P-gp 1–4, 9–14, and 16, 
which are homologous to those in Caenorhabditis elegans, except for 
P-gp16 (7). Inhibition of P-gp expression has been shown to enhance 
H. contortus sensitivity to IVM (8). P-gp inhibitors are classified into 
four generations based on toxicity scores, with phytochemicals (natural 
compounds produced by plants), including alkaloids and terpenoids, 
belonging to the fourth generation (9, 10). Phytochemicals, with their 
low toxicity and diverse biological properties, show significant potential 
as P-gp inhibitors and antiparasitic agents (11–13), and are synergistic 
enhancers for anthelmintics. While they may lack inherent anthelmintic 
properties, their use alongside anthelmintics enhances the effectiveness 
of these treatments. However, identifying effective natural HC-Pgp 
inhibitors is challenging, as extraction and antiparasitic activity 
evaluation are costly and require specialized equipment. In recent years, 
the integration of structure-based virtual screening and molecular 
dynamics simulations has enhanced drug discovery by elucidating the 
molecular interactions between drugs and their targets. This 
comprehensive approach helps identify, design, and optimize novel 
candidate drugs.

Sophora alopecuroides L., a plant species in the genus Sophora, 
belonging to the Fabaceae family, is widely distributed in Western 
and Central Asia. For example, in China, S. alopecuroides L. is 
primarily found in deserts, dunes, and saline-alkali lands in Ningxia 
and Xinjiang (14, 15) and has a wide range of medicinal properties, 
including antiparasitic, antiviral, antibacterial, and neuroprotective 
(16). Its main chemical components include alkaloids, flavonoids, 
amino acids, carbohydrates, and organic acids (17). Alkaloids are the 
primary bioactive components in S. alopecuroides L., including 
aloperine (ALO), matrine, and sophocarpine (18), with various 
biological properties, such as antioxidant, anticancer, and insecticidal 
(18, 19). ALO, a quinolizidine alkaloid extracted from S. alopecuroides 
L., is important in mitigating various parasites, such as nematodes 
and aphids (20–22). Currently, data on ALO in H. contortus remain 
lacking. Therefore, in this study, we determined whether ALO could 
inhibit P-gps expression and increase the sensitivity of H. contortus 
to IVM. Our findings provide novel insights into the scientific 
prevention and control of haemonchosis, effective drug use, novel 
drug development, and promotion of advantageous local resources.

2 Materials and methods

2.1 Ethics statement

The study design was reviewed and approved by the Animal 
Ethics Committee of Ningxia University (permit No. 24-F-051). The 
procedures involving animals were carried out in accordance with the 
Animal Ethics Procedures and Guidelines of the People’s Republic of 
China. All efforts were made to minimize suffering and to reduce the 
number of sheep used in the experiment.

2.2 Haemonchus contortus strains

The IVM-sensitive and resistant strains of H. contortus were 
provided by the Inner Mongolia Academy of Agricultural and Animal 
Husbandry Sciences (IMAAAHS). The sensitive strain (HC-S) was 
isolated from Yuci, Shanxi, China, passaged, and maintained in sheep 
at IMAAAHS for 6 years. The resistant strain (HC-R) originally came 
from the Moredun Research Institute in the United Kingdom and was 
passaged and maintained in sheep at IMAAAHS for 9 years.

2.3 Preparation of target proteins

Since the three-dimensional structure of HC-Pgp has not been 
experimentally resolved, we constructed its structural model using 
homology modeling. The target protein preparation involved 
retrieving the full-length amino acid sequence of HC-Pgp (UniProt 
ID: A0A7I4YQ55) from the UniProt database for homology modeling 
using SWISS-MODEL.1 The constructed protein model underwent 
rigorous validation through Ramachandran plot evaluation to ensure 
its suitability for subsequent molecular docking studies. SWISS-
MODEL and validation Ramachandran plot ensure structural 
accuracy of HC-Pgp, enabling reliable virtual screening. Concurrently, 
Potential ligand binding sites were identified using Schrödinger 
software (Maestro12.8) suite. Schrödinger’s SiteMap and Glide 
modules identify ligand-binding pockets, foundational for docking 
studies. Preprocessing was performed using the Protein Preparation 
Wizard module. The SiteMap algorithm was applied to detect potential 
ligand binding sites with a 1.0 Å probe radius, and at least 15 
characteristic probes were generated per site. Based on the prediction 
results, the Glide module was employed to construct a docking grid 
centered on the primary binding pocket, laying a solid computational 
foundation for virtual screening.

2.4 Preparation of small molecule ligands

The predominant alkaloids in S. alopecuroides L. were retrieved from 
PubChem and subsequently subjected to computational preparation 
using the LigPrep 5.0 module of Schrödinger Suite. LigPrep adjusts 
protonation states, removes salts, and generates tautomers/stereoisomers, 
ensuring ligands mimic biological conditions. To enhance the reliability 

1 https://swissmodel.expasy.org/
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of docking results, ligand conformations were systematically optimized 
to mimic interactions under physiological conditions, thereby reducing 
potential computational false positives. Molecular processing included: 
(1) adjustment of protonation states under physiological pH conditions 
(7.0 ± 2.0), (2) removal of inorganic salts and counterions, (3) addition 
of hydrogen atoms with stereochemical optimization, (4) generation of 
biologically relevant tautomers and stereoisomers (maximum isomer 
limit = 32), and (5) conformational optimization through ring-
constrained energy minimization employing the OPLS4 force field. 
OPLS4 force field minimization improves conformational accuracy, 
enhancing docking reliability. All computational parameters strictly 
adhered to the module’s default recommended settings to ensure 
methodological reproducibility and standardization.

2.5 Molecular docking screening

Molecular docking were employed to prioritize alkaloids with 
optimal HC-Pgp binding stability, forming a robust theoretical 
framework for downstream in vitro studies. Initial ADMET filtration 
of database molecules was performed using the Schrödinger 
QuickProp module (23), retaining only compounds compliant with 
Lipinski’s rule of five and devoid of reactive functional groups for 
subsequent docking studies. Flexible docking was then conducted via 
the Schrödinger platform to prioritize alkaloids with the highest 
predicted binding affinities based on docking scores. Interaction 
analysis of the top five candidate compounds was performed through 
molecular visualization using Maestro, Discovery Studio (Dassault 
Systèmes BIOVIA, 2019), and PyMOL to identify key amino acid 
residues mediating protein-ligand interactions.

2.6 Molecular dynamics simulations

Molecular dynamics simulations were conducted using the 
GROMACS 2022.6 GPU version to confirm dynamic stability and 
binding mode persistence (24, 25). The initial structure for the 
simulations was derived from molecular docking results. The ligand 
topology file was generated employing the AMBER force field through 
the ACPYPE script, specifically using the AMBER99SB-ILDN force 
field for the protein topology file. The molecular dynamics simulation 
protocol included the definition of the simulation box, solvation with 
water molecules, and the addition of counter ions. Subsequently, 
energy minimization was performed, followed by equilibration in 
both the canonical ensemble system (NVT) and the constant-pressure 
system (NPT). The final phase of the simulation involved 100 ns 
molecular dynamics run under constant temperature and pressure 
conditions. Upon completion of the simulation, the last 5 ns of the 
trajectory were extracted for further analysis. The gmx_mmpbsa tool 
was utilized for the calculation of free energy to gain insights into the 
energetics of the molecular system.

2.7 Larval development inhibition test

The development inhibition effect was assessed using a modified 
larval development inhibition test (LDT) (26). In a 24-well plate, 
265 μL of physiological saline (Nacl, 0.9%), 70 μL of Earle’s balanced 

salt solution (Sigma–Aldrich Corporation, United States), 20 μL of 
H. contortus eggs (About 100 eggs), and 5 μL of 5 mg/mLwater-soluble 
amphotericin B (Solarbio, Beijing, China) were added to each well. 
The mixture was incubated at 27°C in a biochemical incubator for 
24 h. Subsequently, 80 μL of ALO (Baoji Fangsheng Biological 
Development Co., Ltd., Baoji, China), 80 μL of IVM (Shanghai Yuanye 
Bio-Technology Co., Ltd., Shanghai, China), a combination of 40 μL 
ALO + 40 μL IVM, and 1% DMSO (a negative control) was added to 
the system in individual wells. The final concentrations of both ALO 
and IVM were prepared through two-fold serial dilutions spanning 0 
to 400 ng/mL. Three independent biological replicates were set up for 
each experimental group. After 6–7 d, L3 larvae were counted under 
an inverted microscope (OLYMPUS IX73), and the median lethal 
dose (LD50) was calculated using the Karber method, its basic 
arithmetic formula is:lgLD50 = ∑1/2 (Xi + Xi + 1) (Pi + 1 − Pi). Where 
Xi is the logarithm of the dose Pi is the rate of developmental inhibition.

2.8 Larval migration inhibition test

Feces from lambs infected with H. contortus were collected and 
incubated in aerobic conditions at 24°C with 80–85% humidity for 
5–10 d. L3 larvae were isolated from the feces using the Baermann 
funnel system (27), and the migration ability was assessed using a 
modified larval migration inhibition test (LMIT) (28). In each well, 
approximately 100 L3 larvae were added to 1,710 μL of sterile water. 
Various treatment solutions were then added to individual larval 
suspensions: 90 μL of ALO (final concentration 0.39–400 μg/mL), 
90 μL of IVM (final concentration 0.39–400 μg/mL), 45 μL of 
IVM + 45 μL of ALO, and 1% DMSO (a negative control). Three 
replicate experiments were conducted for each treatment.

After 24 h of incubation at 24°C, the liquid from each well was 
transferred to migration plates containing 0.125% agar and incubated 
for an additional 24 h. The solutions at the bottom of the migration 
plates were transferred to a new 24-well plate. The number of 
migrating larvae was assessed under an inverted microscope, and the 
migration rate was calculated. Using GraphPad Prism 8.0.1, a 
regression curve was fitted with the logarithm of each treatment 
concentration and the larval migration inhibition rate on the X-and 
Y-axes, respectively. The half-maximal effective concentration (EC50) 
was calculated using the equation: Y = Bottom + (Top − Bottom)/
(1 + 10^[(LogEC50 – X) × HillSlope]).

2.9 Evaluation of morphological changes

The exsheathed L3 larvae were exposed to 25 μg/mL ALO, 25 μg/
mL IVM, or a combination of 25 μg/mL ALO + 25 μg/mL IVM for 
24 h, with 0.1% DMSO serving as the vehicle control. Post-treatment, 
the specimens were fixed with 2.5% glutaraldehyde and 
morphologically analyzed using a scanning electron microscope 
(SU8100) at an accelerating voltage of 3.0 kV.

2.10 Rhodamine 123 determinations

The effect of ALO on HC-Pgp activity was determined by 
monitoring rhodamine 123 (Rhe123) accumulation in H. contortus 
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(29). Approximately 30,000 exsheathed L3 larvae were exposed to 
ALO, IVM, or their combination for 24 h (as described previously), 
followed by incubation in Rhe123 solution (1 mL of 1.5 μM) under 
dark conditions at room temperature using a constant temperature 
shaker for 30 min. The worms were subsequently centrifuged 
(3,000 × g, 3 min) and washed twice with 1 mL distilled water. The 
pellet was resuspended in 1 mL distilled water and maintained in 
darkness for 60 min. After final centrifugation (3,000 × g, 3 min), 
the supernatant was collected and stored protected from light for 
60 min prior to analysis. Rhe123 concentration in the supernatant 
was quantified using a multifunctional microplate reader (Agilent 
Technologies Inc., United  States) with specific fluorescence 
parameters (excitation wavelength λex = 495 nm, emission 
wavelength λem = 525 nm). Sample concentrations were calculated 
against a standard curve. Three independent experimental 
replicates were performed. Statistical analysis was conducted using 
GraphPad Prism 8.0.1, with statistical significance defined as 
p < 0.05.

3 Results

3.1 Homology modeling of HC-Pgp

Using the primary amino acid sequence of HC-Pgp (accession 
number: A0A7I4YQ55) as the target, a BLASTP and SWISS-MODEL 
template search identified 4f4c.1. A (X-ray, 3.40 Å) as the best template 
with a sequence identity of 55.83% with HC-Pgp, which is sufficient 
to construct a reliable model. The sequence alignment between 
HC-Pgp and 4f4c.1. A is illustrated in Supplementary Figure S1. The 
model generated using SWISS-MODEL was validated through a 
Ramachandran plot (Supplementary Figure S2). The analysis revealed 
that 93.3% of the residues were in the most favored regions and 6.6% 
in the additional allowed regions, while 0.1% of the amino acids were 
in the disallowed regions. These data validated the modeled structure, 
making it suitable for docking studies (30).

3.2 Screening of HC-Pgp inhibitors from 
major alkaloids in Sophora alopecuroides L.

Structure-based virtual screening (SBVS) in drug discovery offers 
multiple advantages, including the capability to efficiently screen large 
compound libraries, reduced costs and time compared to experimental 
screening, as well as the potential to explore broad chemical spaces. In 
this study, preliminary ADMET filtering of database molecules was 
performed using the QuickProp module, retaining molecules 
compliant with Lipinski’s rule of five (Ro5) and devoid of reactive 
fragments. The results demonstrate that all 13 major alkaloids from 
S. alopecuroides L. exhibited physicochemical parameters within 
acceptable ranges for hydrogen bond donors/acceptors, molecular 
weight, and lipophilicity (Table  1), suggesting their potential as 
promising drug candidates. Subsequent molecular docking screening 
revealed that ALO exhibited the highest binding affinity (−6.83 kcal/
mol) toward HC-Pgp (Supplementary Table S1; 
Supplementary Figure S3). As shown in Figures 1A,B, ALO interacts 
with HC-Pgp through binding interactions predominantly mediated 
by hydrogen bonding and hydrophobic forces at the Glu556 residue.

3.3 Construction between ALO and 
HC-Pgp is highly stable

Molecular dynamics simulations spanning 100 ns were conducted 
to evaluate the interaction between ALO and HC-Pgp. As shown in 
Figure  2A, the ALO-HC-Pgp complex achieved equilibrium after 
20 ns of simulation. RMSF analysis, which quantifies atomic deviations 
from average positions, revealed relatively low values (<1 Å) across 
both ligand and receptor domains (Figure 2B), indicating sustained 
structural stability. The Rg, calculated as the mass-weighted root mean 
square distance of atoms from the system’s centroid, demonstrated 
minimal variation (ΔRg ≈ 0.05 nm) within the range of 3.94–3.99 nm 
throughout the trajectory (Figure  2C), further confirming 
conformational stability. Protein-ligand hydrogen bonding patterns, 

TABLE 1 Prediction of ADME properties for 13 Sophora alopecuroides L. alkaloids.

Compounds MW H-bond donors H-bond 
acceptors

QplogPo/w QPlogHERG

Aloperine 232.37 1.00 3.50 1.88 −4.69

Anagyrine 244.34 0.00 5.00 1.46 −4.42

Cytisine 190.24 1.00 4.50 0.67 −4.01

Isomatrine 248.37 0.00 5.00 0.82 −2.21

Lupanine 248.37 0.00 5.00 0.92 −2.29

Matrine 248.37 0.00 5.00 0.85 −2.22

N-Methylcytisine 204.27 0.00 5.00 0.79 −4.25

Oxymatrine 264.37 0.00 6.00 0.93 −1.64

Oxysophocarpine 262.35 0.00 6.00 1.48 −3.25

Sophocarpine 246.35 0.00 5.00 1.45 −3.97

Sophoramine 244.34 0.00 5.00 1.39 −4.16

Sophoridine 248.37 0.00 5.00 0.84 −2.41

Sparteine 234.38 0.00 4.00 1.87 −4.48

MW: Molecular weight; QPlogPo/w: Predicted octanol/water partition coefficient; QPlogHERG: Predicted IC50 value for blockage of the HERG K + channels.

https://doi.org/10.3389/fvets.2025.1620324
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Li et al. 10.3389/fvets.2025.1620324

Frontiers in Veterinary Science 05 frontiersin.org

critical for binding affinity and complex stabilization, were 
dynamically monitored (Figure 2D). Additionally, Figure 2E depicts 
the binding mode of the ALO-HC-Pgp complex at 0, 20, 40, 60, 80, 
and 100 ns, illustrating the initial movement of the ALO around the 

binding pocket of the HC-Pgp. These multi-parameter analyses 
demonstrate that ligands achieve specific regulation of HC-Pgp 
function by stabilizing active site conformations and forming high-
strength hydrogen bond networks.

FIGURE 1

The three-dimensional and two-dimensional ligand interaction patterns between ALO and amino acid residues of the HC-Pgp receptor. (A) Three-
dimensional molecular interaction between ALO and HC-Pgp. (B) Two-dimensional molecular interaction between ALO and HC-Pgp.ALO, aloperine.

FIGURE 2

Molecular dynamic interactions of ALO with HC-Pgp receptors in 100 ns. (A) RMSD. (B) RMSF. (C) Rg curves. (D) H-bond number of the peptide-
receptor complexes. (E) Binding mode evolution of the ALO-HC-Pgp complex at 0, 20, 40, 60, 80, and 100 ns. ALO, aloperine.
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3.4 Binding free energy analysis

MM-PBSA calculations were performed using the final 5 ns of 
molecular dynamics simulations to quantify the binding affinities 
between ligand and its receptor. Van der Waals energy, electrostatic 
energy, electrostatic contribution to solvation-free energy from the 
Poisson-Boltzmann model, nonpolar contribution, and entropy were 
calculated for each complex. The results demonstrated that ALO 
exhibits strong binding affinity with HC-Pgp, as evidenced by a 
calculated binding free energy of −88.16 kcal/mol (Table  2). 
Furthermore, we analyzed the residue binding energy contribution of 
each amino acid in the receptor after ligand binding, which is a critical 
approach for identifying hotspot residues that play major roles in 
ligand binding during simulations. The energy decomposition results 
revealed that LEU555 and GLU556 in the active site and catalytic 
residues made significant contributions, while residues such as 
LEU536, GLN552, THR573, and GLU548 also played important roles 
in energy contributions (Figure 3).

3.5 Effects of ALO on Haemonchus 
contortus development

A comparison of the median lethal dose between the experimental 
and control groups in the LDT revealed an inhibitory effect of ALO 
on larval development to a lesser extent than that of IVM. The ALO 

and IVM combination exerted a significant inhibitory effect on 
H. contortus development that was approximately 2-to 3-fold of the 
effect of ALO treatment alone (Table 3; Figure 4). In the HC-R strain, 
the LD50 for the ALO + IVM group was 17.72 ng/mL, while the LD50 
values for the IVM and ALO groups were 45.02 and 50.90 ng/mL, 
respectively, indicating that the ALO + IVM combination had a 
significantly higher developmental inhibition effect on HC-R than 
that of either agent alone.

Similarly, in the HC-S strain, ALO exhibited an inhibitory effect 
on H. contortus development; ALO and IVM combination showed a 
significantly higher inhibitory effect on HC-S development than ALO 
or IVM monotherapy.

3.6 Effects of ALO on the migration ability 
of Haemonchus contortus

At the L3 stage of larvae development, the LMIT method was used 
to evaluate the effect of the ALO and IVM combination on the migration 
ability of H. contortus (Table 4; Figure 5). The EC50 values for the resistant 
strain of H. contortus were 25.43 μg/mL for ALO, 18.77 μg/mL for IVM, 
and 7.50 μg/mL for the combination of ALO and IVM. For the sensitive 
strain, the EC50 values were 5.33 μg/mL for ALO, 5.42 μg/mL for IVM, 
and 4.34 μg/mL for the combination of ALO and IVM. These results 
indicate that ALO can inhibit the migration ability of both IVM-resistant 
and sensitive strains of H. contortus. Furthermore, the ALO and IVM 
combination showed a significantly greater inhibitory effect on the 
migration ability of the HC-R strain than ALO or IVM alone, although 
this effect was not significant for the HC-S strain. This differential effect 

FIGURE 3

Energy decomposition of key amino acid residues in HC-Pgp during ligand binding (top 10 contributors).

TABLE 3 LD50 results of ALO alone or in combination with IVM on 
Haemonchus contortus.

Treatment LD50 (ng/mL) and 95% CI

HC-S HC-R

IVM 15.25 [8.73, 26.65] 45.02 [28.55, 70.99]

ALO 19.13 [12.53, 29.21] 50.90 [30.04, 83.47]

IVM + ALO 9.97 [5.24, 18.95] 17.72 [11.14, 28.20]

ALO: aloperine; IVM: ivermectin; LD50: median lethal dose; HC-S: sensitive strain; HC-R: 
resistant strain; 95% CI: 95% confidence interval.

TABLE 2 MM-PBSA based average binding free energy of HC-Pgp with 
ALO in kj/mol.

Interaction force Binding free energy (kJ/
mol)

Van der waals −146.04

Electrostatic −37.71

Polar solvation 89.68

Nonpolar solvation −18.08

ΔH −112.14

-TΔS 23.98

Total binding energy −88.16
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appears to be directly associated with P-gp, as evidenced by the Rhe123 
accumulation assay, which revealed significantly higher activity in HC-R 
compared to HC-S (p < 0.05) (Supplementary Figure S4).

3.7 Effects of ALO on the morphology of 
Haemonchus contortus

The nematode cuticle, a complex extracellular matrix composed 
of proteins, lipids, and carbohydrates, protects nematodes from 
environmental and pathogenic damage (31). To evaluate the effects of 
ALO on the cuticle of H. contortus L3, we observed H. contortus L3 
exposed to 25 μg/mL ALO under a scanning electron microscope. 
ALO-induced changes in the cuticle and led to severe cuticle shrinkage 
when combined with IVM (Figure 6). This is consistent with LDT and 
LMIT results, indicating that the ALO and IVM combination has a 
greater effect on the cuticle of H. contortus than either agent 
individually, suggesting that ALO has a synergistic effect with IVM.

3.8 ALO modulate Haemonchus contortus 
Pgps activity

The intracellular accumulation of Rhe 123 among different 
treatment groups was analyzed to evaluate the effects of ALO on 

HC-Pgp activity (Figure  7). Compared with the control group 
(R + 1%DMSO), the R + 25 μg/mL IVM group exhibited a 
significantly higher intracellular Rhe 123 concentration (p < 0.05), 
indicating reduced efflux activity or enhanced retention. In contrast, 
the R + 5 μg/mL ALO group displayed a significantly lower Rhe 123 
concentration relative to the control (p < 0.05). Notably, the 
combination treatment group (R + 5 μg/mL ALO + 25 μg/mL IVM) 
showed a pronounced synergistic interaction, with Rhe 123 
concentrations being significantly lower than those in the R + IVM 
group alone (p < 0.05). These results suggest that ALO effectively 
modulates HC-Pgp-mediated efflux activity, potentially reducing 
substrate efflux.

4 Discussion

Members of the ABC transporter superfamily, particularly P-gp, 
have been implicated in this phase III detoxification pathway through 
their capacity to actively export MLs from parasitic cells (5, 32). P-gps 
are active in all life stages of H. contortus (7), and their expression 
inhibition increases the sensitivity of H. contortus to IVM (8, 33–35). 
Plant extracts, as fourth-generation P-gp inhibitors, enhance the 
efficacy of existing anthelmintics, such as IVM (36). Data on whether 
ALO, an alkaloid extracted from S. alopecuroides L., can inhibit the 
expression of P-gp and enhance the efficacy of IVM are lacking.

Computer models serve as essential resources, with ligand-based 
methods, such as quantitative structure–activity relationships, and 
structure-based methods, such as molecular docking, widely used for 
predicting biological activities and screening potential natural product 
drugs (37, 38). These approaches offer a rapid and economical solution 
for identifying P-gp inhibitors or substrates (39, 40). A computer-aided 
drug–molecule docking model has been developed by docking 
anthelmintics with the Cel-Pgp-1 molecule, with confirmed applicability 
(36, 41). Here, we  selected P-gp as a potential target for molecular 
screening. We hypothesized that alkaloids in S. alopecuroides L. bind to 
P-gps, thereby enhancing the efficacy of IVM against H. contortus. 
Molecular dynamics simulations revealed that ALO could bind to 

FIGURE 4

Inhibitory effect of ALO alone or in combination with IVM on the larval development of sensitive strain (A) and resistant strain (B) of Haemonchus 
contortus. ALO, aloperine.

TABLE 4 EC50 results of ALO alone or in combination with IVM on 
Haemonchus contortus.

Treatment EC50 (μg/mL) and 95% CI

HC-S HC-R

IVM 5.42 [0.89, 10.50] 18.77 [12.24, 38.66]

ALO 5.33 [3.62, 7.80] 25.43 [15.00, 293.20]

IVM + ALO 4.34 [0.11, 8.03] 7.50 [4.66, 11.37]

ALO: aloperine; IVM: ivermectin; EC50: effective concentration for 50% inhibition; HC-S: 
sensitive strain; HC-R: resistant strain; 95% CI: 95% confidence interval.
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FIGURE 5

Inhibitory effect of ALO alone or in combination with IVM on the migration of the sensitive (A) and resistant (B) strains of Haemonchus contortus. ALO, 
aloperine.

FIGURE 6

Effect of ALO alone or in combination with IVM on the morphology of Haemonchus contortus. (A1) HC-S control group, (B1) HC-S IVM group, (C1) 
HC-S ALO group, (D1) HC-S ALO + IVM group, (A2) HC-R control group, (B2) HC-R IVM group, (C2) HC-R ALO group, and (D2) HC-R ALO + IVM group. 
ALO, aloperine.

HC-Pgp with great stability via van der Waals forces and hydrogen 
bonds. Identifying the docking site will facilitate further structural 
modifications of the natural product ALO to develop novel, effective 
P-gps inhibitors.

The inhibitory function of alkaloids on P-gp is attributed to a basic 
nitrogen atom and two planar aromatic rings. Piperidine and quinoline 
alkaloids inhibit P-gp expression (42, 43). ALO is a natural compound 
containing two fused piperidine rings with trivalent nitrogen atoms and 
is a derivative of piperidine alkaloids (44). In the binding conformation 
of ALO with HC-Pgp, the basic nitrogen atoms and planar aromatic 
rings of ALO interact with Glu 556 through hydrogen bonds and van der 
Waals forces (Figure 1), thereby altering the spatial conformation of 
HC-Pgp, blocking its interaction with substrates, and affecting its 
biological activities. Our study observed that ALO could significantly 
reduce HC-Pgp expression in the resistant strain of H. contortus and was 
not significantly different from the expression of P-gp in the sensitive 

strain. Therefore, ALO is a potential HC-Pgp modulator that enhances 
the sensitivity of H. contortus to IVM.

In vitro tests are used in preliminary evaluations of the anthelmintic 
effects of plant extracts (45). In these studies, eggs or larvae of 
H. contortus are directly exposed to plant extracts to assess their effects 
on eggs and larval development and motility. This study observed that 
ALO could aid in controlling gastrointestinal nematodes in livestock, 
with anthelmintic activities affecting the motility, development, and 
cuticle of H. contortus. Meanwhile, the ALO and IVM combination 
could enhance the effect of IVM against H. contortus. However, previous 
studies have reported that ALO and lupinine, which share structural 
similarity, could exhibit significant insecticidal activity by binding to 
receptors for nicotinic acetylcholine and acetylcholine (21, 46). These 
collective findings suggest that ALO exerts its anthelmintic and 
synergistic effects via multimodal mechanisms involving multiple 
molecular targets, rather than being solely dependent on P-gp 
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interactions. Future studies will investigate the specific molecular targets 
of ALO in H. contortus and validate the contribution of P-gp-mediated 
pathways to the observed synergism, thereby elucidating the mechanistic 
basis of ALO-IVM combinatorial efficacy. Meanwhile, in  vivo 
experiments and adult-stage studies are crucial for validating drug 
efficacy. Therefore, in subsequent work, animal model experiments and 
pharmacodynamic evaluations at the adult stage will be conducted, with 
a focus on pharmacokinetics and in vivo safety.

This study is the first to demonstrate the inhibitory effects of ALO 
extracted from a region-specific medicinal plant against H. contortus and 
its synergistic effects with IVM, indicating its potential for enhancing the 
efficacy of IVM. The findings of this study offer important insights for 
the prevention and control of haemonchosis, appropriate drug usage, 
new drug discovery, and the development and use of plant resources.
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Effect of ALO on rhodamine 123 accumulation. Rhodamine 123 (R, 
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Data are expressed as mean ± SEM (n = 3). Statistical significance 
compared to the R-alone group was determined by one-way 
ANOVA with Tukey’s post hoc test (*p < 0.05, ****p < 0.0001).
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