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Introduction: Use of Machine learning (ML) is rapidly expanding in histopathology, 
offering the potential to reduce interobserver variability and improve quantitative 
assessment. However, large datasets and computational resources commonly 
used in toxicology and human medicine are often unavailable to the veterinary 
pathologist. This study aimed to evaluate the feasibility and limitations of 
applying supervised ML on histopathological samples with limited training 
data, exemplified by training an ML model to segment the intestinal wall into its 
histological layers.
Materials and methods: The study included 145 piglets from five age groups (4, 
14, 25, 49, and 67 days). Full-wall samples from duodenum, jejunum and ileum 
were collected post-mortem, stained with H&E and digitized. A three-step ML 
model was trained on 8–15 images: Step 1 identified tissue, Step 2 segmented 
mucosa from submucosal layers, and Step  3 separated lamina propria from 
epithelium. Model performance was assessed by comparing AI-generated areas 
to manual annotations, calculating relative deviation, categorized agreement 
levels, Intersection over Union, and Pearson correlation coefficients. Qualitative 
error analyses were used as directions for future training options.
Results: A three-step separation model was successfully developed, but 
showed a significant amount of age-related performance variation, depicted 
as larger inaccuracies in samples from the younger age-groups, reflecting 
additional tissue heterogeneity from immature morphology. Classification 
errors could be categorized into intrinsic limitations (e.g., thresholding issues in 
tissue identification) and training deficits (e.g., misclassification of goblet cells 
and crypt abscesses), of which only the latter category could be corrected by 
adding additional training data.
Conclusion: This study demonstrates the feasibility of ML-based histopathology 
with limited sample sizes, providing a viable option for veterinary pathologists. 
Models trained on small datasets require careful supervision, with special 
emphasis on age-diverse tissue heterogeneity and overfitting. In these cases, 
ML should be seen as a tool to augment, not replace, expert oversight, ensuring 
reliable and reproducible quantitative histopathological measures.
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1 Introduction

Porcine intestinal disease, and in particular post-weaning diarrhea 
(PWD), is a significant animal welfare issue (1, 2), which presents 
challenges due to the extensive use of antibiotics to treat affected animals, 
which contributes to the development and spread of antimicrobial 
resistance (3, 4). The causes of PWD are complex and multifactorial (5), 
necessitating thorough investigations to elucidate the pathological 
mechanisms underlying diarrhea development, and to aid determining 
when antibiotic treatment might be  beneficial. However, 
histopathological lesions are often inconsistent in PWD pigs and may 
lack a clear correlation with clinical signs (6). Additionally, previous 
studies have faced limitations due to rapid autolytic changes in the 
intestinal mucosa post-mortem, which have hindered the interpretation 
of villus-associated lesions (6–8). Moreover, histopathological assessment 
of intestinal pathology has traditionally relied on descriptive and 
semiquantitative observations prone to interobserver variability, even 
among field specialists (9–11). To minimize this variability, observations 
have often been grouped into dichotomous or semiquantitative 
categories (6, 12); however, this approach potentially oversimplifies the 
complexity of PWD and may obscure subtle differences that could 
be crucial for understanding the underlying disease mechanisms. In 
recent decades, the increased application of digital pathology, coupled 
with rapid advancements in artificial intelligence (AI) and machine-
learning (ML), has transformed histopathological workflows in human 
diagnostics, research, and toxicology, shifting towards more quantitative 
and objective measurements enabled by computer-assisted technologies 
(13–15). Although these technologies have made their way into human 
gastroenterology among others (13, 16, 17), the application of 
computational histology, remains in its infancy within the field of 
veterinary medicine (18). This slower progress in veterinary applications 
is probably in part due to the substantial sample sizes normally required 
to train reliable classifiers, which poses a significant challenge (18, 19). 
Unlike in human medicine, where larger datasets are often readily 
available (20), veterinary research frequently faces limitations in both 
sample size and data heterogeneity, making it difficult to develop robust, 
generalizable models for histopathological assessment. Additionally, 
applying machine-learning techniques often requires significant 
computational power, which can pose yet another challenge for many 
veterinary research settings (18).

The aim of this study was to evaluate whether a supervised 
machine-learning model could be developed to accurately separate 
the histological layers of the piglet intestinal wall using the small and 
heterogeneous datasets common in veterinary research. The model 
was created as a prerequisite for future studies of post-weaning 
diarrhea (PWD). Our objectives were to determine the extent to 
which accurate segmentation is achievable under these constraints, 
and to highlight key limitations that impact model performance. By 
addressing these points, this study provides practical insights for 
applying machine learning in histopathology when large datasets and 
high-performance computing are not available.

2 Materials and methods

2.1 Animals

This study utilized tissue samples from 145 piglets reared in a 
conventional indoor intensive production herd in Denmark. Included 

animals were not subjected to litter equalization or cross-fostering, 
and all piglets were weaned at 26 days of age. The animals were 
randomly selected from a cohort of 2,500 piglets representing 
individuals both with and without signs of gastrointestinal disease. 
The PWD disease prevalence in the study was 43%. The piglets were 
stratified into five different age groups: 4, 14, 25, 49, and 67 days.

2.2 Sample collection

Between July 2023 and March 2024, samples were collected in 11 
batches, each containing 10–15 animals. On the morning of sampling, 
all piglets were transported for approximately 1.5 h from the farm to 
Frederiksberg Campus, University of Copenhagen. The piglets were 
anesthetized via intramuscular injection of Zoletil (0.1 mL/kg) and 
euthanized by intracardiac injection of an overdose of pentobarbital. 
Following evisceration, full-thickness samples of mid-jejunum were 
collected from all animals, while samples from duodenum and ileum 
were taken from a subset of 75 animals representing all age groups. 
Duodenum was identified as the segment between the pylorus of the 
stomach and the oral aspect of the duodenocolic fold. Jejunal samples 
were taken from mid-jejunum, approximately midway between the 
aboral edge of the duodenocolic fold and the ileocecal fold. Ileal 
samples were identified as the segment between the oral edge of the 
ileocecal fold and the ileal inlet to cecum. The samples were opened, 
gently rinsed in isotonic saline, and pinned onto styrofoam boards 
before being immersed in 10% neutral buffered formalin. All samples 
were secured in fixative within 15 min of euthanasia.

2.3 Tissue processing

Samples were immersion-fixed in 10% neutral buffered formalin 
for 3 days. After fixation, tissues were trimmed and processed through 
graded concentrations of ethanol and xylene, embedded in paraffin, 
and samples of 5 μm were stained with hematoxylin and eosin (H&E) 
using standard protocols as previously described (6).

2.4 Digitization of slides

Stained histological slides were digitized for image analysis by 
whole-slide scanning with a Zeiss Axioscan Z1 scanner, using a 
20x/0.8 Plan-Apochromat objective. Software settings were adjusted 
specifically for brightfield microscopy of 5 μm H&E stained 
intestinal tissues.

2.5 Model development

Image pre-processing and ML model training were conducted on 
a Lenovo ThinkPad laptop with an Intel Core i5 processor, to mimic 
the commonly available hardware setup in veterinary research 
settings. Model-training and image analysis was conducted using the 
open-source image analysis software QuPath [version 0.5.1 (21),]. 
Model training was performed exclusively using jejunum samples to 
ensure consistency in tissue structure and morphology. Prior to 
analysis, all tissue sections were individually color-normalized to H&E 
using the built-in “Estimate Stain Vectors” tool. To achieve complete 
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segmentation of the intestinal wall layers, a 3-step separation model 
was developed (Figure 1). All settings adjusted for model development 
are mentioned in the following paragraphs. If not mentioned, the 
settings were left as default.

In the first step, tissue was automatically identified and annotated 
using a pixel-based thresholding approach. This was achieved by 
analyzing the average RGB values (i.e., Red-Green-Blue values) of 
each pixel at a resolution of 7.03 μm/px, with a Gaussian prefilter and 
a smoothing sigma of 2.0 applied. A threshold value of 205 was used 
as cutoff, with pixels below this value classified as tissue and those 
above classified as background (Figure 1B). In order to measure the 
tissue area, the classification was converted to an object using the 
“create objects” function, with minimum object size of 10,000 μm2 and 
a minimum hole size of 100,000 μm2 to avoid misclassification of 
vascular structures and edematous areas.

In the second step, a machine learning-based pixel classifier, 
utilizing the default random trees algorithm, was trained to 
differentiate the intestinal mucosa from the underlying submucosa 
and muscular layers (Figure 1C). Classification was performed based 
on the RGB and Hematoxylin channels of the image, with a resolution 
of 7.03 μm/px. The classifier employed features of Gaussian, Laplacian 
of Gaussian, Weighted Deviation, and Hessian Determinant, with 
scaling factors of 1.0 and 2.0, a selection based on published guidelines 
(22). Training images were blinded with regards to disease status and 
added ad hoc by continuous inclusion of problematic slides, and the 
final model was developed using 236 manual annotations of “mucosa” 
and “submucosa/muscularis” from 15 distinct animals (n4 = 2; n14 = 2; 
n25 = 2; n49 = 8; n67 = 1). All annotations were made by the main author 
(CBB) using the built-in brush-tool in QuPath to provide the software 
with examples of mucosal and submucosal tissues, respectively. Area 
extraction was achieved by applying the same approach as described 
for Step 1.

In the final step, another pixel classifier utilizing a random trees 
algorithm was trained to differentiate the epithelium from the lamina 

propria within the mucosal area identified previously by the model 
(Figure 1D). As for the second step, classification was based on the 
RGB and Hematoxylin channels, but at a higher resolution of 3.51 μm/
px. To address the increased complexity of the structures, the classifier 
incorporated additional features including Gaussian, Laplacian of 
Gaussian, Weighted Deviation, Gradient Magnitude, Structure Tensor 
Coherence, and Hessian Determinant, all with a scaling factor of 1.0. 
The training set comprised eight distinct tissue samples included ad 
hoc, and 172 manual annotations (n4 = 0; n14 = 1; n25 = 2; n49 = 3; 
n67 = 2) made in a similar fashion as for Step 2. For area extraction a 
minimum object size and minimal hole size of 1,000 μm2 was applied.

To account for potential age-related differences in tissue 
morphology, Steps 2 and 3 were repeated, and separate classifiers were 
trained on new images using age-balanced datasets with all age-groups 
represented in the training data. The age-balanced training for Step 2 
again included 15 tissue samples and 236 annotations (n4 = 2; n14 = 2; 
n25 = 2; n49 = 8; n67 = 1), while Step 3 utilized 10 tissue samples and 285 
annotations (n4 = 2; n14 = 2; n25 = 2; n49 = 3; n67 = 2). The classifier 
specifications, including feature sets and scaling factors, 
remained unchanged.

2.6 Performance evaluation and statistics

The performance of the trained models, including both the Ad 
Hoc trained and the Age-balanced models, was assessed by comparing 
the areas predicted by each step of the classification process (Amodel) to 
manually annotated areas (Amanual, applied as ground truth), across all 
145 jejunal samples. In general terms, the above mentioned samples 
(15, 8, and 10 samples respectively) were selected as training sets, 
while the whole dataset of 145 animals were used for validation. No 
separate dataset for a final testing phase was available in this study. For 
each sample, a 5 mm section containing longitudinally sectioned 
crypts of Lieberkühn was selected for validation. The length of the 

FIGURE 1

Stepwise classification of porcine jejunal tissue using machine-learning-based segmentation. (A) Raw input image of an H&E-stained tissue section. 
(B) Step 1: Tissue identification with a pixel thresholder separates tissue (green) from the background. (C) Step 2: Mucosal segmentation. A random-
trees pixel classifier distinguishes the mucosa (pink) from the submucosa and muscular layers (blue). (D) Step 3: Epithelial segmentation. A random-
trees pixel classifier isolates the epithelium (green) from the lamina propria (purple).
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section was determined by measuring along the lamina muscularis 
mucosa using the polyline tool. The relative deviation from the 
manual annotations was calculated as follows:

	
( ) −

= × 100%model manual

manual

A ARelative deviation RD
A

Differences in relative deviation across age groups were visualized 
using a modified Bland–Altman plot and categorized according to 
level of agreement. Agreement levels were defined as follows: 
RD < 5% = Very good, RD = 5–10% = Good, RD = 10–20% = Fair, 
and RD > 20% = Poor. The performance of each classification step was 
further evaluated within the five age groups by calculating the Pearson 
correlation coefficient between manually annotated areas and areas 
provided by the trained models (23).

To assess spatial agreement between manually annotated regions 
and AI-generated segmentations, Intersection over Union (IoU) was 
calculated. This metric quantifies the proportion of overlap between 
the two areas relative to their combined area, thereby verifying that 
segmented regions were co-located rather than merely adjacent. IoU 
values were interpreted using commonly applied thresholds, with 
values >0.50 considered acceptable, >0.75 considered good, and >0.90 
considered near-perfect. The QuPath script used for IoU calculation 
is provided in the Supplementary material. In addition to the 
quantitative evaluation, a visual inspection of classification errors was 
performed to identify recurring misclassifications and limitations in 
the applied methodology. Tissue structures that were consistently 
misclassified in the different steps of the classification process were 
recorded in order to guide potential adjustments in future 
training iterations.

To assess the translatability and adaptability of the Ad Hoc trained 
model to other intestinal regions than the jejunum assessed above, 
three samples from both duodenum and ileum from each of the five 
age groups were evaluated. A section measuring 2.5 mm of each 
sample was evaluated as described above. The selection of segments 
for analysis followed the same principles as for jejunal samples, but 
actively avoiding segments containing Peyer’s patches in ileum. The 
model’s performance on these samples was compared to its 
performance on the jejunum samples from the same piglets, providing 
insight into its ability to generalize across different anatomical regions 
in the small intestine.

All statistical analyses were performed using R Statistical Software 
[R version 4.4.0 (2024-04-24)] (24). Prior to data analysis all 
parameters were evaluated for normality by visual inspection 
of histograms.

2.7 Ethics declarations

The study was approved by the Danish Animal Inspectorate 
(License no: 2022-15-0201-01324).

3 Results

All parameters were deemed to follow a normal distribution and 
were handled accordingly in the following sections.

3.1 Step 1—tissue detection

Step  1 (tissue detection) demonstrated high accuracy and 
consistency across all age groups. Mean relative deviations ranged 
from 2.9 to 10.7%, with the highest deviations observed in the 
youngest age group (4 days), and gradually increasing performance 
with increasing age (Figure 2). The Pearson correlation coefficient for 
tissue detection was very high (0.97), indicating a highly correlated 
relationship between AI-generated and manually annotated areas 
across all age groups (Table  1; Figure  3A). When categorized by 
agreement levels, Step 1 performed robustly, achieving 80% “very 
good” agreement in the oldest group (67 days) and 73% in 49-day-old 
piglets. However, in the youngest age group (4 days), only 30% of cases 
achieved “very good” agreement, and 30% were classified as either 
“fair” or “poor” (Table 2). These results show that tissue detection was 
consistent overall, but with a reduced accuracy for the younger age 
groups. When assessing the IoU values, the areas provided by the 
model showed consistently high colocalization with manual 
annotations (overall μ = 0.91, sd = 0.09). Mean IoU values were above 
0.90 for all age groups, except the 4-day olds, thus exceeding the 
threshold generally interpreted as “near-perfect” alignment (Table 1).

3.2 Step 2—mucosal segmentation

Mucosal segmentation exhibited greater variability compared to 
Step  1. Relative deviations varied across age groups, with mean 
deviations as high as 24.6% in the youngest piglets but improving to 
7.6–10.0% in older age groups (Table  1; Figure  2). The Pearson 
correlation coefficients dropped similarly, with an overall coefficient 
of 0.67 corresponding to strong linearity between AI-generated and 
manual annotations (Figure  3B, Supplementary Figure  1). 
Categorization of agreement level revealed a notable age-dependent 
trend in the performance of Step 2. For example, in the youngest 
group (4 days), only 10% of cases achieved “very good” agreement, 
while 40% were categorized as “poor.” Performance improved 
significantly in older groups, reaching 57% “very good” and only 7% 
“poor” at 67 days (Table 2). The spatial alignment of annotated areas 
mirrored the trend for the other performance parameters, yielding an 
overall IoU of 0.78 ± 0.19, and a positive association between IoU and 
increasing age (Table 1).

3.3 Step 3—epithelial segmentation

The final step in the segmentation model presented similar 
challenges as those in Step 2 with an overall mean deviation of 12.6%, 
and a large variation was seen between the different age groups 
ranging from 5.6–30.1%. As with the previous steps, the largest 
variation was seen in the youngest age group (4 days), which also 
affected the Pearson correlation coefficient for this age to drop to 0.49 
(moderate linear correlation). The Pearson correlation coefficients for 
the remaining age groups were considerably stronger, varying from 
0.77–0.96 (Table  1, Figure  3C; Supplementary Figure  2). When 
evaluating the categorized data, inferior performance was again 
observed in the youngest age groups, especially in the 4-day-old 
piglets, where more than half of the samples (55%) were assigned 
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“poor.” The trend was almost opposite in the oldest age group, where 
47% were categorized as “very good” agreement, and only 1 piglet 
ended up in the “poor” agreement category (Table 2). Despite the 
deviation in area size, the alignment between manually annotated and 
model-generated areas remained high, with an overall IoU of 
0.92 ± 0.11.

3.4 Comparison of Ad Hoc and 
Age-balanced models

When comparing the performance of the Ad Hoc trained model 
to the Age-balanced model, notable differences emerged in Step 3. For 
Step  2 (mucosal segmentation), the overall performance was 
comparable between the two models (Table  1; Figures  2B, 3B). 
However, in Step  3 (epithelial segmentation), the Ad Hoc model 
consistently outperformed the Age-balanced model across all age 
groups. For example, in 49-day-old piglets, the Ad Hoc trained model 
achieved 59% “very good” agreement, while the Age-balanced model 
only achieved “very good” agreement in 7% of cases, and 70% was 
categorized as “poor” agreement (Table 2). Relative deviation, Pearson 
correlation coefficient, and IoU values mirrored these results, with the 
Age-balanced model exhibiting consistently larger deviations than the 

Ad Hoc model (Table 1; Figure 3C). The clear age-dependent decrease 
in relative deviation seen for the final step of the Ad Hoc trained model 
was not evident for the age-balanced model (Figure 2C).

3.5 Translatability to duodenum and ileum

The performance of the Ad Hoc model was evaluated on 
duodenum and ileum samples to assess its translatability across 
different segments of the small intestine. Tissue identification (Step 1) 
demonstrated consistent performance across all three anatomical 
regions (Supplementary Figure  3A). However, while mucosal 
segmentation (Step 2) showed poor results in the youngest age group 
for both duodenum and ileum, the performance was generally good 
in older age groups, with only slightly inferior performance in 
duodenum and ileum compared to the associated jejunum samples 
(Supplementary Figure 3B). Epithelial segmentation (Step 3) exhibited 
stable accuracy across all age groups in duodenum, comparable to 
jejunal performance. In contrast, ileum displayed an age-dependent 
improvement in accuracy, with better results in older piglets. Post-
weaning, the relative deviation averaged −5% for duodenum, −4% for 
jejunum, and 0% for ileum, reflecting “very good” performance for 
Step 3 across all segments in older animals (Supplementary Figure 3C).

FIGURE 2

Fluctuations in relative deviation across age-groups for the 3-step separation model (modified Bland–Altman plots). (A) Classification step 1. Apart from 
a few outlier values, note the gradual reduction in relative deviation with increasing age. (B) Classification step 2. Larger values of relative deviation are 
seen in step 2 when compared to step 1, and a similar pattern of variation is seen when comparing the Ad Hoc-trained model (black) to the Age-
balanced model (orange). In step 2, the effect of increasing age on the magnitude of the relative deviation is less obvious. (C) Classification step 3. As 
for step 1 and 2, the largest relative deviations are seen in the youngest age groups (4–14 days), and a clear decrease in the variation is seen with 
increasing age for the Ad-Hoc trained model. A similar pattern cannot be recognized for the Age-balanced model.
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3.6 Qualitative assessment of model errors

During the comparison of AI-generated and manually annotated 
areas, a qualitative assessment of classifier errors was performed. 
Common segmentation errors were classification step-specific, 
although some mistakes were shared between Step 2 and 3 of the 
classification process.

3.6.1 Step 1
For Step 1, the classification of each pixel relied on a threshold 

value, which determined whether a pixel was categorized as 
background or tissue. While this approach was effective overall, 
several specific challenges were identified. In samples where the 
luminal content was not completely removed, or the lumen 
contained cellular debris, the classifier misinterpreted these elements 

as part of the tissue (Figure 4A). Moreover, due to the low-resolution 
settings of the classifier, small spaces between villi were often 
undetected and erroneously included in the tissue area. These false 
inclusions were more common in samples with tightly packed villi, 
especially prominent in younger animals. Finally, in piglets 
exhibiting substantial submucosal edema, dilated lymphatics and 
larger vessels were misclassified as background. The lack of staining 
in these regions caused the model to interpret them as non-tissue 
(Figure 4A).

3.7 Step 2

In Step  2, the segmentation of the tissue into mucosa and 
submucosa relied on the training of a random trees algorithm. A 

TABLE 1  Performance evaluation of the classification steps of each ML-model based on the relative deviation, Interception over Union calculations 
(IoU), and Pearson correlation coefficient (PCC) between AI-generated areas and manual annotations.

Classification step Age group 
(days)

Relative deviation Pearson correlation Intersection over union

μ sd PCC Interpretation μ sd

Step 1 All 5.1 4.8 1.0 Very strong 0.91 0.09

4 10.7 5.0 1.0 Very strong 0.85 0.06

14 5.7 4.1 1.0 Very strong 0.91 0.07

25 5.9 3.6 0.9 Very strong 0.92 0.10

49 3.2 4.5 0.9 Very strong 0.94 0.10

67 2.9 3.4 1.0 Very strong 0.93 0.09

Step 2—Ad Hoc model All 12.0 14.3 0.7 Strong 0.79 0.19

4 24.6 20.9 0.5 Moderate 0.51 0.15

14 14.1 14.5 0.6 Strong 0.78 0.19

25 8.7 9.2 0.9 Very Strong 0.84 0.09

49 10.0 12.8 0.7 Strong 0.84 0.13

67 7.6 9.3 0.8 Very Strong 0.90 0.16

Step 3—Ad Hoc model All 12.6 16.1 0.9 Very Strong 0.92 0.11

4 30.1 30.8 0.5 Moderate 0.84 0.11

14 15.3 12.8 0.9 Very Strong 0.89 0.09

25 15.1 11.4 0.9 Very Strong 0.95 0.11

49 5.6 5.7 1.0 Very Strong 0.94 0.10

67 7.2 7.2 0.8 Strong 0.95 0.11

Step 2—Age-balanced 

model

All 11.6 12.4 0.7 Strong 0.81 0.15

4 18.7 15.7 0.6 Moderate 0.67 0.13

14 13.9 13.8 0.5 Moderate 0.74 0.16

25 7.4 6.1 0.9 Very Strong 0.85 0.08

49 9.5 9.7 0.7 Strong 0.86 0.14

67 11.3 14.5 0.6 Moderate 0.87 0.15

Step 3—Age-balanced 

model

All 22.9 16.6 0.7 Strong 0.79 0.11

4 31.2 17.6 0.3 Weak 0.73 0.13

14 21.4 21.7 0.9 Very Strong 0.78 0.07

25 19.8 13.1 0.7 Strong 0.76 0.10

49 28.2 14.3 0.8 Strong 0.80 0.10

67 13.3 10.9 0.7 Strong 0.84 0.11

μ, mean; sd, standard deviation; PCC, Pearson Correlation Coefficient.
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predominant error was observed in younger piglets (4–21 days), 
where vacuolated fetal-type enterocytes in the epithelial lining were 
frequently misclassified as part of the submucosal tissues due to their 
distinct texture and fainter staining intensity (Figure 4B).

3.7.1 Step 3
In Step 3, pixel classification focused on differentiating the epithelial 

layer from the lamina propria, however, several recurring errors 
impacted model performance. Goblet cells, with their distinct 
cytoplasmic mucin stores and excentric, often not clearly visible nuclei, 
were occasionally misinterpreted as part of the lamina propria. Similarly, 
crypt abscesses, characterized by accumulations of cellular debris and 
neutrophilic granulocytes within crypt lumens, were often misclassified 
as lamina propria as well (Figure 4C). In younger piglets, the presence of 
fetal-type vacuolated epithelial cells, as seen in Step 2, contributed to a 
general overestimation of the lamina propria area by being incorrectly 
categorized as non-epithelial tissue. Conversely, in the age-balanced 
model, a notable underestimation of the lamina propria area was 
observed in piglets aged 25–67 days, where substantial portions of the 
lamina propria were misclassified as epithelial tissue, likely reflecting the 
model’s attempted adaptation to earlier developmental stages.

4 Discussion

This study demonstrated the feasibility of using a supervised ML 
model to divide the histological layers of the intestinal wall in piglets 

through a three-step segmentation approach. Despite being trained 
on only 8–15 samples—a sample size chosen to reflect the commonly 
available dataset sizes in veterinary studies and, also complying with 
the hardware limitations of a standard laptop—the model achieved 
“good” to “very good” agreement between AI-generated areas and 
manually annotated areas for a substantial proportion of the samples, 
particularly in piglets post-weaning. However, the structural 
complexity of the intestinal wall and the heterogeneity of the dataset 
suggest that additional training data would be required to enable a 
more unsupervised application of the model.

Surprisingly, the model showed reasonable translatability to other 
anatomical regions, including correct segmentation of structures like 
Brünner’s glands in the duodenum despite no prior training on this 
segment. This underlines the model’s potential applicability as a 
generalized “small intestine model,” rather than being specific to 
jejunal tissues, although tailored training for each anatomical location 
should always be preferred. Observed model errors fell into two main 
categories: (1) intrinsic limitations, such as the inability of the 
thresholding approach to distinguish between intestinal content and 
tissue, and (2) training deficits, such as misclassification of goblet cells 
and lesions like crypt abscesses. While the latter could most likely 
be resolved by including sufficient amounts of training examples, the 
intrinsic limitations are a bit different. For instance, in this study 
we  applied a single-level thresholding method to identify tissue 
regions based on the optic density of each pixel. While effective for 
many samples, this method falls short in instances where images 
contain non-tissue components (e.g., intestinal content and staining 

FIGURE 3

Scatterplot of the correlation between AI-generated and manually annotated areas for the three steps in the separation model. (A) Step 1. A very strong 
positive correlation is seen between manual and AI-generated areas with a Pearson correlation coefficient of 0.968. (B) Step 2. A strong, but slightly 
less convincing correlation is seen between AI-generated and manual areas for step 2. The Ad hoc trained model (black dots) and the Age-balanced 
model (blue triangles) yield similar results. (C) Step 3. The correlation between manual and AI-generated areas is very strong for the Ad hoc trained 
model (black dots), while slightly less pronounced for the Age-balanced model (blue triangles).
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TABLE 2  Summarized counts of categorized model performance levels (relative deviation), subdivided by age group and classification step.

Age group Classification step Agreement level

Very good Good Fair Poor

(RD < 5%) (RD = 5–10%) (RD = 10–20%) (RD > 20%)

4 Days (n = 20) Step 1 6 8 5 1

Step 2—Ad Hoc model 2 4 6 8

Step 2—Age-balanced model 2 5 8 5

Step 3—Ad Hoc model 2 1 6 11

Step 3—Age-balanced model 0 2 5 13

14 Days (n = 25) Step 1 21 4 0 0

Step 2—Ad Hoc model 8 5 7 5

Step 2—Age-balanced model 6 4 12 3

Step 3—Ad Hoc model 7 5 6 7

Step 3—Age-balanced model 5 6 4 10

25 Days (n = 25) Step 1 16 6 2 1

Step 2—Ad Hoc model 13 6 3 3

Step 2—Age-balanced model 13 6 5 1

Step 3—Ad Hoc model 4 7 9 5

Step 3—Age-balanced model 3 4 7 11

49 Days (n = 45) Step 1 33 5 6 1

Step 2—Ad Hoc model 18 15 8 4

Step 2—Age-balanced model 18 14 7 6

Step 3—Ad Hoc model 26 14 4 1

Step 3—Age-balanced model 3 3 7 32

67 Days (n = 30) Step 1 24 4 2 0

Step 2—Ad Hoc model 17 6 5 2

Step 2—Age-balanced model 15 5 4 6

Step 3—Ad Hoc model 14 10 5 1

Step 3—Age-balanced model 11 3 6 10

RD, Relative deviation.

FIGURE 4

Frequently observed classification errors. (A) In step 1, luminal content and cellular debris was misclassified as part of the tissue (black arrows), and in 
cases of submucosal edema, dilated vessels were misinterpreted as part of the background (white arrow). (B) In step 2, fetal-type vacuolated epithelial 
cells on the villi of young piglets were often misclassified as part of the submucosa (white arrow). (C) In step 3, one of the commonly observed errors 
was the misclassification of crypt abscesses as part of the lamina propria (white arrows).
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artefacts) or unstained tissue elements (e.g., empty vascular 
structures). A way to overcome this issue would involve multilevel 
thresholding, using thresholds at different intensities or from multiple 
color channels (25). It should also be  noted that the IoU values 
reported here are approximations rather than exact measurements, as 
QuPath relies on Java’s geometric operations (java.awt.geom.area). For 
highly irregular structures such as villi, or annotations with multiple 
holes, minor deviations can arise due to floating-point rounding or 
topological inconsistencies. Although generally small, these potential 
inaccuracies should be considered when interpreting IoU values in 
complex biological tissues. Furthermore, the commonly used object 
detection threshold of 0.50 may be  insufficient for area-based 
annotations (26). In applications such as cell detection or counting, 
higher IoU levels may be  necessary to ensure accurate 
quantitative results.

An additional consideration relates to the annotation process used 
for model training. In this study, all manual annotations were 
performed by a single observer. While this approach ensured 
consistency throughout the dataset, it introduces a potential observer 
bias. However, given that the annotated structures—such as mucosa, 
submucosa, and epithelial layers—are visually distinct and 
histologically well-defined, the impact of individual interpretation is 
expected to be minimal. Future studies could validate annotation 
robustness by incorporating interobserver variability assessments or 
consensus-based annotations from multiple pathologists.

A key finding was the age-related variation in model 
performance. Neonatal tissues, such as those containing fetal-type 
vacuolated epithelial cells, pose significant challenges for both 
pathologists and AI-models due to their unique morphology (27–
30). Fetal-type vacuolated epithelial cells in the intestine are 
specialized cells, essential for the uptake of colostral 
macromolecules, and are gradually replaced by mature enterocytes 
by 3 weeks of age (31). Despite efforts to account for this by 
deliberately incorporating these variations into the Age-balanced 
model, it underperformed compared to the Ad Hoc model—
particularly in older age groups-contrary to our expectations. This 
indicates that even the Age-balanced model struggled to 
accommodate the marked heterogeneity associated with gut 
development. The findings underscore the difficulty of achieving a 
reliable “one-size-fits-all” solution when working with age-diverse 
datasets. This challenge is not unique to the intestinal tract and is 
likely relevant for other organ systems with distinct neonatal 
morphology, such as the liver, kidneys, and brain. Researchers 
applying machine learning models to neonatal tissues should 
be  aware of the intrinsic heterogeneity arising from tissue 
immaturity and consider this during both study design and model 
evaluation. Moreover, when using pretrained models, it is essential 
to verify the age range of the animals included in the original 
training data, as mismatched developmental stages may significantly 
compromise model performance. To enhance model robustness, 
future strategies could focus on either (1) expanding the training 
dataset to better capture biological variability, or (2) developing 
separate models for neonatal and mature tissues to reduce 
variability within datasets, while carefully managing the risk of 
overfitting. Furthermore, given the anatomical and physiological 
similarities between porcine and human tissues (32), incorporating 
transfer learning could also possibly leverage publicly available 
human datasets to augment training data. This approach would 

enable the model to benefit from larger datasets while retaining a 
focus on pig-specific features, addressing the challenges of limited 
sample sizes and supporting cross-species applicability.

From a disease perspective, the histopathological presentation of 
PWD in pigs is highly variable, and previous studies have failed to 
consistently associate specific lesions with the occurrence of clinical 
diarrhea, likely reflecting its multifactorial etiology (6, 7). Reported 
lesions include villous atrophy and fusion, inflammatory cell 
infiltrations, crypt abscesses, edema, hemorrhage, hyperemia, crypt 
hyperplasia and dilation, necrosis, and various types of exudations. 
From the perspective of the present segmentation model, some of 
these features are expected to be accommodated without difficulty, 
whereas others are likely to compromise performance. For example, 
the model is inherently resilient to changes such as villous atrophy, 
inflammatory infiltrations, edema, hyperemia, hemorrhage, and crypt 
hyperplasia, since these do not substantially alter the overall 
boundaries between histological layers and the individual cell 
morphology. In contrast, lesions that markedly alter surface 
architecture or introduce luminal structures not sufficiently 
represented in the training data—e.g. crypt abscesses, fibrinous 
exudation, pseudomembrane formation, and necrosis—are prone to 
misclassification. This was already evident in the present study for 
crypt abscesses, which were frequently misidentified, and similar 
limitations can be  anticipated for other intraluminal or surface-
associated lesions. Understanding these lesion-specific vulnerabilities 
is important when applying the model in studies of PWD or other 
enteropathies, as histopathological variability may influence 
segmentation accuracy and, consequently, quantitative outputs.

In conclusion, this study demonstrates that ML applications in 
histopathology are feasible even with small sample sizes, offering a 
practical and accessible tool for veterinary pathologists. However, 
models trained on limited datasets should be applied cautiously and 
not relied upon blindly. Users must remain highly aware of age-related 
morphological changes, which can significantly impact model training 
and performance. Instead, such models are best utilized as supervised/
assisting tools to aid in generating quantitative measures, enabling 
pathologists to combine computational power with expert oversight.
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