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Dry matter intake (DMI) of grazing animals varies depending on environmental
factors and the physiological stage of production. The amount of CH4 eructated
(a greenhouse gas, GHG) by ruminants is correlated with DMI and is affected
by feedstuff type, being generally greater for forage diets compared to
concentrates. Currently, there are limited data on the relationship between DMI
and GHG in extensive rangeland systems, as it is challenging to obtain. Leveraging
precision livestock technologies (PLT), data science, and mathematical nutrition
models to predict DMI from enteric emission measurements of grazing cattle is
likely a viable method, given the increase in available PLT for extensive systems.
Therefore, our objectives were to: (1) measure CH4, CO2, and O2 emissions,
DMI, and the weight of dry beef cows; (2) create a data pipeline to integrate
three PLT data streams in Program R; and (3) use these data to develop a
mathematical model capable of predicting grazing DMI. The predictive equation
was developed using data from two feeding trials conducted using technology
to measure enteric emissions, daily DMI, and front-end body weights. This study
was conducted in western South Dakota with non-lactating Angus beef cows (n
= 7) that received either moderate (15% crude protein, CP) or low (6% CP) quality
grass hay using a 14-day adaptation period followed by a 14-day data collection
period. Average CH4 (g/day), CO2 (g/day), and O2 (g/day) were 209 ± 60, 6,738
± 1,662, and 5,122 ± 1,412 for the moderate group and 271 ± 65, 8,060 ± 1,246,
and 5,774 ± 748 for the low-quality treatments, respectively. Initial models using
emissions, O2 consumption, and body weight were not adequate for predicting
individual DMI, with R² values ranging from 0.01 to 0.28. Using smoothed herd-
level data, the CH4 model produced the best results for predicting DMI (R² =
0.77). This study presents a novel methodological approach to leverage data
from multiple PLTs simultaneously, with the potential to advance DMI estimates
for grazing cattle in rangelands.

KEYWORDS

precision livestock technology, data integration, nutrition models, open source code,
rangelands, dry matter intake

1 Introduction

Dry matter intake (DMI; g/d) is a crucial measurement for various purposes,
including determining nutrient requirements, evaluating feed efficiency, and calculating
stocking rates in rangelands. Dry matter intake differs in beef cattle depending on
the environment and the physiological stage of production (1). In rangeland grazing
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systems, a variety of beef cattle classes graze, which makes
management difficult because strategies may differ by animal class
(e.g., heifers and cows) as well as physiological status (e.g., growing,
lactating). Balancing these factors with seasonal changes in crude
protein (CP) and precipitation is important in determining forage
intake, which ultimately impacts stocking rates. It is important to
evaluate feed efficiency for producers to extend pasture availability,
reduce supplement costs, and guide genetic selection within herds
(2). Within grazing systems, the harvest efficiency metric is used
to quantify the forage that is ingested by the grazing animal from
the total forage biomass available in a pasture area and is reported
as a percentage or decimal fraction (3). Smart et al. (4) employed
three different intake equations for harvest efficiency and observed
significant differences in harvest efficiency across stocking rates (P
= 0.0001). With a goal of 25% harvest efficiency, the moderately
stocked pastures were closest to this target, while heavily stocked
pastures were 13%−16% higher, and lightly stocked pastures were
6%−10% lower (4). Although harvest efficiency provides a general
view of the grazing performance of a herd as a whole, it makes
it difficult to arrive at an individual DMI. Several methods have
been developed to measure the DMI of grazing animals in pasture
directly; however, these methods are complicated, time-consuming,
and laborious, including direct observation, feed depletion, hand-
plucking, total fecal collection, and internal/external markers (5, 6).

1.1 Dry matter intake and methane
production

Research on beef cattle has shown that the consumption of
non-cell wall components contributes to lower CH4 production
compared to forages that have more cell wall components (7).
This is because they are separated into soluble sugars, which create
more CH4 than the starchy materials. Furthermore, differences in
CH4 production are caused by additional fiber substrates available
for microbial fermentation (i.e., low-quality forage), which results
in methanogenesis. Most forage feedstuffs (e.g., hay or pasture
forage) contain more fiber because of the structural components of
cellulose, hemicellulose, and lignin. Thus, as fiber content increases
in the animal diet, enteric CH4 generally increases compared to
diets with larger proportions of less fibrous feedstuffs such as
concentrates [e.g., ground corn (Zea mays)]. Methane has also been
shown to be positively correlated with body weight [BW; P < 0.001;
(8)]. This is because smaller animals ingest less feed; therefore, they
proportionally emit less CH4 (9).

Dry matter intake was reported to be the most critical
factor to predict CH4 production in a study conducted using an
intercontinental database to create a prediction model for enteric
CH4 production of beef cattle using data from Europe, North
America, Brazil, Australia, and South Korea, especially with the
groups of all data combined, high-forage diets, and lower-forage
diets (10). As DMI increases, there is more material in the digesta
that needs to be broken down for absorption, degradation, or
passage, resulting in an increased microbial degradation time.
Rumen microbes produce various proportions of volatile fatty
acids (propionate, butyrate, and acetate) relative to fiber or
concentrate levels—acetate production results in larger amounts of

methanogenesis compared to butyrate and propionate. As cattle
consume more forage compared to concentrates, the increased
mean retention time (due to higher fiber being less digestible)
allows for greater production of acetate and, thus, increased
methanogenesis. This well-established relationship has enabled
the exploration of methane production based on the DMI and
nutrient composition of the feedstuffs. Many modeling studies
have used regression, empirical, or mechanistic approaches based
on this relationship (11–14). Consequently, the increased ability
to collect enteric emission data from grazing cattle provides
an opportunity to explore the correlation with DMI using
mathematical models. Although field-based studies have laid the
groundwork for estimating DMI, they are more tedious and time-
consuming than models.

Nutrition models help researchers reduce costs and time when
predicting DMI (15, 16). For example, empirical equations, such as
using neutral detergent fiber (NDF) to predict DMI, are tools that
may give DMI modeling reliability under similar environmental
conditions (17). As the quality and quantity of animal data continue
to improve, the reliability of DMI models is likely to increase.
Animal data may include individual real-time measurements, such
as weighing, feed intake, enteric emission monitoring, temperature,
body condition, respiration, tracking of movement activity, and
behavior. A major proponent of enhanced data collection for
grazing livestock is the growing application of precision livestock
technology (PLT) (19, 20), which includes the ability to collect CH4
data from grazing livestock to enhance DMI models.

1.2 The role of precision livestock
technologies

Within extensive rangeland systems utilizing PLT, we can
fill the gaps in research that have been infeasible in the past
through the collection of high-resolution data that was previously
unattainable (19). One crucial technology affecting rangeland
research capabilities is the GreenFeedTM pasture system (C-Lock
Inc., Rapid City, SD) because it can be deployed on extensive
rangelands (21). The GreenFeedTM pasture system is a portable
machine that can measure enteric gas flux, specifically CH4, CO2,
and O2 consumption. When compared with the SF6 and chamber
methods for enteric emission measurements, the GreenFeedTM

system has been shown to reliably and accurately measure CH4,
CO2, and O2 from beef and dairy cattle in a pasture setting (21–24).
Therefore, it may be possible to use PLT measurement tools, such as
the GreenFeedTM, to estimate DMI in real time because CH4 and
DMI are highly correlated, and the GreenFeedTM provides a less
labor-intensive (compared to SF6 on-animal devices), reliable, and
long-term method to measure enteric emissions of grazing cattle,
which was not possible until recently (25). However, leveraging
PLT data in a transparent and repeatable manner to create such
models is difficult and requires robust data integration pipelines
and documentation. The objectives of this study were to: (1)
measure CH4, CO2, O2, emissions, DMI, and BW of dry beef cows;
(2) create a fully documented data pipeline to integrate three unique
PLT data streams in Program R seamlessly; and (3) use these data to
develop a mathematical model capable of predicting grazing DMI.
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2 Methods

2.1 Institutional animal care and use
approval

The SDSU Institutional Animal Care and Use Committee
(IACUC) approved all procedures involving animals (approval
number #A3958-01).

2.2 Study area

This study was conducted at the SDSU Cottonwood Field
Station (CFS), located in western South Dakota (43.9604,
−101.8579). The CFS is situated in a mixed grass prairie ecosystem
and is composed primarily of native C3 mid-grasses, including
green needlegrass (Nassella viridula [Trin.]), needle-and-thread
(Hesperostipa comata [Trin. & Rupr.]), and western wheatgrass
(Pascopyrum smithii [Rydb.]), intermixed with native C4 short
grasses (blue gramma [Bouteloua gracilis Willd. Ex Kunth] and
buffalograss [Bouteloua dactyloides (Nutt.)]). Recent introductions
of non-native grasses, including kentucky bluegrass (Poa pratensis
[Boivin & Love]) and japanese brome (Bromus japonicus [Thunb.]),
are also prevalent at the site. The soil in the study area is
predominantly Kyle clay and Pierre clay (51). The topography was
gently sloping, with rolling hills and relatively flat-topped ridges,
ranging from a peak elevation of 784 m to 710 m. The long-term
(1991–2020) average annual precipitation at CFS is 452 mm (26).

2.3 Experimental treatments

Dry beef Angus cows (n = 7, mean BW = 622 ± 11.79) were
kept in a dry lot. Non-lactating/non-pregnant cows with constant
nutritional demands were used to reduce the variation in energy
and protein requirements for this experiment. The cows were fed
two different forage-based diets ad libitum to mimic a rangeland
setting. The two feed treatments were grass hay 1 (G1, whole-stem
mixed grass hay with alfalfa) and grass hay 2 (G2, chopped mixed
grass hay), which represented moderate and low forage nutrient
compositions, respectively. The hay was acquired during a drought
year; thus, the source of specific hay species or composition was
limited. Each treatment consisted of a 2-week adaptation phase and
a 2-week collection phase (Figure 1).

Daily samples were collected for each feeding period, dried,
and weighed to determine dry matter percentage (n = 22). At
the end of every 2 weeks, the forage was mixed into composite
samples (n = 4), which were sent to Servitech Labs (Hastings, NE,
USA) for testing in triplicate (n = 12). Forage nutrient analysis
of each grass hay in each phase was conducted to determine
the dry matter (DM%), crude protein (CP%), and acid detergent
fiber (ADF%) content. These measurements were used to estimate
the total digestible nutrients (TDN%). During the collection
periods for G1 and G2, we collected individual enteric emissions
(g/hd/d), individual daily DMI (kg/hd/d), and individual daily cow
weights (kg/hd/d).

2.4 Precision technologies

To collect these measurements, we used three precision
measurement technologies: the SmartFeederTM, GreenFeedTM, and
SmartScaleTM (C-Lock Inc., Rapid City, SD, USA). All devices
followed suggested experimental protocols (i.e., weight and gas
calibrations) to ensure data quality throughout the experiment (27).
The SmartFeederTM was used to collect daily individual intake by
measuring disappearance (Figure 2). To achieve this, the device
calculated the total feed in the bin (kg) minus the disappearance
(kg) for each feeding event (28), resulting in intake values on an
as-fed basis per cow (kg/h/d). Later intake was converted to DMI
using the percent dry matter values from the processed forage.

The GreenFeedTM (Figure 3) was used to measure CH4 and
CO2 emissions and O2 consumption (g/hd/d) from the cows on
an individual basis in real time. The GreenFeedTM uses radio
frequency identification (RFID) tags that are unique to each animal.
The cattle were baited into the headbox of the GreenFeedTM using
an alfalfa (Medicago sativa) pellet (CP = 15%, ADF = 38%, and
NDF = 48%). Alfalfa pellets were selected for alignment with
the forage-based treatments. The GreenFeedTM fed cattle at a
rate of ∼35 g every 30 s with eight drops for each feeding period
(Equations 1–6). Each cow could receive a maximum of five feeding
periods per day, which, if consumed, would result in a 29.5%
maximum potential contribution of CP to the basal diet in the
current study (i.e., 0.81 kg instead of only 0.627 kg).

Maximum Pellets Fed = Feeding Periods × Drops Per Period

×Drop Mass (1)

Maximum Pellets Fed DM Basis = Maximum Pellets Fed

×(1 − Pellet Moisture %/100) (2)

Pellet CP = Maximum Pellets Fed DM Basis

× (Pellet % CP/100) (3)

Basal Diet = BW × (1.8%/100) (4)

Basal Diet CP = Basal Diet × (Basal Diet CP %/100) (5)

Pellet CP Percent of Basal Diet = Pellet CP ÷ Basal Diet CP (6)

Where Maximum Pellet Fed is 1.4 kg/d, Feeding Periods =
5/d, Drops Per Period = 8, Drop Mass = 35 g, Maximum Pellet
Fed on DM basis is 1.232 kg/d, and pellet moisture is 12% [crude
protein (CP)]. Pellet CP = 0.1848 kg; Pellet % CP = 15. Basal
Diet = 11.196 kg, BW = 622 kg, 1.8 is the percent DMI per BW
factor, Basal Diet CP = 0.627 kg/d; Basal Diet CP% = 5.6, Pellet CP
Percent of Basal Diet is 29.47% (see Supplementary Section 19 for
complete details).

When an animal is consuming pellets distributed by the
GreenFeedTM system (≥2 min required), the system measures the
airflow rate, background CH4, and CO2 concentration. Thus, it can
measure gas (CH4 and CO2) fluxes from the animal. The non-
dispersive infrared analyzer and head proximity sensor then filter
out samples where the head is not in an optimal position to provide
satisfactory measurements (21). The GF unit used in the current
study also measured the O2 consumption.

The SmartscaleTM (Figure 4) was used to measure individual
front-end weights that were then converted to full BW (29), using
independent full BW that were taken using a conventional scale
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FIGURE 1

Diagram of animal training, adaptation, and collection phase dates for moderate (G1) and low (G2) diet treatments conducted in the winter of 2022
(January to May).

FIGURE 2

Set up of three mobile SmartFeederTM units at the South Dakota State University Cottonwood Field Station dry lot (Cottonwood, SD). Each feeder
contains two precision feeding bunks.

collected at the beginning and end of each phase (n= 35). The chute
weights were collected using a hydraulic squeeze chute (SilencerTM,
Stapleton, NE) on load cells and bars (Tru-Test, Mineral Wells,
TX, USA).

2.5 Data pipeline

For all three PLTs, RFID tags were used so that the
collected data could be paired with individual animals. We later
combined all three datasets into a single data pipeline (see
Supplementary code and data). All data and results presented in
this study are reproducible using the Supplementary materials and
the corresponding sections referenced (1–19 in the R-Markdown
section). Data were sent to the cloud remotely and downloaded
either through a direct download or application programming
interface [API; (30)] from the C-Lock, Inc. web interface and
entered into Program R. Data collection from multiple PLTs
resulted in a large amount of data that needed to be cleaned and
processed into a usable format, and an interquartile range was used
to remove DMI and BW outliers (Supplementary Sections 1–13).

To process the data and conduct a statistical analysis,
we integrated these three precision data streams into the
R programming language for Statistical Computing [RStudio
version 4.3.1; (31)]. Using R Studio, we ran descriptive statistics,
removed outliers, and checked for normality, homoscedasticity,
and independence (Supplementary Section 15). A mixed-model
analysis of variance (ANOVA) (lme4 package, P < 0.05) (32)
was conducted for each gas (CH4, CO2, and O2) and DMI to
determine the differences between the two treatments (G1 and G2;
P < 0.05). We used a mixed model ANOVA instead of a one-way
ANOVA because of the lack of independence between variables;
treatment was the main effect, and animal was the random effect
(Supplementary Sections 14, 15).

2.6 Comparing contemporary intake
models

We compared the observed DMI dataset with two DMI
equations for beef cattle requirements, the first being National

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2025.1625448
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


McFadden et al. 10.3389/fvets.2025.1625448

FIGURE 3

GreenFeedTM Unit 297 deployed at the South Dakota State University Cottonwood Field Station drylot (Cottonwood, SD).

Academies of Sciences Medicine et al. (15), which uses metabolic
BW and net energy for maintenance, as shown in Equations 7, 8
(Supplementary Section 16):

NEm Intake = BW0.75 × (0.04997 × NEm2 + 0.04631) (7)

where NEm Intake is the net energy for maintenance intake
(Mcal/d), BW0.75 is the metabolic BW (kg), and NEm is the net
energy for maintenance (Mcal) required by the animal.

DMI = Total NEm Intake
Dietary NEm Concentration

(8)

Where DMI is the dry matter intake (kg), Total NEm intake
is the amount of energy consumed by the animal, and the
Dietary NEm Concentration is the concentration of energy in the
feed/forage consumed (Mcal/day) and was calculated using the total
digestible nutrients of each forage type [G1 and G2; Menendez and
Tedeschi (18)].

The second equation is used primarily for calculating rangeland
stocking rates (hd/ha/time) and is based on the DMI as a percentage
of BW (Equation 9):

DMI = BW X (1.8%/100) (9)

Where DMI is dry matter intake (kg/d) and BW is the cow’s
body weight (kg) multiplied by 1.8%. This percentage was used
because a non-lactating cow is generally assumed to consume 1.8%
of their BW (33).

We then evaluated the predictions of the NASEM and percent
BW DMI equations against the observed DMI using a Model
Evaluation System [MES; (34)] to assess precision (R²) and
accuracy (mean bias; MB). The coefficient of determination (R2)
measures the proportion of variance that connects the observed and
predicted values, with values closer to 1 indicating greater precision
(35, 36). The MB specifies the differentiation of means between the
observed and predicted values (values closer to 0 being better) (37).

2.7 Predictive DMI model development

After processing the data, we utilized a linear regression and
multiple linear regression approach to predict the DMI from enteric
emissions and BW in Program R (Supplementary Section 17).
First, we regressed the DMI using CH4, CO2, O2, and BW for
each treatment (G1, G2). We then regressed the same individual
covariates against DMI using all data (i.e., a combination of
treatments G1 and G2). For multiple linear regression, DMI
was regressed against a combination of all covariates, both by
treatment and the combination of treatment data. The Corrected
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FIGURE 4

Example of a cow using the SmartScaleTM attached to the Ritchie Livestock Waterer in the drylot at the South Dakota State University Cottonwood
Field Station (Cottonwood, SD).

Akaike Information Criterion (AICc) was used to select the
best models, in addition to filtering using the variance inflation
factor (VIF) to remove variables that caused multicollinearity
(Supplementary Section 17).

Due to the small sample size and gaps in the data, all
individual data points (the entire study) were combined daily
into a herd average. This increased the available data; however,
the data were still limited and inconsistent across time, so
a smoothing function was used on the observed dry matter
and gases to allow previous observations to impact future
observations. We used exponential smoothing in Program R
(Supplementary Section 19). The data were smoothed based on
the last seven days of the data. This reduced the amount of
noise around the data (extreme highs and lows). Using the
entire dataset allows for better smoothing over time (because
more observations can be used to smooth the data). The
smoothed data was then subset back into the G1 and G2
data sets. These herd-level smoothed data were then used
to reanalyze the same DMI models mentioned previously
(Supplementary Section 17) for the G1 and G2 datasets at the
herd level.

TABLE 1 Nutrient analysis results from the moderate (G1) and low (G2)
forage treatments.

Feed treatment %DM %CP %ADF %TDN

G1 93.3 13.9 38.7 55.4

G2 93.4 5.6 44.3 47.6

The feed was tested for dry matter (%DM), crude protein (%CP), and acid detergent fiber
(%ADF), which were then used to calculate total digestible nutrients (%TDN).

3 Results

The results of the nutrient analysis indicated that the nutrient
composition of G1 forage had higher CP and TDN and lower
ADF compared to the G2 diet. The CP and TDN for G1 were
higher by 59.71% and 14.08%, respectively. However, the ADF of
G2 was 12.64% higher (Table 1). Dry matter intake and emissions
data showed that G2 had a higher average DMI, CH4, CO2, and
O2 by 15%, 23%, 16%, and 11%, respectively (P < 0.05; Table 2;
Figures 5–8; Supplementary Section 13). The ranges for each gas
per treatment showed that G2 had a greater range for CH4, whereas
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TABLE 2 Dry matter intake (DMI), methane (CH4), carbon dioxide (CO2),
and oxygen (O2) enteric emissions (g) averages (AVG and standard
deviation) and ranges (RG) for each treatment (moderate-quality grass
hay 1 = G1 and low-quality grass hay 2 = G2) and the combined
treatment data.

DMI (kg)
and
gases (g)

n G1 n G2 Combined

AVG DMI 18 12 ± 1.8 26 14 ± 2.2 13 ± 1.9

AVG CH4 18 209 ± 60 26 271 ± 65 240 ± 63

RG of CH4 - 105–322 - 126–443 105–443

AVG CO2 18 6,738 ±
1,662

26 8,060 ±
1,246

7,399 ± 1,453

RG of CO2 - 3,952–
9,822

- 5,923–
10,227

3,952–10,227

AVG O2 18 5,122 ±
1,412

26 5,774 ±
748

5,448 ± 1,080

RG of O2 - 2,149–
7,532

- 4,348–
7,046

2,149–7,046

G1 had a greater range for CO2 and O2 (Table 2). Methane and CO2
levels were significantly different (P < 0.05) between treatments,
but O2 consumption was not significantly different (P > 0.05;
Supplementary Section 14).

When we evaluated observed DMI data compared to estimated
DMI using the NEm Intake and %BW equations, we found that
both NASEM and %BW had similar levels of precision until
data were combined across treatments, which resulted in the
%BW estimate being more precise. In general, all DMI equations
underpredicted the DMI, except for NEm Intake in G1 (Table 3;
Supplementary Section 16).

Variance inflation factor (VIF) filtering indicated that
multicollinearity existed when attempting multiple linear
regression, and therefore, these models were not selected (VIF
threshold ≤ 5). Using the AICc-selected linear regression models
for each treatment and the combined results, the most precise
model was found to be the DMI by CH4 for the G1 treatment,
compared to all other covariates and treatment combinations (R² =
0.28). For the G2 treatment, the highest R2 value was 0.014 for DMI
by CO2, indicating no significant correlation (P > 0.05). Using
the combined treatment data (G1 and G2), the highest R2 value
was 0.19 for DMI CH4. The linear regression results were deemed
unsatisfactory for predicting DMI (Supplementary Section 17).
Re-evaluation of the ability of the best models to predict DMI
(see above) using herd-level smoothed data resulted in an
adjusted R² of < one for G1 and G2 and a mean bias near
zero. However, the combined G1 and G2 model (DMI∼CH4)
had an adjusted R² of 0.77 and a mean bias near zero (Table 4;
Supplementary Section 18C).

3.1 Discussion

Conducting an experiment using PLTs requires the ability
to clean and organize data into a consistent format, which is
a significant barrier to the effective implementation of precision

technology (19). This data barrier is substantially increased when
multiple PLTs are utilized. In the current study, a data pipeline was
successfully developed to integrate data from the SmartFeederTM,
GreenFeedTM, and SmartScaleTM technologies. One key challenge
in the current study was identifying a unique attribute to organize
the multiple datasets. We overcame this issue by creating a separate
“ID” column to merge by date and RFID (“AnimalTag”). Once
large amounts of data are collected and organized into a single data
frame, there may be missing data from certain times/dates. Missing
of data occurs when animals do not use the technology or when
communication or hardware/software errors occur. Thus, when
using PLTs, users should plan on having a larger sample size than
required and understand the PLT’s strengths and weaknesses to
minimize missing data (38). Open-source data pipelines for specific
single or multiple PLTs help expedite future researchers’ ability
to clean and combine data when using similar technologies (29).
This is critical because programs such as Excel

TM
are insufficient

to handle the volume of data generated by PLTs. Another
major limitation of precision data is their utility in mathematical
models, as models require consistent datasets. Unless automatic
interpolation is incorporated, they cannot produce reliable results
(38, 39). A critical next step for precision livestock research is to
further enhance the pipeline developed in the current study by
incorporating open-source code examples and tutorials, which will
accelerate PLT research and broader applications as PLT technology
use increases [see Supplementary code and data; (29)].

3.2 Technology challenges

Deploying precision technology provides a new means of
experimentation, data collection, and model development. As
expected, several challenges were encountered for each technology.
The SmartFeederTM was not created to be used with chopped hay,
requiring us to clean out the headgate to prevent it from getting
jammed. Wind also played a factor because it can blow forage out
of the tub; however, it is accounted for on the C-Lock web interface
as being categorized as an “Unknown” disappearance. Finally, the
correct tub height is a crucial factor. If the tubs are too tall, cows
will not be able to utilize the full amount of feed provided and will
have to be fed more frequently. If they are too low, then the cows
can be more selective and pull out feed or push feed over the lip
of the tub, potentially biasing the DMI data. Further, training cattle
to use the GreenFeedTM is difficult, and they need adequate time
to adjust to this machinery. Baiting animals with a more palatable
feed is a good way to get them close enough to interact with the
GreenFeedTM. As previously mentioned, not all cows will use the
GreenFeedTM, so having an initially large sample size is essential for
achieving adequate samples after culling non-adopters, something
not accounted for in a statistical power test. The SmartScaleTM had
no significant limitations.

In the current study, the individual DMI data for G1 and
G2 treatments were found to be reliable, ranging between 10.22
and 20.52 kg for cows weighing 509–783 kg. On average, cattle in
our study consumed 2.3% BW, consistent with another study that
reported similar DMI ranges (2.2%−2.9% BW) for dry beef Angus
cows (535–564 kg BW) (40). As more individual cow DMI data
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FIGURE 5

Differences in average dry matter intake (DMI) between treatments (P < 0.05). Where differences in letters, “a” and “b”, designate a statistical
difference in means.

FIGURE 6

Differences in average methane (CH4) production between treatments (P < 0.05). Where differences in letters, “a” and “b”, designate a statistical
difference in means.

become available, there may be the potential to assess DMI more
closely in relation to weight, body condition score, production
stage, genetics, and individual efficiency.

In terms of enteric emissions, we found comparable emission
levels with those reported in other studies on beef cows. The average
CH4 was 240 g/d and ranged from 105 to 443 g/d for G1 and
G2 (Table 2). Whereas McGinn et al. (23) reported an average of
309 g/d, and Guyader et al. (41) reported a range of 143–372 g/d
(23, 41). Our average was 7,399 g/d for CO2 emissions and ranged
from 3,952 to 10,227 g/d (Table 2), which is comparable to the
reported average CO2 of 8,223 g/d by McGinn et al. (23). Oxygen

emissions from G1 and G2 in the current study averaged 5,448 g/d
and ranged from 2,149 to 7,046 g/d (Table 2). Previous numbers
have been reported, but these O2 averages were 7,922 (g/d), 32%
higher than those we collected (42). Comparable enteric emission
results are significant because they indicate the GreenFeedTM

measurements in the current study were appropriate for developing
an enteric-based DMI model.

The current study was limited by a low and inconsistent
GreenFeedTM sample size, which likely reduced correlations
between observed DMI and enteric emissions measurements.
The GreenFeedTM emission monitoring system was used to
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FIGURE 7

Differences in average carbon dioxide (CO2) production between treatments (P < 0.05). Where differences in letters, “a” and “b”, designate a statistical
difference in means.

FIGURE 8

Differences in average oxygen (O2) consumption between treatments (P > 0.05). Where differences in letters, “a” and “b”, designate a statistical
difference in means.

determine the repeatability of CH4 and CO2 emissions using
28 beef heifers in a dry lot pen for 59 days (21). Overall,
they found over a 7- or 14-day sampling period that the
GreenFeedTM system-produced measurements with low variability
in gas emissions and yield (gas/standardized DMI). Additionally,
high repeatability and correlation with gases and feed intake
were determined (CH4 = 0.50, CO2 = 0.62); however, 1- or
3-day samples resulted in larger variability in emissions and
lower correlation with DMI (21). Thus, animals that do not
visit the GreenFeedTM can often produce large errors within
the averages of samples. Manafiazar et al. (21) noted that there
is potential for the GreenFeedTM system to represent animal
CH4 and CO2 emissions and yield with a 7 to 14-day sampling

period and 20 or more samples per animal. Although this
helps to determine general herd-level CH4 estimates, it fails to
account for individual enteric emissions and diurnal variations in
CH4 emissions.

For example, using 14-day derived values for beef cows will
result in overestimation or underestimation when multiplied by
the number of animals in the herd. This is because individual
changes in enteric emission production rates (e.g., g CH4 per
hour) change relative to rumen fill and nutrient composition of the
digesta (16). Further, our study demonstrated the need to assess
sub-daily and seasonal variation of forage quality as the quantity
and quality of GreenFeedTM data improves for individual animals
in rangeland settings.
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TABLE 3 Predicted dry matter intake (DMI) using NASEM (15) and 1.8%
body weight (BW) equations was regressed against the observed DMI for
moderate-quality grass hay (G1), low-quality grass hay (G2), and
combined treatments.

Model to predict DMI R2 MB %

G1: NASEM 0.44 0.93

G1: BW 0.44 −1.82

G2: NASEM 0.75 −1.72

G2: BW 0.74 −2.78

Combined: NASEM 0.33 −0.64

Combined: BW 0.72 −2.38

Using the levels of precision (R2) and accuracy [mean bias (MB%)], see
Supplementary Section 18.

TABLE 4 Smoothed herd average models were deployed to predict dry
matter intake (DMI) using moderate-quality grass hay (G1), low-quality
grass hay (G2), and treatments combined (G1 and G2) compared to the
observed smoothed herd-level DMI (Supplementary Section 18C).

DMI models Adjusted R2 Mean bias

G1: CH4 0.070 0

G2: CO2 −0.002 0

Combined: CH4 0.770 0

3.3 Evaluated differences in treatments

We identified significant differences in DMI, CH4, and CO2
between G1 and G2. However, we expected that cows in the G1
treatment would have consumed more than in the G2 treatment
due to the higher CP and TDN levels. It is possible that the
hay processing methods impacted daily consumption rates. For
example, the moderate treatment (G1) was flaked hay pulled from
large square bales, whereas G2 was chopped hay; cattle preferred
the latter. Hay availability and processing were limited due to the
persistent drought in 2021 before the study, hindering our ability to
secure different hay qualities that were processed similarly. Thus, an
opportunity to improve this study in the future is to have consistent
hay sources and processing, as well as a broader range of nutrients.
For example, securing hay from the same field at different dates
would provide the desired treatments and reflect the CP variation
of forages throughout the growing season, allowing the study to
capture a potentially wider response in enteric emissions. However,
the differences in enteric emissions we found were consistent with
the known relationship between high fiber (G2) and increased
emissions compared to lower fiber (G1) content (7). A critical next
step is likely to account for the individual GreenFeed pellet CP
contribution impacts to provide an adjustment factor, if needed
(i.e., if there is an indication of differences in CH4 from pellet
consumption rates). However, Raynor et al. (43) reported some
effects of diet on CH4 production in intensive grazing systems
between local and naïve steers.

3.4 Modeling

Many models have been developed for DMI for beef cattle
(5, 6, 44). However, it is critical to keep the development of new
models as simple as possible (16, 35, 45). Given the size of our
dataset and the models’ purpose, our use of regression modeling
was the appropriate first step compared to more advanced artificial
intelligence (AI) modeling approaches (38).

3.5 DMI regression models

Linear regression was not satisfactory for estimating the DMI
using the available dataset. Although it was unsatisfactory for our
study, previous research has shown a strong correlation between
DMI and enteric emissions. Satisfactory levels have been reported
as 0.63 R² (46). Furthermore, another study reported that predictive
performance can often be a neglected aspect when assuming
that machine learning (ML) algorithms are the only or supreme
modeling technique (47).

The most precise modeling results were achieved when we
repeated our regressions using our original raw data on a herd
average and applied 7-day smoothing instead of an individual DMI.
Though manipulation of the data should be done with caution to
avoid false levels of model confidence and adequacy of predictions.
However, the smoothing function deployed in the current study
may be a viable alternative when there are data gaps, allowing
for the accurate interpolation of data across time (in the current
study, all mean bias values were close to zero in the models).
The accurate but not necessarily precise data can inform precision
feeding models that require continuous data, rather than having a
zero value (e.g., livestock require an allocation of feed regardless of
the level of precision of data).

3.6 Incorporating body weight

Body weight can give producers a rough estimate of how
much their cattle may be consuming on rangeland, but as our
study showed, the %BW DMI equation is moderately precise
in estimating the DMI. This lack of precision can be due to
the exclusion of key factors, such as rumen fill, forage quality,
or metabolic requirements, when BW alone is used (1, 48).
Other studies have used the forage net energy equation, which
incorporates individual shrunken BW and standing forage NEm
concentrations (49). In a study conducted by Undi et al. (49),
standing forage was estimated using hand-plucked samples to
mimic the forage that animals would consume. They also used
the Minson equations, which employ BW and ADG of individual
animals (49, 50). It was determined that the forage net energy
equation had a DMI range of 0.6%−4.7% BW, and the Minson
equation predicted an intake of 0.9%−2.2% BW with an average of
1.7% and 2.3% BW, respectively. Although the DMI values differ,
the Minson equation, which uses BW, is the least variable when
compared to other DMI predictions used in the study (49). Overall,
BW equations are uncomplicated, but they do not consider the
outstanding factors that may affect intake (15).
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4 Conclusion

The current study results set a baseline for rangeland cattle
enteric emissions and oxygen consumption and highlight the need
for further research into other animal classes regarding enteric
emissions and DMI. Additional data for the different phases are
critical because the dry phase is relatively short (<3 months)
compared to the pregnant or lactating phases, which combined
represent >15 months. Therefore, future studies may incorporate
different animal classes that provide varying degrees of emissions
and DMI. We were successful in developing a methodological
approach (data pipeline) to more adequately address research that
integrates multiple PLTs simultaneously and leverages data for
mathematical nutrition modeling for ruminants on forage-based
systems. In the future, the development of a data pipeline for
integrating multiple PLTs is likely to advance investigations into
DMI prediction and other studies of interest that can be conducted
using a repeatable process. With an improved understanding of
the impact of DMI on GHG emissions from beef cattle, we can
facilitate further discussions on ways to mitigate GHG emissions in
the cow-calf sector. For example, precision-derived DMI estimates
using PLT have the potential to reduce overgrazing of rangeland by
458,812 ha in South Dakota alone (20). Thus, using PLT systems
to improve DMI estimates and, consequently, stocking rates is
an important tool for enhancing the efficiency, productivity, and
competitiveness of the U.S. beef cow-calf production sector.
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