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Introduction

Mesenchymal stem cells (MSCs) derived from adipose tissue have emerged as a
promising tool in regenerative therapies across both human and veterinary medicine.
A critical determinant of therapeutic success is the MSCs’ ability to home to damaged
or inflamed tissues. In human clinical and preclinical models, spheroid culture has
been shown to augment the homing efficacy of MSCs by upregulating key chemokine
receptors and enhancing cell survival (1, 27). Recent studies investigating MSC spheroids
in canine models have begun to explore these effects in veterinary contexts (2, 3).
A recent review presents the MSC homing cascade as a tightly regulated multistep
process comprising tethering, rolling, activation, arrest, transmigration, and migration
(4). While these mechanisms are well-characterized in human mesenchymal stem cells,
they remain insufficiently studied in veterinary models. Additional insights from the
literature highlight that optimizing microenvironmental cues within spheroid cultures can
significantly enhance MSC functionality in regenerative applications (5, 6).

Mechanisms of enhanced homing via spheroid
culture

The formation of MSC spheroids recapitulates a physiologically relevant three-
dimensional (3D) microenvironment, which has been shown to upregulate key molecular
mediators involved in cell trafficking and homing. Notably, 3D spheroid architecture
enhances the expression of C-X-C chemokine receptor type 4 (CXCR4), integrins, and
matrix metalloproteinases (MMP-9 and MMP-13), molecules that play pivotal roles in
transendothelial migration and extracellular matrix remodeling (7–9, 28).

These molecules converge functionally within the SDF-1/CXCR4 chemotactic axis,
a canonical pathway directing MSC homing to sites of tissue injury. Spheroid culture
also induces localized hypoxia due to limited oxygen diffusion, which in turn stabilizes
hypoxia-inducible factor 1-alpha (HIF-1α). This transcription factor has been shown to
transcriptionally activate genes such as CXCR4 and other adhesion receptors, thereby
enhancing MSC migratory capacity and responsiveness to chemokine gradients (1, 10, 11).
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Experimental evidence supports that MSCs cultured as
spheroids exhibit improved transmigration across endothelial
monolayers and greater directional migration toward SDF-1
gradients (1). In a canine study, Lee et al. (12) reported significant
upregulation of HIF-1α in 3D-cultured adipose-derived MSCs.
Although their investigation focused on immunomodulatory
properties, the observed induction of HIF-1α is mechanistically
relevant to homing, given its role in enhancing CXCR4 expression.
This suggests that the hypoxic microenvironment within spheroids
may potentiate MSC chemotaxis, although direct migration assays
were not conducted in that study.

Parallel insights from murine hind limb ischemia models
show that modifying MSCs to overexpress proangiogenic factors
such as GM-CSF significantly enhances their contribution
to neovascularization, increasing both capillary density and
arteriogenesis (25). These findings support the broader notion
that preconditioning or modification strategies, including spheroid
formation, can potentiate MSC homing and functional integration
into ischemic tissues.

In addition to receptor-mediated mechanisms, emerging
hypotheses suggest that MSC spheroids may secrete bioactive
vesicles and paracrine factors that contribute to homing efficiency.
Specifically, spheroid culture has been associated with elevated
exosome release, potentially driven by cytoskeletal tension
and hypoxia. While these vesicles have been implicated in
immunomodulation and tissue repair, their direct role in
facilitating MSC homing via chemokine gradient formation
remains to be experimentally validated (13). Furthermore, these
processes remain poorly characterized in veterinary studies.
Thus, while spheroid culture clearly enhances several homing-
related molecular pathways, further in vivo tracking studies
in companion animals are necessary to delineate the specific
contributions of hypoxia-induced signaling, surface receptor
modulation, and secretome-derived factors to MSC homing in a
species-specific context.

Application in canine studies

Current evidence on the use of 3D spheroid MSCs in
veterinary medicine remains limited but promising. Among the
few original studies available, Lee et al. (12) demonstrated
that 3D-cultured canine adipose tissue-derived MSCs (cAT-
MSCs) exhibit enhanced immunomodulatory activity compared
to their 2D counterparts. Specifically, spheroid-conditioned media
significantly downregulated the expression of pro-inflammatory
cytokines (TNF-α, IL-1β, IL-6) and promoted M2 macrophage
polarization in canine macrophages (DH82 cell line). Additionally,
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Tissue-Derived Mesenchymal Stem Cell; hAT-MSC, Human Adipose Tissue-
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Chemokine Receptor Type 4; SDF-1, Stromal Cell-Derived Factor 1; HIF-

1α, Hypoxia-Inducible Factor 1-alpha; VEGF, Vascular Endothelial Growth

Factor; TGF-β, Transforming Growth Factor Beta; IL-10, Interleukin 10; COX-

2, Cyclooxygenase-2; PGE2, Prostaglandin E2; HGF, Hepatocyte Growth

Factor; M2, M2 Macrophage Subtype; BLI, Bioluminescence Imaging; MRI,

Magnetic Resonance Imaging; PET, Positron Emission Tomography.

the same study reported upregulation of HIF-1α, TGF-β1, and
COX-2, further supporting the notion that spheroid formation
creates a functionally distinct secretome.

While these in vitro findings suggest that 3D spheroid
architecture enhances therapeutic potential in canine MSCs, there
is a lack of direct in vivo validation in veterinary disease models.
Notably, many studies reporting improved outcomes using cAT-
MSCs in canine osteoarthritis, spinal cord injury, or cancer [e.g.,
(14–16)] have employed conventional 2D-expanded cells rather
than 3D spheroids. Thus, although extrapolation from human and
rodent studies provides valuable insight, application of spheroid-
based MSC therapy in canine clinical settings remains largely
unexplored, representing a critical gap in translational research

Given that adipose-derived MSCs represent the predominant
and most clinically feasible stem cell source in veterinary practice, it
is important to examine their unique significance and the growing
body of evidence for their homing potential.

Significance of adipose-derived MSCs
in veterinary applications

Adipose tissue has become the most widely used and
practical source of mesenchymal stem cells in veterinary
regenerative medicine. Compared to bone marrow, adipose-
derived MSCs (cAT-MSCs) offer the advantages of minimally
invasive harvest, higher cell yield, and consistent proliferative
and immunomodulatory potential, which have made them the
predominant stem cell product in companion animal clinical trials.
Their relevance extends beyond accessibility, as accumulating
evidence indicates that cAT-MSCs possess robust therapeutic
efficacy in conditions such as osteoarthritis, spinal cord injury, and
cancer, where migratory and homing behavior is critical for tissue
repair and modulation of local immune responses.

Several in vivo studies provide support for the therapeutic
contribution of cAT-MSC homing. In canine spinal cord injury,
repeated allogeneic transplantation of cAT-MSCs promoted long-
term functional recovery, suggesting effective engraftment and
migration to lesion sites (16). Earlier reports of cell delivery
in acute disk disease also demonstrated clinical improvements
consistent with tissue integration of transplanted cAT-MSCs (15).
Similarly, in canine cancer studies, adipose-derived MSCs modified
for therapeutic gene delivery have shown the capacity to localize
within tumor microenvironments (14), reinforcing the concept
that adipose-derived MSCs can actively home to inflammatory and
pathological tissues in vivo.

Emerging mechanistic insights from 3D spheroid cultures of
cAT-MSCs further highlight their potential to enhance homing.
Lee et al. (12) reported that canine spheroid-cultured MSCs
exhibited upregulation of HIF-1α, TGF-β1, and COX-2, pathways
closely linked with chemotaxis and immunomodulation. The
hypoxia-driven induction of HIF-1α is particularly relevant, as
it stabilizes CXCR4 expression, a central receptor in the SDF-
1/CXCR4 chemotactic axis, and thereby primes cAT-MSCs for
directional migration toward sites of injury. Complementary
findings by Ichikawa et al. (3), who co-cultured canine adipose-
derived MSCs with hepatocytes and endothelial cells, demonstrated
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FIGURE 1

Mechanisms, advantages, and translational gaps of cAT-MSC spheroids in veterinary regenerative medicine. Three-dimensional culture of cAT-MSCs
enhances homing via receptor activation, hypoxia-driven signaling, and secretome modulation. These mechanisms translate into improved
outcomes in canine regenerative applications, particularly for inflammatory, orthopedic and neuro-regenerative disorders. However, challenges in
standardization, in vivo tracking, and cross-species validation highlight the need for expanded reverse translational research. cMSC, canine
mesenchymal stem cells; hMSC, human mesenchymal stem cells; cMSC-Sph, canine mesenchymal stem cell spheroids; hMSC-Sph, human
mesenchymal stem cell spheroids. Created with BioRender.

spheroid-based cross-talk that supported vascularization and tissue
integration, underscoring the translational value of 3D culture in
shaping homing-relevant signaling networks.

Collectively, these studies underscore the importance of
adipose-derived MSCs as a clinically feasible and biologically
potent cell source in veterinary medicine. They also indicate
that while homing-related pathways have been indirectly
evidenced in canine cancer studies, direct biodistribution
and migration tracking studies of cAT-MSCs remain sparse.
Addressing this gap with in vivo imaging and standardized
homing assays will be essential to fully validate the therapeutic
advantage of spheroid-based cAT-MSC preparations in veterinary
clinical settings.

These findings, when interpreted alongside advances
in human MSC research, highlight the value of reverse
translational approaches to refine spheroid-based protocols
in veterinary systems. These mechanistic advantages, translational
opportunities, and remaining evidence gaps are summarized in
Figure 1.

Reverse translational implications

The application of MSC spheroids in veterinary regenerative
medicine is supported by a robust body of evidence derived
from human preclinical and clinical studies. When cultured from
human sources, MSCs cultured as 3D spheroids have consistently
demonstrated enhanced therapeutic performance compared to
monolayer-expanded cells. These enhancements include increased
engraftment efficiency, prolonged in vivo survival, and amplified
secretion of bioactive factors, such as vascular endothelial
growth factor (VEGF), hepatocyte growth factor (HGF), and
prostaglandin E2 (PGE2), all of which contribute to improved
angiogenesis, immune modulation, and tissue repair (11, 17).
The superior functionality of 3D spheroid MSCs is largely
attributed to preserved cell–cell and cell–matrix interactions,
hypoxia-induced signaling, and cytoskeletal reorganization within
the spheroid microenvironment. These mechanistic insights offer
a valuable framework for reverse translational application in
veterinary medicine.

Frontiers in Veterinary Science 03 frontiersin.org

https://doi.org/10.3389/fvets.2025.1622717
https://www.biorender.com/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Martin and De Meyer 10.3389/fvets.2025.1622717

Despite this potential, several challenges limit the direct transfer
of human protocols to veterinary practice. These include the lack
of standardized methods for spheroid formation, size optimization,
and preconditioning in animal systems, as well as limited in vivo
data on biodistribution, persistence, and efficacy of spheroid MSC
products in companion species (18). Moreover, inconsistencies
in experimental design and outcome reporting across veterinary
trials hinder cross-study comparisons and the establishment of best
practices (19).

Lee et al. (12) underscore the importance of reproducible
spheroid production methods and tailored delivery routes to
maximize therapeutic efficacy in dogs. However, translating
human protocols to veterinary settings is complicated by
interspecies differences in MSC behavior, including distinct
immunomodulatory pathways, receptor expression profiles, and
secretome composition (20, 21). These discrepancies reinforce the
need for species-specific investigations to validate spheroid-based
therapies in non-human systems.

Rodent studies have also revealed that MSC therapeutic
efficacy varies with the donor background, as demonstrated
by differences between Balb/c- and C57BL/6-derived MSCs in
hind limb ischemia studies (26). This variability underscores
that intrinsic MSC properties, including tissue of origin, genetic
background, and culture conditions, strongly influence their
homing and therapeutic behavior. Extrapolating directly from
human or murine systems to canine systems is therefore limited,
reinforcing the need for species-specific validation in veterinary
regenerative medicine.

To address the current limitations in understanding MSC
homing and biodistribution in veterinary applications, in
vivo imaging studies are critically needed. These studies can
provide real-time insights into MSC migration dynamics, tissue-
specific engraftment efficiency, and potential off-target effects
following local or systemic administration. Advanced imaging
technologies such as bioluminescence imaging (BLI), magnetic
resonance imaging (MRI), positron emission tomography
(PET), and nanoparticle-based labeling have greatly improved
the capacity to track MSCs post-transplantation in human
research (22–24). However, the application of these modalities
in veterinary medicine is hindered by anatomical diversity,
limited genetic labeling techniques, and a scarcity of species-
specific molecular probes. Additionally, ethical considerations,
resource constraints, and equipment accessibility further impede
widespread implementation.

Establishing standardized protocols for spheroid generation,
MSC labeling, administration, and post-delivery tracking will be
essential to overcome these translational barriers. By adapting
proven human methodologies to veterinary systems, it will be
possible to achieve a more accurate characterization of MSC
behavior in vivo and advance the clinical deployment of spheroid-
based therapies in companion animals.

Conclusion

The spheroid-based delivery of cAT-MSCs represents a
promising strategy to enhance homing efficacy and therapeutic

potency in regenerative veterinary medicine. Lessons drawn from
human MSC research underscore the potential of applying 3D
culture innovations in animal systems. Multiple studies have
collectively emphasized the critical role of optimizing spheroid
culture systems to improve mesenchymal stem cell retention,
immunomodulatory potential, and functional integration
within host tissues. However, translating these advantages into
consistent veterinary outcomes necessitates further mechanistic
investigations, especially into the stepwise homing cascade and its
regulatory cues in non-human physiology. Bridging this knowledge
gap will be essential for the successful clinical deployment of MSC
spheroids in veterinary regenerative therapies.
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