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Protective effects of quercetin 
against glyphosate-induced 
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Background: Glyphosate, the most widely used herbicide globally, accumulates 
in renal tissue causing kidney damage through incompletely understood 
mechanisms. This study evaluated quercetin’s nephroprotective effect against 
glyphosate-induced kidney injury in rats.

Methods: Five groups of male Wistar rats (n = 10 each) received daily treatments 
for 21 days: control, glyphosate (25 mg/kg), quercetin (50 mg/kg), and 
quercetin+glyphosate at low (25 mg/kg) or high (50 mg/kg) doses. All treatments 
were administered by oral gavage for 21 days. Renal parameters, oxidative stress 
markers, inflammatory mediators, and apoptotic indicators were assessed using 
spectrophotometric assays, ELISA, qRT-PCR, and histology.

Results: Glyphosate impaired renal function, increased kidney weight, and 
elevated kidney injury molecule-1 (KIM-1) levels. It suppressed antioxidant 
enzymes (CAT, SOD, GPX) and downregulated their mRNA expression (Cat, 
Sod2, and Gpx-1, respectively), while depleting GSH and increasing oxidative 
markers (MDA, NO). Notably, glyphosate reduced Nrf2 protein and Nfe2l2 gene 
expression, disrupting this master regulator of antioxidant responses, with 
concurrent Hmox-1 downregulation. Glyphosate upregulated pro-inflammatory 
cytokines (TNF-α, IL-1β, IL-6), increased TLR-4 and NOS2 expression, 
activated mitochondrial apoptosis by increasing pro-apoptotic proteins (BAX, 
CYTOCHROME C, and CASPASE-3) while decreasing anti-apoptotic BCL-
2 protein levels, with corresponding changes in gene expression. Consistent 
with protein findings, Bcl-2 gene expression was significantly downregulated, 
further confirming the shift toward pro-apoptotic signaling. Quercetin dose-
dependently attenuated these alterations, with high-dose providing superior 
protection compared to low-dose by restoring gene expression and enzyme 
activities. Histopathological examination confirmed quercetin mitigated 
glyphosate-induced tubular degeneration and glomerular atrophy.

Conclusion: Quercetin protects against glyphosate nephrotoxicity through 
antioxidative, anti-inflammatory, and anti-apoptotic mechanisms, suggesting 
therapeutic potential against herbicide-induced kidney injury.
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1 Introduction

Nephrotoxicity represents a significant global health concern 
characterized by deteriorating renal function, resulting in metabolic 
waste accumulation, electrolyte imbalances, and increased risk of 
renal failure (1). Multiple factors contribute to kidney injury, including 
ischemia–reperfusion injury, nephrotoxic medications, sepsis, and 
environmental toxicants (2). Among environmental xenobiotics, 
glyphosate [N-(phosphonomethyl) glycine], the world’s most widely 
used herbicide, has emerged as a concerning potential nephrotoxic 
agent with increasing clinical relevance (3).

Glyphosate is extensively used in agriculture for weed control in 
crops like soybean, corn, and cotton, as well as in non-agricultural 
settings for vegetation management (4). In many ecosystems, 
substances like glyphosate accumulate through the food chain, 
ultimately affecting human health through chronic low-dose 
exposure (5).

Given its preferential accumulation in the kidneys more so than 
in the spleen, liver, or neural tissue (5), glyphosate raises particular 
concern for nephrotoxicity, especially during sub-acute (6) and 
sub-chronic exposure (7) scenarios.

The precise mechanisms of glyphosate-induced nephrotoxicity 
remain incompletely understood. However, emerging evidence 
suggests oxidative stress plays a pivotal role in the pathogenesis of 
glyphosate-induced renal injury (8). Prolonged exposure suppresses 
endogenous antioxidant defense systems [catalase (CAT), superoxide 
dismutase (SOD), and glutathione peroxidase (GPX)] while 
enhancing reactive oxygen species (ROS) production. This persistent 
oxidative imbalance leads to lipid peroxidation, protein oxidation, 
and DNA damage, culminating in renal cellular dysfunction and 
death (9).

Additionally, glyphosate exposure activates inflammatory 
pathways, notably through Toll-like receptor 4 (TLR-4) signaling, 
resulting in pro-inflammatory cytokine production [tumor necrosis 
factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)] (10). 
This inflammatory cascade exacerbates renal injury through 
progressive leukocyte infiltration and tubular damage [15]. The 
mitochondrial apoptotic pathway, characterized by altered Bcl-2-
associated X protein (BAX)/ B-cell lymphoma 2 (BCL-2) ratio, 
CYTOCHROME C release, and CASPASE-3 activation, has been 
implicated in glyphosate-induced renal cell death during continuous 
exposure (11).

Given widespread glyphosate exposure and limited treatments for 
chemical-induced nephrotoxicity, effective interventions were 
urgently needed. Natural antioxidants have gained significant 
attention for mitigating nephrotoxicity by modulating oxidative stress, 
inflammation, and apoptotic signaling (12). Quercetin 
(3,3′,4′,5,7-pentahydroxyflavone), a plant-derived flavonoid, 
demonstrates potent antioxidant, anti-inflammatory, and anti-
apoptotic properties (13).

Quercetin’s protective effects stem from free radical scavenging 
and enhancement of endogenous antioxidant defenses, while also 
regulating inflammatory mediators and inhibiting inflammatory 
pathways (14). Previous studies have shown quercetin has protective 
effects against liver injury (15), kidney injury (16), and other model 
diseases such arteriosclerosis (14), but its potential against glyphosate-
induced nephrotoxicity and underlying molecular mechanisms 
remain largely unexplored.

Recent evidence suggests the interaction between oxidative stress 
and inflammatory pathways represents a critical axis in xenobiotic-
induced kidney injury (17), creating a self-amplifying cycle leading to 
mitochondrial dysfunction, apoptosis, and renal impairment (18). 
This study aimed to investigate quercetin’s nephroprotective effects 
against glyphosate-induced kidney injury in rats exposed for 3 weeks, 
hypothesizing that quercetin would attenuate renal damage by 
modulating oxidative stress, inflammatory responses, and apoptotic 
pathways during sub-acute exposure.

2 Materials and methods

2.1 Experimental animals

Fifty male Wistar rats (150–200 g) were purchased from King 
Fahd Medical Research Center (KFMRC), King Abdulaziz University, 
Saudi  Arabia. Before the start of the experiment, animals were 
acclimatized for 1 week under standard conditions. Rats were housed 
in plastic cages at room temperature (22–25°C) with a 12-h light/dark 
cycle, and had free access to standard laboratory diet and water.

2.2 Chemicals

Glyphosate (CAS No. 1071-83-6; Cat: 337757) and Quercetin 
(CAS No. 117–39-5; Cat: Q4951) were purchased from Sigma-Aldrich 
Co. LLC., St. Louis, MO, USA and freshly prepared in distilled water 
prior to administration.

2.3 Animal grouping and treatment

A total of 50 male Wistar rats were randomly divided into five 
groups (n = 10 per group). All treatments were administered once 
daily via oral gavage for 21 consecutive days. The groupings were 
as follows:

Group  1 (Control group, Control): Rats received 0.9% 
physiological saline intraperitoneally as a vehicle control.

Group 2 (Glyphosate group, Glyphosate): Rats received glyphosate 
at a dose of 25 mg/kg/day (19) to induce sub-acute nephrotoxicity.

Group 3 (Quercetin group, Quercetin): Rats received quercetin 
alone (50 mg/kg/day) (20) to assess its impact on normal renal 
function and exclude any intrinsic toxicity of the high dose.

Group  4 (Quercetin low-dose + Glyphosate group, 
Que-25 + Glyp): Rats received quercetin (25 mg/kg/day) (21), 
administered 1 h prior to glyphosate injection to evaluate the 
protective effect of a low dose.

Group  5 (Quercetin high-dose + Glyphosate group, 
Que-50 + Glyp): Rats received quercetin (50 mg/kg/day), 
administered 1 h prior to glyphosate injection to assess the dose-
dependent protective effects against glyphosate-induced renal damage.

Sample size was determined based on previous similar 
toxicological studies evaluating nephroprotective agents in rats, with 
consideration of anticipated effect size, variability, and statistical 
power. A group size of 10 animals per group was selected to ensure 
sufficient power (80%) to detect significant differences with a 
confidence level of 95% and considering potential data loss.
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2.4 Anesthesia and sample collection

On day 22, animals were anesthetized with thiopental sodium 
(100 mg/kg, intraperitoneally). Adequate anesthesia was confirmed 
by the absence of the pedal withdrawal reflex. Blood samples were 
collected immediately via cardiac puncture using sterile 5 mL 
syringes with 21-gage needles under aseptic conditions (as it 
enables sufficient terminal blood collection for biochemical and 
molecular analyses). The animals were then euthanized by cervical 
decapitation. Kidneys were excised, rinsed with ice-cold saline, 
and processed for histological, biochemical, and molecular 
analyses. Blood samples were allowed to clot at room temperature 
for 30 min and centrifuged at 3000 rpm for 10 min. The obtained 
serum was separated and stored at −80°C until 
biochemical analysis.

2.5 Serum renal function tests

Renal function was assessed by measuring serum creatinine, urea, 
and uric acid, using commercially available diagnostic kit (Randox 
Laboratories Ltd., Crumlin, County Antrim, UK). All assays were 
performed according to the manufacturers’ protocols.

2.6 Determination of kidney weight

The relative kidney weight was calculated according to the method 
described by Almeer et  al. (22). To ensure consistency across all 
samples, the left kidney was selected for weight measurement. The 
right kidney was preserved for histopathological and molecular 
analyses requiring intact tissue integrity.

2.7 Relative kidney weight

Relative kidney weight was calculated using the formula: (left 
kidney weight / body weight) × 100.

2.8 Renal injury biomarkers

Kidney Injury Molecule-1 (KIM-1), a highly sensitive early 
biomarker of proximal tubular damage, was measured in kidney tissue 
homogenates using ELISA kit (Elabscience Biotechnology Inc., 
Houston, TX, USA) according to the manufacturer’s instructions.

2.9 Redox status determination

2.9.1 Oxidative stress markers
Oxidative stress markers were assessed in kidney tissue 

homogenates to evaluate the extent of cellular damage induced by 
glyphosate exposure. Malondialdehyde (MDA) levels were determined 
the procedure established by Ohkawa et al. (23). Reduced glutathione 
(GSH) content was determined using the method outlined by Ellman 
(24). Nitric oxide (NO) content in renal samples was measured by 
Griess reagent (25).

2.9.2 Antioxidant enzyme activities
To assess the antioxidant defense system, several key enzymatic 

activities were measured. SOD activity was evaluated using the 
technique described by Nishikimi et  al. (26). CAT activity was 
measured using the method of Lück (27). GPX activity was assessed 
using the technique described by Paglia and Valentine (28). The level 
of glutathione reductase (GR,) was assessed using the technique 
described by Moron et al. (29). Nuclear factor erythroid 2-related 
factor 2 (Nrf2) levels were quantified using ELISA kit (Elabscience 
Biotechnology Inc., Houston, TX, USA) according to the 
manufacturer’s instructions.

2.10 Inflammatory cytokines assessment

Levels of tumor necrosis factor-alpha in kidney tissue 
homogenates were quantified using commercial ELISA kits (TNF-α), 
IL-1β, and IL-6 (Elabscience Biotechnology Inc., Houston, TX, USA), 
according to the manufacturer’s instructions.

2.11 Apoptotic markers

Apoptotic proteins in kidney tissue were quantified using 
commercial ELISA kits. BCL-2 and BAX levels were measured with 
kits from BioVision Inc., Milpitas, CA, USA and expressed as ng 
mg−1 protein. CASPASE-3 activity was determined with a 
colorimetric assay kit from BioVision Inc., Milpitas, CA, USA, while 
CYTOCHROME C levels were assessed using an ELISA kit from 
Elabscience Biotechnology Inc., Houston, TX, USA (expressed as 
nmol mg−1 protein) to evaluate mitochondrial integrity. All assays 
were performed in accordance with the respective manufacturers’ 
protocols.

2.12 Gene expression analysis

Total RNA was extracted from kidney tissue samples using TRIzol 
reagent (Invitrogen, Carlsbad, CA, USA) according to the 
manufacturer’s instructions. RNA purity and concentration were 
determined spectrophotometrically using NanoDrop (Thermo Fisher 
Scientific, Waltham, MA, USA) by measuring absorbance at 
260/280 nm. Complementary DNA (cDNA) was synthesized from 
1 μg of total RNA using RevertAid™ H Minus Reverse Transcriptase 
(30) following the manufacturer’s protocol. Quantitative real-time 
PCR (qRT-PCR) was performed using QuantiFast SYBR Green PCR 
kit (Qiagen, Hilden, Germany) on an Applied Biosystems 7,500 
system (Thermo Fisher Scientific, CA, USA). The PCR cycling 
conditions included initial denaturation at 95°C for 10 min, followed 
by 40 cycles of denaturation at 95°C for 15 s and annealing/extension 
at 60°C for 60s. All reactions were conducted in triplicate, and the 
relative gene expression levels were calculated using the 2^–ΔΔCt 
method with β-actin (Actb) as the internal control (30). Target genes 
analyzed included antioxidant response markers (Nfe2l2, Hmox-1, 
Sod2, Cat, GPx-1), inflammatory markers (TLR-4, TNF-α, IL-6, 
IL-1β), antioxidative stress markers (nitric oxide synthase NOS2), and 
apoptotic markers (Bax, Bcl-2, Caspase-3, Cycs). Primer sequences for 
all genes were listed in Table 1.
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2.13 Histopathological examination

Kidney samples were fixed in 10% formalin for 24 h, dehydrated 
through graded ethanol (70, 80, 90, and 100% for 5 min each), cleared 
in xylene, embedded in paraffin wax, sectioned at 5 μm, and stained 
with hematoxylin and eosin (H&E) (31). The stained sections were 
evaluated under a light microscope (Nikon Eclipse E200) to assess 
pathological changes.

Histopathological evaluation: Renal tissue sections were scored 
semi-quantitatively in a blinded manner using the Endothelial–
Glomerular–Tubular–Interstitial (EGTI) scoring system, as previously 
described by Toprak et al. (32). Lesions were graded on a 0–3 scale for 
each component (0 = none, 1 = mild, 2 = moderate, 3 = severe, 
4 = very severe). Three non-overlapping fields per section were 
examined at 400 × magnification by a blinded pathologist. Data were 
presented as mean ± standard deviation (SD). Statistical significance 
was assessed using one-way ANOVA followed by Tukey’s post hoc test 
for multiple comparisons.

2.14 Statistical analysis

All data were presented as mean ± SD. Statistical comparisons 
among experimental groups were conducted using one-way analysis 
of variance (ANOVA), followed by Tukey’s post hoc test to determine 
pairwise differences. Statistical analyses were performed using SPSS 
software (version 16.0). A p-value < 0.05 was considered statistically 
significant. All biochemical assays were conducted in triplicates to 
ensure accuracy and reproducibility. Statistical notation: # indicates 
significant difference vs. control; $ indicates significant difference vs. 
glyphosate (p < 0.05).

3 Results

3.1 Kidney weight and relative kidney 
weight assessment

Morphometric analysis revealed significant alterations in kidney 
weight parameters across experimental groups. Glyphosate 
administration significantly increased kidney weight and relative 
kidney weight compared to controls (p < 0.05), indicating renal 
hypertrophy possibly due to inflammatory processes or cellular 
edema. Quercetin treatment dose-dependently attenuated these 
morphological alterations, with high-dose quercetin normalizing 
values to near-control levels, while low-dose treatment showed 
moderate improvement (Figure 1). This progressive normalization 
represents initial macroscopic evidence for quercetin’s 
nephroprotective properties. No statistically significant differences 
were observed between the initial and final body weights within each 
group, including the control and glyphosate-treated groups (p > 0.05, 
Table 2).

3.2 Renal function and injury biomarkers

Glyphosate exposure significantly impaired kidney function, as 
evidenced by pronounced elevation in serum creatinine, urea, and 
uric acid compared to controls (p < 0.05) (Figure 2). These results 
indicate a significant impairment of renal excretory function. 
KIM-1, a sensitive biomarker of proximal tubular damage, showed 
significant upregulation after glyphosate administration (p < 0.05, 
Figure  2), indicating that tubular epithelial injury is a primary 
event in glyphosate-induced nephrotoxicity. Quercetin treatment 

TABLE 1  List of primer sequences of the genes analyzed by qRT-PCR.

Name Accession number Sense primer (5′ → 3′) Antisense primer (5′ → 3′)

Nfe2l2 NM_031789.2 CAGCATGATGGACTTGGAATTG GCAAGCGACTCATGGTCATC

Hmox-1 NM_012580.2 TTAAGCTGGTGATGGCCTCC GTGGGGCATAGACTGGGTTC

Sod2 NM_017051.3 AGCTGCACCACAGCAAGCAC TCCACCACCCTTAGGGCTCA

Cat NM_012520.2 TCCGGGATCTTTTTAACGCCATTG TCGAGCACGGTAGGGACAGTTCAC

Gpx-1 NM_030826.2 CGGTTTCCCGTGCAATCAGT ACACCGGGGACCAAATGATG

NOS2 NM_012611.3 GGTGAGGGGACTGGACTTTTAG TTGTTGGGCTGGGAATAGCA

Tnfα NM_013693.3 AGAGGCACTCCCCCAAAAGA CGATCACCCCGAAGTTCAGT

IL-1β NM_008361.4 TGCCACCTTTTGACAGTGATG TTCTTGTGACCCTGAGCGAC

Bax NM_007527.3 CTGAGCTGACCTTGGAGC GACTCCAGCCACAAAGATG

Bcl-2 NM_009741.5 GACAGAAGATCATGCCGTCC GGTACCAATGGCACTTCAAG

Caspase-3 NM_001284409.1 GAGCTTGGAACGGTACGCTA CCGTACCAGAGCGAGATGAC

Cycs NM_012839.2 CTTGGGCTAGAGAGCGGGA TGAAGCACGGGTGAGTCTTC

TLR-4 NM_019178.2 TGGATACGTTTCCTTATAAG GAAATGGAGGCACCCCTTC

TNF-α NM_013693.2 CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG

IL-6 NM_012589.2 AGTTGCCTTCTTGGGACTGA TCCACGATTTCCCAGAGAAC

Actb NM_007393.5 CTCTAGACTTCGAGCAGGAGATGG ATGCCACAGGATTCCATACCCAAGA

Gene: Nfe2l2 (nuclear factor erythroid 2-related factor 2), Hmox1 (heme oxygenase 1), Sod2 (superoxide dismutase 2), Cat (catalase), Gpx1 (glutathione peroxidase 1), Nos2 (nitric oxide 
synthase 2), Tnf-α (tumor necrosis factor alpha), IL-1 β (interleukin 1 beta), Bax (BCL2-associated X protein), Bcl2 (B-cell lymphoma 2), Caspase-3 (caspase 3), Cycs (cytochrome c, somatic), 
TLR-4 (toll-like receptor 4), IL-6 (interleukin 6), Actb (beta-actin).
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dose-dependently mitigated these impairments, with high-dose 
intervention (50 mg/kg/day) demonstrating superior normalization 
compared to low-dose treatment (25 mg/kg/day) and significantly 
reducing KIM-1 levels versus glyphosate-only exposure (p < 0.05), 
suggesting marked attenuation of tubular injury.

3.3 Oxidative stress markers and related 
gene expression

Glyphosate exposure significantly disrupted redox homeostasis, as 
evidenced by profound alterations in oxidative stress parameters. GSH, 
a critical non-enzymatic antioxidant, was markedly depleted compared 
to control levels (p < 0.05), indicating severe compromise of cellular 
antioxidant capacity (Figure 3). Concurrently, MDA levels, indicative of 
lipid peroxidation, were dramatically elevated versus control (p < 0.05) 
(Figure 3), suggesting significant membrane integrity compromise.

Nitrosative stress parameters showed parallel dysregulation, with 
NO production substantially increased compared to control (p < 0.05, 
Figure  3). This elevation was accompanied by pronounced 
upregulation of inducible NOS2 gene expression relative to control 
(p < 0.05), confirming enhanced nitrosative stress at both the 
metabolite and regulatory levels (Figure 3).

Quercetin intervention effectively attenuated these oxidative stress 
parameters in a dose-dependent pattern. High-dose quercetin (50 mg/
kg) restored GSH content, approaching control values, while 
considerably reducing MDA (p < 0.05). Similarly, nitrosative stress 
markers were normalized, with NO levels and NOS2 expression 
declining, comparable to control levels (p < 0.05). Low-dose quercetin 
(25 mg/kg) provided moderate protection across all parameters, 
though less effectively than the high-dose regimen (Figure 3).

3.4 Antioxidant parameters and related 
gene expression

Comprehensive assessment revealed marked impairment of 
antioxidant enzymes following glyphosate exposure. CAT activity was 
profoundly reduced compared to control (p < 0.05), with concurrent 
downregulation of Cat gene expression relative to control (Figure 4). 
Similarly, GPX activity substantially decreased (p < 0.05), with 
corresponding reduction in Gpx-1 gene expression. SOD activity 
declined considerably (p < 0.05, Figure 4), with Sod2 gene expression 
notably decreased. GR activity was likewise dramatically diminished 
compared to control (p < 0.05) (Figure 4).

Quercetin treatment dose-dependently restored these 
parameters. High-dose quercetin (50 mg/kg) effectively increased 
CAT, GPX, SOD, and GR activities compared to the glyphosate group 
(p < 0.05), with moderate improvement in the low-dose group 
(25 mg/kg). This protective effect extended to restoration of 
corresponding gene expression (Cat, Gpx-1, Sod2), with transcript 
levels approaching control values in the high-dose group (p < 0.05). 
Notably, quercetin monotherapy robustly upregulated antioxidant 
genes above baseline control levels (p < 0.05), suggesting potential 
priming effects that may enhance cellular resilience against 
subsequent oxidative challenges (Figure 4).

Nrf2, the master regulator of antioxidants, showed substantial 
reduction in protein levels compared to control (p < 0.05), 
accompanied by concurrent suppression of Nfe2l2 gene expression, 
indicating inhibition of this master regulatory pathway at both 

FIGURE 1

Effects of glyphosate and quercetin on kidney weight and relative kidney weight. Rats were administered with glyphosate and/or quercetin at low dose 
or high dose for 21 days. Results were presented as mean± SD (n = 10). Statistical significance: # indicates significant difference compared to the 
control group (p < 0.05); $ indicates significant difference compared to the glyphosate-treated group (p < 0.05).

TABLE 2  Mean ± SD of initial and final body weights of experimental 
animals in different treatment groups.

Group Initial body 
weight (g)

Final body weight 
(g)

Control 170.4 ± 13.75 178.8 ± 13.12

Quercetin 168.7 ± 12.86 176.2 ± 12.23

Glyphosate 159.6 ± 13.30 157.7 ± 13.40

Que-25 + Glyp 174.3 ± 12.35 178.3 ± 12.95

Que-50 + Glyp 171.0 ± 12.32 176.60 ± 12.25

Data were presented as mean ± standard deviation (SD). Statistical analysis was performed 
using paired t-test to compare the initial and final body weights within each group. No 
statistically significant differences were observed (p > 0.05).
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transcriptional and post-transcriptional levels (Figure  5). 
Consequently, expression of direct target Hmox-1 was pronouncedly 
downregulated (p < 0.05, Figure 5). High-dose quercetin appreciably 
ameliorated this dysregulation, increasing both Nrf2 protein levels and 
Nfe2l2 gene expression compared to the glyphosate group (p < 0.05), 
with restoration of Hmox-1 expression (Figure 5).

3.5 Inflammatory markers and related gene 
expression

Glyphosate exposure triggered pronounced inflammatory 
responses in renal tissue. Protein levels of TNF-α, IL-6, IL-1β, and 
TLR4 were markedly increased compared to control (p < 0.05), 

FIGURE 2

Effects of glyphosate and quercetin on serum renal function biomarkers and KIM-1. Rats were administered with glyphosate and/or quercetin at low 
dose or high dose for 21 days. Parameters measured include serum creatinine, urea, uric acid, and kidney tissue KIM-1 levels. Results were presented as 
mean± SD (n = 10). Statistical significance: # indicates significant difference compared to the control group (p < 0.05); $ indicates significant difference 
compared to the glyphosate-treated group (p < 0.05).

FIGURE 3

Effects of glyphosate and quercetin on oxidative stress parameters in renal tissue. Rats were administered with glyphosate and/or quercetin for 21 days. 
The figure shows levels of GSH, NO, MDA, and mRNA expression of inducible NOS2. Results were presented as mean± SD (n = 10). Statistical 
significance: # indicates significant difference compared to control (p < 0.05); $ indicates significant difference compared to glyphosate group 
(p < 0.05).
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indicating activation of pro-inflammatory cytokine networks 
(Figure 6). Gene expression analysis revealed even more significant 
upregulation of these inflammatory markers (p < 0.05), with fold-
changes exceeding those observed at the protein level, suggesting 
activation of common transcriptional regulatory mechanisms 
(Figure 6).

Quercetin treatment dose-dependently normalized both protein 
levels and gene expression of inflammatory markers. High-dose 
quercetin (50 mg/kg) showed superior anti-inflammatory effects 
compared to low-dose intervention (25 mg/kg), with significant 
reductions (p < 0.05) in both protein and transcript levels. Quercetin 
monotherapy did not significantly alter baseline inflammatory 
markers, indicating its effects were most pronounced in the context of 
pre-existing inflammatory activation (Figure 6).

3.6 Apoptotic markers and related gene 
expression

Glyphosate administration significantly dysregulated apoptotic 
pathways. Pro-apoptotic BAX, CASPASE-3, and CYTOCHROME C 
levels were markedly elevated (p < 0.05), indicating activation of the 
intrinsic mitochondrial apoptotic pathway. Anti-apoptotic BCL-2 

protein levels were significantly decreased (p < 0.05) compared to 
control, dropping from approximately 2.3 ng/mg to 0.7 ng/mg, further 
confirming the shift toward pro-apoptotic signaling (Figure 7).

Gene expression analysis revealed upregulation of Bax, caspase-3, 
and Cycs genes (p < 0.05), consistent with protein findings. Bcl-2 gene 
expression was significantly downregulated (p < 0.05) compared to 
control (Figure 7).

Quercetin treatment effectively normalized these apoptotic 
parameters dose-dependently. High-dose quercetin (50 mg/kg) 
demonstrated superior effects compared to low-dose treatment 
(25 mg/kg) (p < 0.05), restoring Bcl-2 protein levels to approximately 
1.9 ng/mg and mRNA expression to 0.9-fold, while reducing 
pro-apoptotic markers and restoring the critical BAX/BCL-2 balance 
that regulates mitochondrial integrity and cellular survival (Figure 7).

3.7 Histopathological examination

Histopathological assessment revealed distinct morphological 
differences among experimental groups. Kidney tissues collected from 
both the control and quercetin-treated groups exhibited normal renal 
architecture, with well-preserved glomeruli and intact tubular 
structures. In contrast, glyphosate-treated kidneys demonstrated 

FIGURE 4

Effects of glyphosate and quercetin on antioxidant enzyme activities and their gene expression in renal tissue. Rats were administered with glyphosate 
and/or quercetin at low dose or high dose for 21 days. Left panels show enzyme activities of CAT, GPX, SOD, and GR. Right panels show corresponding 
mRNA expression levels (Cat, Gpx-1, and Sod2) presented as fold-change relative to control. Results were presented as mean± SD (n = 10). Statistical 
significance: # indicates significant difference compared to the control group (p < 0.05); $ indicates significant difference compared to the glyphosate-
treated group (p < 0.05).
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FIGURE 5

Effects of glyphosate and quercetin on Nrf2 protein levels and related gene expression in renal tissue. Rats were administered with glyphosate and/or 
quercetin for 21 days. The figure shows Nrf2 protein levels, and mRNA expression of Nfe2l2 and Hmox-1, presented as fold-change relative to control. 
Results were presented as mean± SD (n = 10). Statistical significance: # indicates significant difference compared to control (p < 0.05); $ indicates 
significant difference compared to glyphosate group (p < 0.05).
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FIGURE 6

Effects of glyphosate and quercetin on inflammatory markers in renal tissue. Rats were administered with glyphosate and/or quercetin for 21 days. Left 
panels show protein levels of TNF-α, IL-6, IL-1β, and TLR-4. Right panels show corresponding mRNA expression presented as fold-change relative to 
control. Results were presented as mean± SD (n = 10). Statistical significance: # indicates significant difference compared to control (p < 0.05); $ 
indicates significant difference compared to glyphosate group (p < 0.05).
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FIGURE 7

Effects of glyphosate and quercetin on apoptotic markers in renal tissue. Rats were administered with glyphosate and/or quercetin for 21 days. Left 
panels show protein levels of pro-apoptotic markers (BAX, CASPASE-3, CYTOCHROME C) and anti-apoptotic marker (BCL-2). Right panels show 
corresponding mRNA expression presented as fold-change relative to control. Results were presented as mean± SD (n = 10). Statistical significance: # 
indicates significant difference compared to control (p < 0.05); $ indicates significant difference compared to glyphosate group (p < 0.05).
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marked renal damage, characterized by atrophy of the glomerular tuft 
with severe hemorrhage and congestion, inflammatory cellular 
infiltration of the glomerular tuft, interstitial leukocyte infiltration, 
epithelial cloudy swelling, extensive cellular apoptosis, and proximal 
tubular dilation with hyaline cast formation (Figure  8). These 
histopathological alterations confirm glyphosate-induced 
nephrotoxicity and correlate with the observed biochemical and 
molecular changes.

Quercetin treatment dose-dependently ameliorated these 
histopathological alterations. Low-dose quercetin (25 mg/kg) partially 
improved histological features, with moderate reduction in tubular 
degeneration and leukocytic infiltration. High-dose quercetin (50 mg/
kg) showed marked improvement in renal architecture, with nearly 
normal glomeruli and minimal tubular damage. These morphological 
improvements corresponded with molecular findings, showing 
significant downregulation of pro-inflammatory and apoptotic genes 
and restoration of antioxidant genes in the high-dose quercetin group, 
suggesting comprehensive nephroprotection at both structural and 
molecular levels (Figure 8).

The semi-quantitative analysis revealed that glyphosate treatment 
significantly increased all renal damage parameters compared to 
control groups, with scores ranging from 2.0 to 3.0 across tubular 
dilatation, apoptotic cell abundance, glomerular atrophy, and 
leukocyte infiltration. Quercetin alone showed no significant 
histopathological changes compared to controls, confirming its safety 
profile. Both quercetin pretreatment groups demonstrated significant 
dose-dependent protective effects against glyphosate-induced 
nephrotoxicity, with the high-dose group (Que-50 + Glyp) showing 

superior protection, reducing damage scores to approximately 0.4–0.5 
compared to 1.2–1.5 in the low-dose group (Que-25 + Glyp) as seen 
in Table 3.

4 Discussion

This study aimed to evaluate the nephrotoxic effects of glyphosate 
and investigate quercetin’s protective role against glyphosate-induced 
renal damage. Our findings revealed significant alterations at 
morphological, functional, biochemical, and molecular levels, 
confirming glyphosate’s nephrotoxicity and highlighting quercetin’s 
therapeutic potential.

The increased kidney weight after glyphosate administration 
represents a significant morphological manifestation of renal injury, 
likely reflecting inflammatory cell infiltration and cellular swelling, as 
reported by Karimi Jashni et al. (33). Quercetin dose-dependently 
normalized these parameters, consistent with its anti-inflammatory 
properties (34). Functional consequences of glyphosate exposure were 
evident through elevated renal biomarkers. Serum creatinine 
increased substantially, indicating impaired excretory function, with 
parallel rises in urea and uric acid levels, aligning with Nacano 
et al. (35).

Renal tubules, responsible for water and electrolyte reabsorption, 
were particularly vulnerable to toxic injury. Our study demonstrated 
that glyphosate exposure significantly damages proximal tubular 
epithelial cells, as evidenced by markedly elevated KIM-1 levels 
(p < 0.05) in exposed animals. KIM-1, a transmembrane glycoprotein 

FIGURE 8

Representative photomicrographs of renal tissue sections stained with hematoxylin and eosin (H&E) from experimental groups. (A,B) Control and 
Quercetin groups show normal renal histology with intact glomeruli (black arrow) and tubules (blue arrow). (C) Glyphosate group reveals marked renal 
damage, including glomerular tuft atrophy with severe hemorrhage and congestion, cellular infiltration of the glomerular tuft (black arrow), leukocyte 
infiltration (red arrow), cloudy swelling (blue arrow), apoptosis (yellow arrow), and tubular dilation of the proximal tubule with hyaline casts (green 
arrow). (D) Que-25 + Glyp group shows glomeruli with reduced damage (black arrow) and preserved tubules (blue arrow). (E) Que-50 + Glyp 
demonstrates near-normal renal morphology with minimal histopathological changes in glomeruli (black arrow) and tubules (blue arrow). H&E stain, 
scale bar = 50 μm.
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specifically upregulated in injured proximal tubular cells, surpassed 
changes in conventional biomarkers, indicating the proximal tubular 
epithelium as the primary target of glyphosate toxicity. This finding 
aligns with Han et  al. (36), who established KIM-1 as a sensitive 
biomarker for acute tubular damage. Our histopathological observations 
showing tubular epithelial degeneration provide morphological 
confirmation of this conclusion, suggesting that tubular injury precedes 
functional impairment. Reddy et  al. (37) similarly reported that 
herbicide exposure primarily affects tubular structures before altering 
glomerular filtration. Importantly, quercetin treatment dose-
dependently attenuated these tubular injury markers, demonstrating its 
specific protective effect against glyphosate-induced tubular damage.

Quercetin intervention attenuated these injury markers dose-
dependently. Our findings provide substantial evidence that oxidative 
stress represents a central mechanism in glyphosate-induced renal 
injury. The disruption of the antioxidant defense system was evident 
through suppression of enzymatic antioxidants, with CAT, GPX, and 
SOD showing marked inhibition. This was accompanied by depletion 
of GSH content. Similar patterns have been documented by Zhou et al. 
(38), suggesting systematic disruption of cellular redox homeostasis. 
The consequences of this antioxidant defense collapse were manifested 
through elevation of oxidative damage markers, including MDA 
levels. Chang et  al. (39) similarly reported that glyphosate-based 
formulations induce significant increases in oxidative stress 
biomarkers. The membrane peroxidation may compromise renal 
epithelial cell integrity, potentially explaining the glomerular and 
tubular damage observed histopathologically, as suggested by 
Romualdo et al. (40).

Concurrently, significant elevation in NO levels was observed 
following glyphosate exposure, accompanied by marked upregulation 
of NOS2 gene expression. This indicates coordinated dysregulation of 
nitrosative stress at both metabolic and genetic regulatory levels, 
providing an additional mechanistic link between glyphosate exposure 
and renal injury. Quercetin treatment dose-dependently normalized 
both NO production and NOS2 expression, suggesting that 
modulation of nitrosative stress represents an important mechanism 
contributing to quercetin’s nephroprotective effects.

Quercetin intervention effectively restored redox balance through 
multiple complementary mechanisms. The dose-dependent 
normalization of antioxidant enzyme activities (CAT, GPX, SOD) and 
GSH content suggests enhancement of endogenous antioxidant 
defense systems. Concurrently, the progressive reduction in oxidative 
damage markers (MDA and NO) indicates effective mitigation of free 
radical-mediated cellular injury. These findings align with reports by 
Alharbi et al. (41) and Zhang et al. (42), who documented quercetin’s 
capacity to restore antioxidant defenses and attenuate oxidative 

damage in various experimental models of oxidative stress-mediated 
tissue injury.

The molecular analysis of antioxidant gene expression revealed 
significant transcriptional dysregulation following glyphosate 
exposure, providing mechanistic insight into the observed enzymatic 
impairments. The coordinated downregulation of multiple antioxidant 
genes, including Sod2, Cat, Gpx-1, and Hmox-1, suggests suppressing 
a common transcriptional regulatory mechanism rather than gene-
specific effects. The strong correlations between these expression 
patterns (r-values ranging from 0.82 to 0.88, all p < 0.05) further 
support their coordinated regulation through a shared pathway. 
Similar patterns of antioxidant gene suppression have been 
documented by Liu et al. (43) and Yengkokpam and Mazumder (44), 
who reported comparable transcriptional alterations in models of 
pesticide-induced oxidative stress.

The significant reduction in Nrf2 protein levels observed in our 
study provides mechanistic insight into the coordinated suppression 
of antioxidant genes. This protein reduction was accompanied by 
parallel downregulation of Nfe2l2 gene expression, suggesting that 
glyphosate disrupts this pathway at multiple regulatory levels. As the 
master regulator of cellular antioxidant defense, Nrf2 controls 
numerous cytoprotective genes through binding to antioxidant 
response elements in their promoter regions. This dysregulation of the 
Nrf2-ARE pathway appears to be a central mechanism underlying the 
observed comprehensive impairment of antioxidant defense systems, 
creating a cellular environment highly susceptible to oxidative damage 
(45). Quercetin’s ability to restore both Nrf2 protein levels and gene 
expression likely represents a key mechanism behind its 
nephroprotective effects, as similarly reported by Wang et al. (46) in 
models of oxidative stress-induced renal injury.

Quercetin intervention effectively restored antioxidant gene 
expression in a dose-dependent manner, with high-dose quercetin 
(50 mg/kg) normalizing transcription of Sod2, Cat, Gpx-1, and 
Hmox-1 to near-control levels. Notably, quercetin monotherapy 
induced substantial upregulation of these genes above baseline, with 
Hmox-1 showing particularly pronounced induction. This 
transcriptional enhancement reveals quercetin’s capacity to activate 
antioxidant gene expression, as documented by Zhao et al. (47) and 
Kenan Kinaci et al. (48) across multiple experimental models.

The histopathological findings of leukocytic infiltration in 
glyphosate-exposed renal tissue were corroborated by molecular 
evidence of inflammatory pathway activation. Significant upregulation 
of TLR4 suggests recognition of glyphosate-induced damage-
associated molecular patterns as inflammatory triggers, activating 
downstream signaling pathways. Similar TLR4-mediated 
inflammatory signaling has been reported by Wu et al. (49) in models 

TABLE 3  Semi-quantitative histopathological scoring of renal damage parameters in different experimental groups.

Group Tubular dilatation Apoptotic cell 
abundance

Glomerular atrophy Leukocyte infiltration

Control 0.3 ± 0.48 0.2 ± 0.42 0.3 ± 0.48 0.3 ± 0.48

Quercetin 0.3 ± 0.67 0.2 ± 0.33 0.3 ± 0.67 0.3 ± 0.48

Glyphosate 3.1 ± 0.74 #, $ 2.3 ± 1.06 #, $ 2.3 ± 0.94 #, $ 2.5 ± 0.53 #, $

Que-25 + Glyp 1.3 ± 0.67 #, $ 0.7 ± 0.62 #, $ 1.2 ± 0.78 #, $ 1.5 ± 0.52 #, $

Que-50 + Glyp 0.4 ± 0.51 #, $ 0.3 ± 0.48 #, $ 0.4 ± 0.70 #, $ 0.5 ± 0.70 #, $

Lesions were graded on a 0–4 scale for each component (0 = none, 1 = mild, 2 = moderate, 3 = severe, 4 = very severe). Data presented as mean ± SD (n = 10). Statistical significance: # indicates 
significant difference from control group (p < 0.05); $ indicates significant difference from glyphosate group (p < 0.05).
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of nephrotoxic acute kidney injury. Elevated expression of 
pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) further confirms 
activation of inflammatory networks in response to glyphosate. These 
cytokines mediate local inflammatory responses and contribute to 
renal tissue injury through direct cytotoxic effects and promotion of 
oxidative stress. Inflammatory markers were markedly elevated in 
glyphosate-treated animals, highlighting inflammation as a key 
contributor to nephrotoxicity. Quercetin treatment effectively 
suppressed this inflammatory response in a dose-dependent manner, 
supporting its nephroprotective potential. The simultaneous 
improvement in both inflammatory and oxidative stress parameters 
suggests that these two pathways may be closely interlinked in the 
pathogenesis of glyphosate-induced renal damage. Similar anti-
inflammatory effects of quercetin have been documented by Chen 
et al. (50). Our analysis revealed that inflammatory gene expression 
changes consistently exceeded and preceded protein alterations, 
suggesting significant post-transcriptional regulation during toxic 
stress. Quercetin treatment normalized both processes, with gene 
expression responding more rapidly than protein levels, indicating 
primary transcriptional regulatory effects. Similar regulatory patterns 
were reported Gaspard et  al. (51) in xenobiotic-induced 
inflammatory responses.

Although cleaved CASPASE-3 is the definitive marker of irreversible 
apoptosis, this study relied on ELISA and qRT-PCR methods to evaluate 
CASPASE-3expression. While these approaches provide valuable 
insights into apoptotic activity, they do not differentiate between 
pro-CASPASE-3 and its cleaved active form. Future studies employing 
Western blot or immunohistochemistry would provide more direct 
confirmation of CASPASE-3 activation. Our findings establish the 
mitochondrial apoptotic pathway as a significant mechanism of cell 
death in glyphosate-induced nephrotoxicity. The observed upregulation 
of pro-apoptotic BAX coupled with downregulation of anti-apoptotic 
BCL-2 indicates disruption of the critical BAX/ BCL-2 balance 
governing mitochondrial membrane integrity. This mitochondrial 
destabilization is evidenced by significant CYTOCHROME C release, 
which is associated with the activation of the CASPASE cascade, as 
confirmed by elevated caspase-3 expression and activity. Similar 
activation of the mitochondrial apoptotic pathway following glyphosate 
exposure has been reported by Lu et al. (52) and Gui et al. (11) in 
various cellular models.

The correlations between oxidative stress and apoptotic suggest 
that oxidative damage, particularly to cellular membranes, serves as a 
key contributor to the apoptotic cascade. The lipid peroxidation 
indicated by elevated MDA levels may compromise membrane 
integrity, particularly in organelles with high phospholipid content. 
Additionally, the impaired antioxidant defense, indicated by Sod2 
downregulation, likely exacerbates oxidative damage, further 
promoting cellular dysfunction and apoptotic signaling. Sule et al. (53) 
documented the relationship between oxidative stress and apoptotic 
activation in pesticide-induced cytotoxicity, and reported that ROS 
and RNS trigger mitochondrial apoptotic pathways.

Notably, we  observed increased BCL-2 protein levels despite 
significant downregulation of Bcl-2 gene expression, suggesting 
complex post-transcriptional regulatory mechanisms that may include 
enhanced protein stability or decreased degradation in response to 
toxic stress. This discordance highlights the importance of multi-level 
analysis for comprehensive understanding of cellular responses 
to toxicants.

Quercetin treatment effectively mitigated these apoptotic changes in 
a dose-dependent manner, normalizing the BAX/ BCL-2 ratio, reducing 
CYTOCHROME C release, and suppressing CASPASE-3 activation. 
This anti-apoptotic effect appears to result from multiple complementary 
mechanisms, including enhanced antioxidant protection as evidenced 
by restored antioxidant enzyme activities and reduced oxidative damage 
markers, which collectively help maintain cellular integrity and prevent 
progression to apoptotic cell death. These findings were consistent with 
reports by Chen et al. (54), who documented quercetin’s capacity to 
modulate apoptotic signaling in various models of toxicant-induced cell 
death. Specifically, Chen et al. (54) demonstrated that quercetin alleviates 
zearalenone-induced apoptosis and necroptosis in porcine renal 
epithelial cells by inhibiting the calcium-sensing receptor/calcium–
calmodulin-dependent protein kinase II signaling pathway and by 
protecting the cells from oxidative damage caused by zearalenone 
exposure. Analysis of our findings suggests an integrated mechanistic 
model for glyphosate-induced nephrotoxicity centered on the interaction 
between inflammatory and oxidative pathways. Glyphosate exposure 
triggers inflammatory responses via TLR-4 upregulation while 
suppressing antioxidant gene expression, creating a self-amplifying cycle 
that compromises mitochondrial integrity, activates apoptotic cascades, 
and results in tubular epithelial damage and functional impairment. 
Similar integrated mechanisms have been proposed by Ferrante et al. 
(55) in their review of glyphosate toxicity. Quercetin’s protective effects 
appear mediated through multiple complementary mechanisms: 
enhanced antioxidant gene expression (Sod2, Cat, Gpx-1, and Hmox-1) 
and restored enzyme activities, alongside attenuated inflammatory 
signaling through reduced expression of inflammatory mediators and 
TLR-4. These effects interrupt the inflammation-oxidative stress cycle, 
preserve mitochondrial integrity, and prevent apoptotic cell death as 
indicated by normalized CYTOCHROME C release, restored BCL-2 
protein and gene expression levels, reduced BAX levels, and decreased 
CASPASE-3 activity. These multifaceted protective mechanisms align 
with findings by Song et  al. (56). The dose-dependent nature of 
quercetin’s protective effects, with superior efficacy at 50 mg/kg, suggests 
potential therapeutic applications.

While this study provides significant insights into the protective 
effects of quercetin against glyphosate-induced nephrotoxicity, certain 
limitations should be  noted. Firstly, the study was limited to a 
sub-acute exposure model in rats, which may not fully replicate 
chronic exposure scenarios in humans. Secondly, only male rats were 
used, and sex-specific differences were not explored. Thirdly, while 
multiple biomarkers and gene expressions were analyzed, more 
advanced molecular pathways (e.g., transcriptomics or proteomics) 
were not assessed. Additionally, while CASPASE-3 levels were assessed 
using ELISA and gene expression analysis, the absence of Western blot 
analysis to detect cleaved CASPASE-3 is a limitation that should 
be addressed in future research for confirming apoptotic pathway 
activation at the protein level. Future studies using chronic models, 
both sexes, and broader mechanistic approaches would help validate 
and expand these findings.

5 Conclusion

The present study provides comprehensive evidence that sub-acute 
glyphosate exposure induces significant nephrotoxicity in rats through a 
complex interplay of molecular mechanisms. Our findings demonstrate 
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that glyphosate triggers renal damage via three interconnected pathways: 
(1) suppression of antioxidant defense systems and induction of oxidative 
stress, (2) activation of TLR-4-mediated inflammatory cascades, and (3) 
disruption of mitochondrial integrity leading to apoptotic cell death. 
These pathological processes collectively culminate in tubular epithelial 
damage, glomerular dysfunction, and impaired renal excretory capacity. 
Importantly, this study establishes quercetin as a potent nephroprotective 
agent against glyphosate-induced renal injury. Quercetin treatment, 
particularly at the higher dose (50 mg/kg), effectively normalized renal 
morphology and function, restored antioxidant enzyme activities and 
gene expression, attenuated inflammatory cytokine production, and 
inhibited the mitochondrial apoptotic pathway. The dose-dependent 
protective effects observed suggest a therapeutic threshold for optimal 
renoprotection against xenobiotic injury.
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