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Introduction: Genomic breeding values and multi-trait selection indices have 
significantly advanced genetic improvement in livestock but remain underutilized 
in guide dog breeding. This study developed a genomically informed selection 
framework for a population of Labrador Retrievers by integrating health (e.g., 
dental, ocular, and dermatological conditions) and behavioral (e.g., trainability, 
distraction level, pace) traits into a “Behavior Score,” “Health Score,” and “Total 
Score” index by applying Genomic Best Linear Unbiased Prediction (GBLUP) to 
estimate breeding values.
Results: Phenotypic and genotypic data were collected from 844 dogs over 
26 years at The Seeing Eye guide dog school. Predictive performance was 
evaluated via five-fold cross-validation and correlation-based metrics. Results 
showed that some dentition related health traits exhibited moderate to high 
Area Under Receiving Operating Characteristic (AUROC) values (0.79–0.87), 
indicating potential for immediate use for genetic improvement. In contrast, 
most other health traits demonstrated weak to moderate predictive accuracy. 
Behavioral traits exhibited lower predictive accuracy but showed a stronger 
association with training success. Models were commonly unable to correctly 
classify individuals for binary or ordinal traits yet performed well in ranking 
individuals, likely due to lower heritability or strong environmental influences 
of traits or limitations of the dataset itself. The behavior-focused Total Score 
(AUROC ~0.72) outperformed health-based indices as a fixed effect in predicting 
breeding success despite the weaker predictive ability of individual behavioral 
traits. Incorporating parental scores as fixed effects modestly improved breeding 
values for success, indicating the importance of integrating additional data 
sources where available.
Discussion: While these findings underscore the utility of genomic selection 
for guide dog breeding, they also highlight constraints stemming from small, 
genetically homogeneous populations and variable phenotyping. Ultimately, 
we  provide the first usable individual and multi-trait genomic approaches to 
enhance both health and performance outcomes in working dog programs 
and a foundation to expand upon the reference population and behavioral trait 
assessment to improve prediction accuracy in the future.
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1 Introduction

Selective breeding has long been a cornerstone of genetic 
improvement in domesticated animals, with the dairy cattle industry 
leading the way in developing sophisticated selection indices that 
integrate multiple economically and functionally important traits. In 
species such as dairy cattle, indices such as Net Merit, developed by 
the United  States Department of Agriculture (USDA), have 
significantly enhanced genetic gain by simultaneously optimizing 
traits such as milk yield, fertility, longevity, and disease resistance (1, 
2). These indices use weighted selection to balance productivity with 
sustainability. Breeders may apply them to make informed decisions 
that maximize long-term efficiency and performance with selection 
weights derived from either economic importance or based on the 
perceived importance of genetic gain in the desired trait (2, 3). Despite 
the success of multi-trait selection in livestock breeding, its systematic 
application in canine breeding programs, particularly those focused 
on working dogs, remains largely underdeveloped.

In guide dog breeding, genetic selection faces unique challenges 
(4). Unlike livestock, where economically valuable traits are more 
directly quantifiable, the success of a guide dog depends on behavioral 
attributes such as trainability, temperament, and response to 
environmental stimuli, which must be  assessed at multiple 
developmental stages and are less economically defined (5). 
Historically, selection in guide dog programs has relied heavily on 
subjective trainer evaluations and pedigree-based breeding strategies. 
This has limited genetic progress due to incomplete or inconsistent 
data collection that cannot account for differences in genetic 
inheritance not captured by pedigrees (6). An increasing number of 
guide dog organizations have adopted estimated breeding values 
(EBVs) to improve selection accuracy with The Seeing Eye being the 
first to implement them in the early 1980s. The integration of EBVs 
and genomic selection methodologies offers an opportunity to 
improve the precision and efficiency of breeding decisions by 
leveraging genetic information to enhance selection accuracy.

One of the most notable applications of pedigree EBVs in canine 
breeding has been the long-term effort to reduce the prevalence of hip 
and elbow dysplasia in working dogs (7–9). Since the 1980s, 
incorporating EBVs into selection decisions has substantially reduced 
hip dysplasia rates (7–9). Despite this success, the broader adoption 
of genomic selection models in working dog breeding has been 
hindered by several challenges, including small population sizes, 
varied breeding goals, and limited standardization of trait 
measurements (10). Additionally, while traditional EBVs have 
provided genetic improvement, they remain limited by their reliance 
on pedigree-based relationships rather than genomic data, reducing 
selection accuracy compared to methods that incorporate direct 
genomic information.

Genomic Best Linear Unbiased Prediction (GBLUP) has emerged 
as a powerful tool to generate genomic estimated breeding values 
(gEBV) across domesticated species by replacing traditional pedigree-
based relationship matrices with genomic relationship matrices 
derived from single nucleotide polymorphism (SNP) markers (11, 12). 
By incorporating genomic data, GBLUP enhances the accuracy of 
breeding value estimation, facilitates earlier selection decisions, and 
accelerates genetic progress. While extensively validated in livestock 
breeding, where it has revolutionized genetic selection in dairy cattle 
and poultry, its potential application in guide dog breeding remains 

largely unexplored with fewer examples of utilization (6, 12, 13). 
Given its ability to refine selection strategies and improve genetic gain, 
integrating GBLUP into guide dog breeding programs represents a 
significant opportunity to enhance health and behavioral outcomes.

A multi-trait selection index tailored to guide dogs would allow 
breeders to evaluate multiple key traits at the same time, reflecting 
methods proven effective in livestock breeding. Rather than evaluating 
individual traits in isolation, a total performance index incorporating 
health and behavioral metrics would provide a holistic framework for 
ranking and selecting breeding candidates (4). This approach would 
promote genetic progress and streamline selection decisions by 
condensing complex genomic and phenotypic information into a 
single, interpretable index.

This study aims to develop and apply a performance index for a 
guide dog breeding population by integrating genomic selection 
methodologies, specifically GBLUP. By constructing a Total Score that 
combines health and behavioral measures, we  seek to establish a 
scientifically rigorous, multi-trait selection framework to improve the 
accuracy of breeding value estimates. We  evaluate the predictive 
power of genomic selection models in identifying key genetic 
contributors to guide dog success and assess their potential to enhance 
breeding efficiency. By leveraging genomic technologies and multi-
trait selection models, this research aims to provide a data-driven 
foundation for optimizing genetic selection in guide dog programs, 
ultimately improving working dogs’ health, performance, and 
success rates.

2 Materials and methods

This study used 26 years of phenotypic and genomic data from 
The Seeing Eye, Inc. (NJ, United States), a nonprofit that breeds and 
trains guide dogs. The Seeing Eye breeds and trains German 
Shepherds, Golden Retrievers, Labrador Retrievers, and Labrador-
Golden Retriever crosses. Only Labrador Retrievers were included in 
this study to ensure a standardized approach to genetic evaluation and 
selection index development. The dataset included 844 Labrador 
Retrievers, forming the largest available group with both phenotypic 
and genotypic records. All data were collected routinely as part of 
standard operations at The Seeing Eye and did not involve new sample 
collection or protocols requiring Institutional Animal Care and Use 
Committee approval.

2.1 Phenotypic data collection

Phenotypic data were collected through the puppy raising and 
training phases from birth until approximately 4.5 years of age. Upon 
completion, staff classified dogs as either successful guide dogs or 
failures based on whether they were selected for guide work or 
breeding (success) or not (failure). An in-house veterinary team 
recorded health conditions while professional trainers assessed 
behavioral traits. Dogs missing either phenotypic or genotypic data 
were excluded to ensure data integrity. The final dataset included 844 
Labrador Retrievers with complete data. It also included a subset of 
172 dogs whose parents also had full records available which enabled 
fixed-effect modeling using parental phenotypes. Since behavioral 
data were scored during the mid-training blindfold test (about 
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6–8 weeks into guide dog training), all included dogs had cleared early 
health screening. Thus, the dataset excludes severe early onset 
conditions and may underestimate health trait effects due to 
prior removals.

2.2 Health trait assessment

Staff diagnosed health phenotypes through standardized physical 
examinations at four developmental milestones: a puppy physical at 
approximately 5 weeks of age; a pre-training physical at 14–16 months; 
and, depending on the dog’s career path, either a pre-breeder physical 
approximately 3 months after the pre-training physical for those 
selected as prospective breeders, or a pre-class physical approximately 
4 months after the pre-training physical for those not selected as 
breeders. Each health trait was classified using a predefined diagnostic 
coding system with a team of five veterinarians independently 
reviewing all diagnoses. Consensus discussions by the veterinary team 
allowed for complex cases to maintain diagnostic consistency.

Health conditions were grouped into several categories. Dental 
conditions included supernumerary teeth, retained deciduous teeth, 
anodontia, mandibular distocclusion, mandibular prognathism, 
mandibular mesiocclusion, base narrow mandibular canines, and 
malocclusion class I. Ocular conditions consisted of distichiasis and 
persistent pupillary membranes (PPM). Dermatological conditions 
included histiocytoma, atopic dermatitis, allergic dermatitis, alopecia 
at the bridge of the nose, acral lick dermatitis, and muzzle folliculitis. 
Neurological and musculoskeletal conditions included loose 
interphalangeal collateral ligaments and panosteitis. Other conditions 
included umbilical hernia and the infectious disease oral 
papillomatosis. For multi-trait index development, individual counts 
for dental, ocular, and dermatological conditions were summed to 
generate Dental Count, Ocular Count, and Dermal Count scores.

2.3 Behavior evaluation and scoring

Each dog underwent a comprehensive evaluation based on several 
behavioral and performance characteristics which were rated using 
standardized scales. These included Trainability, Rating, Soundness, 
Distraction, Control Level for Instinct (Neck), Pace, and Pull Strength.

Trainability scores were assigned to all dogs in the study using 
standardized assessment procedures. A single trainer assigned scores 
from 1983 until their retirement in 2007, after which a new trainer 
took over and has remained responsible for scoring to the present day. 
This continuity helped minimize inter rater variability because only 
one scorer change occurred over the 26-year period. Both scorers 
followed established guidelines, and informal harmonization was 
achieved through shadowing and internal documentation. Still, the 
possibility of slight drift in scoring interpretation over time cannot 
be ruled out.

Trainability assessments were conducted at different stages 
depending on the dog’s progression through the program. Dogs that 
completed training were scored as they approached their first class. 
Dogs rejected earlier received their trainability rating at the time of 
rejection, and breeding dogs were rated upon completion of training. 
For dogs with multiple assessments, the final available score for each 
individual was used in the analyses to ensure consistency.

Rating: This scale assessed the dog’s ability to be  controlled 
verbally and physically by handlers of varying skill levels. Ratings 
ranged from 1 (highly manageable with minimal distraction, suitable 
for weak handlers) to 5 (high instinct levels, requiring a 
competent handler).

Soundness: This measure evaluated the dog’s confidence and 
reaction to environmental stimuli, determining its ability to handle 
the stress of guide work. Ratings ranged from Sound (fully confident 
in all environments) to Unsound (lacking the confidence necessary for 
guide work, with no potential for improvement) across a seven-point 
scale with the present data containing four levels.

Distraction Level: The extent to which a dog’s instincts interfered 
with its ability to focus on guide work was recorded. Scores ranged 
from No Distraction (extremely rare, nearly machine-like focus) to 
High Distraction (instincts too strong to allow consistent guide work) 
across a six-point scale with four levels present in the population.

Neck (Control Level for Instinct): This category assessed the 
physical control necessary to manage the dog when it became 
distracted. Ratings ranged from Soft (highly sensitive, requiring 
minimal control) to Hard (useable but only by the strongest handlers) 
across a five-point scale.

Pace: The dog’s average walking speed was recorded in miles per 
hour (MPH), classified into five categories by The Seeing Eye for 
evaluation: Slow: ≤2.0 MPH, Less than Average: 2.0–2.4 MPH, 
Average: 2.5–3.2 MPH, High Average: 3.3–3.9 MPH, Above average: 
≥4.0 MPH.

Pull Strength: The force exerted by the dog while in harness was 
measured in pounds and categorized as: Light: <2.5 lbs., Less than 
Average: 2.5–5 lbs., Average: 5–7.5 lbs., Above Average: 7.5–10 lbs., 
Hard: >10 lbs.

These standardized ratings provided a structured approach to 
evaluating each dog’s suitability for guide work and its optimal handler 
match. All ratings were then converted into numeric values based on 
the trait distributions in Table  1 to allow for consistent model 
combinations and performance evaluations. Pace, pull, and neck 
scores were condensed to allow for an ordinal scale due to the selection 
toward the mean so distinction between high, low, and average was 
needed with groups of at least 5% of the total population. For 
distraction and soundness, the traits were converted to binary and 
ordinal due to the unidirectional selection of those traits.

2.4 Genotyping and quality control

The Seeing Eye routinely collects whole-blood samples for DNA 
extraction and storage in its biobank. DNA extraction followed 
standard Qiagen PureGene protocols with in-house buffers. Quality 
control and quantification ensured DNA integrity prior to genotyping. 
Genotyping was conducted using three SNP arrays: the EMBARK 
(Embark Veterinary Inc. Boston, MA, United  States) (Illumina 
microarray), a 220 K Illumina (Illumina Inc., San Diego, CA, 
United States) microarray chip, and a 173 K Illumina microarray chip. 
Datasets were merged, resulting in an initial dataset of 239,478 SNPs 
across 2,176 dogs, including dogs across three breeds and without 
complete phenotypic records, with an overall genotyping rate of 
91.4%. SNP quality control was performed using PLINK v1.9, applying 
genotype call rate thresholds of less than 90%, sample call rates below 
90%, Hardy–Weinberg equilibrium at p < 1 × 10−5, and minor allele 
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frequencies less than 0.01. After quality filtering, 166,463 SNPs 
remained for imputation (14).

Phasing and imputation were conducted using Beagle v5.2 (15), 
leveraging a reference panel mapped to CanFam 3.1, which included 
660 dogs across 157 modern breeds and village dogs, including 23 
Labrador Retrievers (16–19). The final dataset, pruned for linkage 
disequilibrium, contained 1,219,623 SNPs. A reduced subset of 220 K 
SNPs corresponding to the Illumina chip was retained for the 844 

dogs with full phenotypic data in the final GBLUP analysis to allow 
for easy comparison to existing SNP datasets.

2.5 GBLUP model evaluation

An additive Genomic Relationship Matrix (GRM) was 
constructed using SNP data to quantify the genetic relatedness 

TABLE 1  Behavior trait standardization.

Trait and trait categories Count of animals* Score Count of animals*

Pace

Fast 2

2 249Above average 42

High average 205

Average 551 1 551

Less than average 44 0 44

Distractibility

High 20
1 384

Above average 364

Average 412
0 460

Less than average 48

Pull

Hard 3
2 49

Above average 46

Average 511
1 744

Defined average 233

Less than average 51 0 51

Neck

Hard 9
2 273

Above average 264

Average 496 1 496

Less than average 69
0 75

Easy 6

Rating

5 8 7 8

4+ 10 6 10

4 174 5 174

4− 11 4 11

3+ 305 3 305

3 282 2 282

3− 32 1 32

2+ 22 0 22

Soundness

Sound 262 2 262

Above average 484 1 484

Average 92
0 98

Less than average 6

*The count of animals corresponds to the number of animals within that category based on the original and updated scores.
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among individuals, and all analyses were conducted with a 
mixed-model association approach using a Restricted Maximum 
Likelihood (REML) algorithm to estimate variance components. 
The GBLUP model used to obtain the gEBV included the fixed 
effects of birth year and the first three principal components as 
linear covariates (20). Model performance was evaluated through 
five-fold cross-validation, partitioning data into five subsets, 
training on four, and validating the remaining subset. Through 
this, each individual was a part of the testing dataset for a fold 
and had a predicted and actual phenotype that could 
be compared. In addition, pseudo-heritability was calculated for 
each trait utilizing Golden Helix SNP and Variation Suite SNP 
Analysis v8.9.1 (RRID: SCR_001285) (Golden Helix, Inc., 
Bozeman, MT, United States).1

Multiple metrics were employed to assess prediction accuracy. 
These included the Matthews Correlation Coefficient (MCC) and 
Area Under the Receiver Operating Characteristic Curve (AUROC) 
for binary traits, Kendall’s Tau and Spearman’s Rho for ordinal traits, 
and Pearson’s Correlation (R) and the normalized mean squared error 
(NMSE) for continuous traits.

MCC measures the quality of binary classifications and accounts 
for true positives (TP), false positives (FP), true negatives (TN), and 
false negatives (FN) in a single statistic. Values of MCC range from −1 
(complete misclassification) to +1 (perfect classification), with 0 
indicating a result no different than random guessing.

AUROC quantifies how well the model differentiates between 
classes by plotting the true positive rate (sensitivity) against the false 
positive rate (1 − specificity). AUROC scores generally range from 0.5 
(no different than random) to 1.0 (perfect discrimination). Scores 
below 0.5 indicate worse-than-chance performance.

Kendall’s Tau and Spearman’s Rho are rank-based correlation 
coefficients that measure ordinal and monotonic relationships ranging 
from −1 to +1, with 0 indicating no relationship.

Pearson’s Correlation (R) quantifies the linear relationship 
between predicted and observed values, ranging from −1 to +1. A 
value of 0 indicates no linear correlation, while ±1 denotes a 
perfect relationship.

Normalized Mean Squared Error (NMSE) is a metric that 
evaluates how well a model’s predictions match the actual data. This 
approach is similar to Mean Squared Error (MSE) but adjusted for the 
scale of the data. While MSE measures the average squared difference 
between predicted and actual values, NMSE divides this error by the 
variance of the actual data, making it easier to compare across datasets 
with different scales. An NMSE value closer to 0 indicates more 
accurate predictions, while higher values suggest greater 
prediction error.

2.6 Multi-trait index creation

Composite indices were developed to systematically capture 
guide dogs’ overall health and behavioral suitability. These indices 
were the Health Count, Dental Count, Ocular Count, Dermal 
Count, Behavior Score, Health Score, and Total Score, each 

1  www.goldenhelix.com

designed to integrate relevant traits into a single 
standardized metric.

The health counts represent the total number of diagnosed health 
conditions for each dog. Conditions were categorized as dental (for 
instance, supernumerary and retained deciduous teeth, enamel 
defects, and various malocclusions), ocular (including distichiasis, 
retinal folds and dysplasia, corneal cholesterolosis, iris cyst, and 
persistent pupillary membrane), dermatological (such as histiocytoma, 
atopic and allergic dermatitis, alopecia on the bridge of the nose, acral 
lick dermatitis, and muzzle folliculitis), neurological (laryngeal 
paralysis), congenital defects (umbilical hernia), musculoskeletal 
(panosteitis and loose interphalangeal collateral ligaments), and viral/
infectious (oral papillomatosis). Each diagnosed condition 
contributed one point to the individual’s Health Count. The Dental 
Count captures only dental anomalies. All recorded dental conditions 
added to the total Dental Count for that individual. The Ocular Count 
reflects the number of ocular abnormalities. Each condition detected 
in an individual added one point to the Ocular Count. The Dermal 
Count is the total of all dermatological conditions present in 
an individual.

The Behavior Score was derived by normalizing each behavioral 
trait according to its relationship with guide dog success. A 
transformation was used for traits negatively correlated with 
success, including neck, distraction, and rating, so higher raw 
values produced lower normalized scores using Equation 1. Traits 
positively correlated with success (soundness and trainability) were 
normalized with retained directionality using Equation 2. Traits 
with an optimal intermediate value (pace and pull) were normalized 
to reflect how far each raw score deviated from the ideal point 
using Equation 3. Each trait was assigned a weight based on its 
correlation with success, and the overall Behavior Score was 
calculated as the weighted sum of these transformed values. This 
resulted in scores between 0 and 1 for each trait, with 1 being closer 
to optimal and 0 negatively correlated to success. The values were 
then multiplied by the Pearson correlation for that trait with 
success and summed.

	 = − ÷  max maxNegative Behavior Normalized X X individual X 	(1)

	 = ÷  maxPositive Behavior Normalized X individual X 	 (2)

	 = − −  1 1Neutral Behavior Normalized X individual∣ ∣	 (3)

The Health Score was constructed by normalizing each health-
related measure to ensure comparability. This was done by 
multiplying the binary status with the correlation to success for 
that trait. Summing these normalized trait values provided a 
composite Health Score that captured each dog’s overall severity of 
health conditions. All trait correlations to success are listed in 
Table 2.

Finally, the Total Score was determined by combining the Health 
Score and Behavior Score into a single weighted index using 
Equation 4:

	

( )
( )

health behaviorTotal Score w health score w
behavior score

  
 

= × +
×

	 (4)
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whealth and wbehavior are weighting factors derived from correlation 
analyses linking these traits to guide dog success. This combined score 
ensures that health and behavioral traits are appropriately emphasized 
in selection decisions.

A subset of animals also had complete phenotypic records on both 
parents in the dataset. These 172 animals were used as a subset to 
determine the utility of parental phenotypes as fixed effects on the 
breeding value performance of the offspring. The indices used were 
Parent Health Score, Parent Behavior Score, and Parent Total Score as a 
fixed effect for both Total Score and Success breeding values.

3 Results

The performance of estimated breeding values (EBVs) and 
selection indices was evaluated across multiple health and behavioral 
traits using Genomic Best Linear Unbiased Prediction (GBLUP). 

Predictive accuracy was assessed through Matthews correlation 
coefficient (MCC), area under the receiver operating characteristic 
curve (AUROC), Kendall’s Tau, and Spearman’s Rho, with five-fold 
cross-validation employed for model validation.

3.1 Individual traits

The heritability of the individual trait and the model’s predictive 
performance were evaluated. The predictive performance was assessed 
using MCC, AUROC, Kendall’s Tau, and Spearman’s Rho as 
appropriate based on the data type. The results are summarized in 
Table 3 and Figures 1, 2.

For most traits, the MCC values were 0.000, indicating poor 
classification performance. Across the traits, pseudo-heritability 
estimates were generally low to moderate (median ≈ 0.14), suggesting 
that while genetic factors contribute, substantial environmental or 
measurement noise remains. Related, the AUROC values varied across 
traits, with the highest AUROC observed for mandibular distocclusion 
(AUROC = 0.865, pseudo-heritability = 0.269), followed by 
malocclusion class I  (AUROC = 0.790, pseudo-heritability = 0.148) 
and mandibular mesiocclusion (AUROC = 0.785, pseudo-
heritability = 0.139). Although MCC remained at 0.000 for these traits, 
the elevated AUROC scores indicate that the model still provided 
meaningful risk ranking, even if strict classification thresholds were not 
optimized. This apparent contradiction arises because MCC and 
AUROC measure different aspects of model performance. MCC 
evaluates the quality of binary classifications made at a particular 
decision threshold, balancing true and false positives and negatives. It 
is especially sensitive to class imbalance, commonly seen in our traits, 
and requires the model to make discrete decisions. In contrast, AUROC 
assesses the model’s ability to discriminate between classes across all 
possible thresholds, capturing how well the model ranks positive cases 
above negative ones. Thus, a high AUROC paired with a low MCC 
indicates that while the model can correctly order cases by risk, it 
struggles when forced to commit to a binary decision using a single 
cutoff point.

Among other dentition-related conditions, retained deciduous 
teeth (AUROC = 0.655, pseudo-heritability = 0.131) and 
supernumerary teeth (AUROC = 0.453, pseudo-heritability <0.000) 
had differing levels of classification accuracy and base narrow 
mandibular canines (AUROC = 0.700, pseudo-heritability = 0.146) 
also showed moderate AUROC values. Notably, anodontia was the 
only health trait with an MCC greater than zero (MCC = 0.084, 
AUROC = 0.706, pseudo-heritability = 0.247), suggesting marginal but 
the first non-trivial predictive power in proper classification.

For dermatological conditions, histiocytoma (AUROC = 0.631, 
pseudo-heritability = 0.039), atopic dermatitis (AUROC = 0.591, 
pseudo-heritability = 0.044), allergic dermatitis (AUROC = 0.598, 
pseudo-heritability = 0.019), and alopecia of the bridge of the nose 
(AUROC = 0.562, pseudo-heritability = 0.022) had moderate AUROC 
values, indicating weak but non-random ranking performance. 
However, conditions such as muzzle folliculitis (AUROC = 0.527, 
pseudo-heritability = 0.023) and acral lick dermatitis (AUROC = 0.534, 
pseudo-heritability = 0.046) exhibited lower discrimination abilities. 
Distichiasis (AUROC = 0.704, pseudo-heritability = 0.092) and oral 
papillomatosis (AUROC = 0.611, pseudo-heritability = 0.089) also 
demonstrated moderate classification performance.

TABLE 2  Trait correlations to success.

Trait Correlation to success

Base narrow mandibular canines −0.026

Malocclusion class I −0.035

Distichiasis −0.032

PPM −0.025

Loose interphalangeal collateral 

ligaments

−0.003

Umbilical hernia −0.009

Histiocytoma −0.036

Atopic dermatitis −0.1

Allergic dermatitis −0.009

Alopecia bridge of nose −0.027

Acral lick dermatitis −0.029

Muzzle folliculitis −0.009

Panosteitis −0.02

Oral papillomatosis −0.02

Supernumerary teeth −0.024

Retained deciduous teeth −0.013

Anodontia −0.014

Mandibular distocclusion −0.105

Mandibular prognathism −0.031

Mandibular mesiocclusion −0.047

Distraction −0.107

Neck −0.108

Soundness 0.127

Rating −0.144

Pace 0.02

Pull 0.017

Trainability 0.531

Health score −0.02

Behavior score 0.324
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The orthopedic and musculoskeletal conditions also showed 
variable AUROC performance. Panosteitis (AUROC = 0.738, pseudo-
heritability = 0.163) had one of the higher scores in this category, 
suggesting some predictive value. Loose interphalangeal collateral 
ligaments (AUROC = 0.710, pseudo-heritability = 0.109), PPM 
(AUROC = 0.672, pseudo-heritability = 0.142) and umbilical hernia 
(AUROC = 0.699, pseudo-heritability = 0.037) had slightly lower but 
notable predictive performance.

The success and distraction traits had mixed results. Success 
(AUROC = 0.570, pseudo-heritability = 0.041) had a weak 
classification performance, while distraction (MCC = 0.183, 
AUROC = 0.639, pseudo-heritability = 0.177) performed slightly 
better than most traits, and its higher heritability underscores a clearer 
genetic influence. Other behavioral traits and performance metrics 
were evaluated using Kendall’s Tau and Spearman’s Rho. The highest 
correlations were observed for neck (Kendall’s Tau = 0.201, Spearman’s 
Rho = 0.251, pseudo-heritability = 0.209) and pace (Kendall’s 
Tau = 0.187, Spearman’s Rho = 0.233, pseudo-heritability = 0.153), 

suggesting a weak to moderate association between predicted and 
actual values. Rating (Kendall’s Tau = 0.150, Spearman’s Rho = 0.199, 
pseudo-heritability = 0.179) and trainability (Kendall’s Tau = 0.120, 
Spearman’s Rho = 0.158, pseudo-heritability = 0.47) also 
demonstrated weak but notable correlations. Pull (Kendall’s 
Tau = 0.094, Spearman’s Rho = 0.117, pseudo-heritability = 0.066) was 
weaker than the previously mentioned behavioral traits but still 
showed a minor positive association. However, soundness (Kendall’s 
Tau = −0.009, Spearman’s Rho = −0.012, pseudo-heritability < 0.000) 
showed effectively no relationship, indicating poor predictive  
capability.

3.2 Selection indices and fixed effects

The analysis evaluated multi-trait index scores which included 
different fixed effects. The performance comparisons utilized 
AUROC, MCC, Kendall’s Tau, Spearman’s Rho, Pearson’s R, and 

TABLE 3  Scoring metrics for individual traits.

Trait Pseudo-heritability MCC AUROC Kendall Tau Spearman Rho

Base narrow mandibular 

canines

0.146 0.000 0.700

Malocclusion class I 0.148 0.000 0.790

Distichiasis 0.092 0.000 0.704

PPM 0.142 0.000 0.672

Loose interphalangeal 

collateral ligaments

0.109 0.000 0.710

Umbilical hernia 0.037 0.000 0.699

Histiocytoma 0.039 0.000 0.631

Atopic dermatitis 0.044 0.000 0.591

Allergic dermatitis 0.019 0.000 0.598

Alopecia bridge of nose 0.022 0.000 0.562

Acral lick dermatitis 0.046 0.000 0.534

Muzzle folliculitis 0.023 0.000 0.527

Panosteitis 0.163 0.000 0.738

Oral papillomatosis 0.089 0.000 0.611

Supernumerary teeth <0.000 0.000 0.453

Retained deciduous teeth 0.131 0.000 0.655

Anodontia 0.247 0.084 0.706

Mandibular distocclusion 0.269 0.000 0.865

Mandibular prognathism 0.080 0.000 0.750

Mandibular mesiocclusion 0.139 0.000 0.785

Success 0.041 0.000 0.570

Distraction 0.177 0.183 0.639

Neck 0.209 0.201 0.251

Soundness <0.000 −0.009 −0.012

Rating 0.179 0.150 0.199

Pace 0.153 0.187 0.233

Pull 0.066 0.094 0.117

Trainability 0.147 0.120 0.158
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NMSE to quantify the effectiveness of the GBLUP model in 
index performance.

The model’s ability to predict count-based indices showed weak to 
negligible correlations. The dental count had the highest correlation, 
with Kendall’s Tau = 0.197 and Spearman’s Rho = 0.247, suggesting a 
weak but notable relationship displayed in Figures 3, 4. Ocular count 
performed slightly worse, with Kendall’s Tau = 0.129 and Spearman’s 
Rho = 0.158, indicating a weaker association. Dermal count, exhibited 
no meaningful correlation with Kendall’s Tau = −0.020 and Spearman’s 
Rho = −0.025, implying this trait’s lack of predictive accuracy.

Correlations improved slightly from weak to moderate when 
evaluating the model’s ability to predict broader performance-based 
scores. Health score had a low correlation, with Pearson’s R = 0.168 
and a high error rate (NMSE = 0.983), as shown in Figures  5, 6, 
indicating poor predictive capability. In contrast, behavior scores and 
total scores performed slightly better, with Pearson’s R ~ 0.23 and 
NMSE ~ 0.96, suggesting a slightly stronger but still weak association.

Incorporating parental phenotypes improved the model’s ability 
to predict the total score of an individual. Figures 5, 6 show how total 
score using the parental total score as a fixed effect achieved a 
Pearson’s R = 0.347 and NMSE = 0.886 while using both parent health 
score and parent behavior score yielded nearly identical results 
(Pearson’s R ~ 0.35, NMSE ~ 0.89). These findings suggest that while 
genetic or inherited factors play a role, their contribution 
remains modest.

The model’s predictive performance for success varied widely 
depending on the features used. Using health score as a fixed effect 
alone resulted in an MCC = 0.000 and AUROC = 0.514, indicating 
performance no better than chance as shown in Figures 7, 8. However, 
when behavior score was included, performance improved notably 
(MCC = 0.212, AUROC = 0.718), suggesting a stronger link between 
behavioral traits and success in this dataset. Similarly, total score as a 
fixed effect resulted in MCC = 0.216 and AUROC = 0.716, 
demonstrating a comparable predictive power level.

FIGURE 1

Bar charts of performance for each binary trait’s genomic breeding value prediction, with traits sorted from highest to lowest along the x-axis. The 
dashed red lines indicate null performance. (A) The area under the receiving operating curve (AUROC), where larger values reflect better ranking of 
affected versus unaffected dogs in GBLUP risk-ranking. (B) Matthew’s Correlation Coefficient (MCC), where larger values indicate better discrimination 
of affected versus unaffected dogs in GBLUP risk-classification. In both panels, traits with higher scores demonstrate greater predictability, whereas 
lower scores indicate weaker performance for this dataset.
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When using ocular, dermal, and dental counts as fixed effects, the 
model again performed at chance level (MCC = 0.000, 
AUROC = 0.516) displayed in Figures  7, 8, indicating that these 
factors were not useful in predicting success. Finally, incorporating the 
parent total score shows a slight decline in performance for MCC and 
a slight increase in AUROC (MCC = −0.022, AUROC = 0.608), 
suggesting that parental influence, while somewhat predictive of 
overall scores, was less useful in predicting success outcomes.

4 Discussion

4.1 Advantages of genomic estimated 
breeding values

Historically, breeding values have been predicted from pedigree-
derived datasets. However, replacing these with genomic relationship 
estimates may sharpen that estimate to allow for a more granular 
view of the genomic architecture. This challenge is exemplified by 

work using a wheat dataset supplemented with simulations of 
varying numbers of quantitative trait loci (QTL). The work 
demonstrated that the performance of different methods including 
GBLUP depended heavily on the trait’s genetic architecture with 
model performance altered by the difference between many minor 
QTL compared to only a few QTL with larger effects. Further 
illustrating the point, multi-generation simulations demonstrated 
that genomic estimated breeding values (gEBV) substantially 
exceeded traditional BLUP for low-heritability traits, provided 
sufficient training data were collected, particularly in situations such 
as sex-limited traits or those costly to measure (21). In a long-term 
field study of Soay sheep, leveraging genome-wide SNP data 
including 37 k markers allowed investigators to derive more accurate 
relatedness than incomplete pedigrees, leading to both less-biased 
heritability estimates and improved separation of direct genetic 
effects from maternal components (22). Pig data collected with 60 k 
SNP showed that carefully constructed genomic relationship 
matrices yielded high correlations to true genome sharing, 
translating to more precise breeding values than those obtained from 

FIGURE 2

Bar charts of each ordinal trait’s genomic breeding value prediction, with traits sorted from highest to lowest correlation along the x-axis. The dashed 
red lines indicate null performance. (A) Kendall’s Tau values, where larger values indicate stronger agreement between predicted and actual ranking. 
(B) Spearman’s Rho values reflect the correlation between predicted and actual ranking in GBLUP values. In both panels, lower correlation scores 
indicate weaker predictability for this dataset.

https://doi.org/10.3389/fvets.2025.1628161
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Thorsrud et al.� 10.3389/fvets.2025.1628161

Frontiers in Veterinary Science 10 frontiersin.org

FIGURE 3

Violin plots of Kendall’s Tau for dental, ocular, and dermal count breeding values. Each point represents a single fold’s score with the red line indicating 
a null model’s performance. The x axis corresponds to the model performance for dental, ocular and dermal count breeding values with the y-axis 
corresponding to the Kendall’s Tau score. The lower values correspond to lower predictive ability of the model.

FIGURE 4

Violin plots of Spearman Rho for dental, ocular, and dermal count breeding values. Each point represents a single fold’s score with the red line 
indicating a null model’s performance. The x-axis corresponds to the model performance for Dental, Ocular, and Dermal Count breeding values, and 
the y-axis corresponds to the Spearman’s Rho score. Lower values indicate weaker predictive ability of the model.

https://doi.org/10.3389/fvets.2025.1628161
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Thorsrud et al.� 10.3389/fvets.2025.1628161

Frontiers in Veterinary Science 11 frontiersin.org

pedigree alone (23). The benefits of dense genomic information for 
low-heritability traits are further highlighted in a commercial 
rainbow trout population, where gEBV for disease resistance far 
exceeded pedigree-based BLUP and allowed breeders to exploit 
within-family variation (24). Additionally, attempts to implement 
selection programs in smaller sheep flocks demonstrated that 
pedigree-only methods were hampered by missing sire information 
and limited accuracy. In contrast, adding genomic information 
offered at least modest improvements that were more apparent as 
flock size increased (25). These findings suggest that pedigree-based 
selection alone may not fully capture the subtle genetic architecture 
of complex traits. By contrast, genomic breeding values incorporate 
realized genomic relationships, allowing for a more precise 
estimation of genetic merit in populations with low heritability, high 
QTL counts, or incomplete pedigrees. Consequently, this paper 
focuses on genomic selection to address the inherent constraints of 
traditional approaches, thereby improving the reliability of breeding 
decisions for complex traits.

4.2 Performance of individual trait genomic 
EBVs

The findings of this study provide a critical evaluation of the 
potential for genomic selection methodologies, particularly Genomic 
Best Linear Unbiased Prediction (GBLUP), to enhance guide dog 
breeding programs. While the effectiveness of GBLUP has been well-
established in livestock breeding, its application to working dog 

populations remains largely unexplored. This study sought to develop 
a multi-trait selection index integrating health and behavioral metrics 
to optimize breeding decisions for guide dog success. The results 
highlight both the opportunities and limitations of genomic selection 
in this complex context, with broader implications for reference 
population construction and breeding value estimation in 
novel populations.

To begin, individual trait breeding values were generated and 
assessed for predictive performance. Individual trait gEBV provides 
a more targeted selection of specific traits. The predictive accuracy 
of gEBV varied across individual traits, with dentition-related 
conditions, such as mandibular distocclusion, malocclusion class I, 
and mandibular mesiocclusion, exhibiting a generally higher 
predictive performance. The estimated heritabilities aligned with 
the model performance with generally higher predictive power for 
more heritable traits. These results suggest that certain health traits 
have a strong genetic basis and may be more immediately improved 
through genomic selection. We expect these dental traits to respond 
similarly to genetic selection through EBVs, as seen with the 
decrease in hip dysplasia prevalence in guide dogs (7–9). However, 
other conditions, including dermatological and neurological traits, 
showed weaker predictive accuracy, indicating a lower genetic 
heritability or significant environmental influences. Another 
potential limitation is the markers used within the study, which may 
not capture all variation in the breeds of interest. The purpose of 
commercial arrays are to capture variation across all breeds in a 
cost-effective manner but are still limited by SNP density and array 
design. Despite this potential limitation, previous work did not 

FIGURE 5

Violin plots of Pearson R for health, behavior, total score, and total score with parental fixed effects breeding values. Each plotted point represents the 
Pearson correlation for an individual fold within the cross-validation. The x-axis displays the different breeding value models evaluated including Health 
Score, Behavior Score, and Total Score along with Total Score including Parent Total Score and Total Score including Parent Health and Behavior 
Scores as fixed effects. The y-axis reflects the corresponding Pearson’s R values, which quantify the linear relationship between predicted and observed 
scores. A red reference line indicates the expected performance under a null model. Lower correlation values denote weaker predictive performance.
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identify significant increases in GBLUP predictive performance 
with increased marker density in guide dog gEBV model 
performance (12). More specialized breed-specific genotyping has 
been implemented in cattle to alleviate this specific problem, but it 
would require more investment to implement in guide dog 
populations (26). Regardless, these traits may still be  strong 
candidates for selection as genomic selection sees the most 
improvement compared to pedigree-based selection in less 
heritable, more complex to predict traits when genomic marker 
association is available (27).

Most behavioral traits were difficult to predict accurately using 
genetic data. Correlations were generally weak, particularly for traits 
like soundness and trainability, highlighting the challenge of linking 
complex behaviors to genetics. The weak correlations observed for 
most behavioral traits, especially soundness and trainability, reflect a 
broader challenge in canine genetics: the difficulty of reliably 
predicting complex behavioral phenotypes from genetic data alone. 
Across all traits, MCC was low to 0, indicating that the unbalanced 
nature of the datasets leads to poor predictive accuracy even if the 
AUROC shows that risk ranking is more useful. The exception to 
lower behavioral trait performance and the only one with an MCC 
score above 0 was distraction, which exhibited the highest predictive 
accuracy of all behavioral traits and may reflect increased consistency 
in the rating of this trait and heritability.

Because inclusion required each dog to reach the mid-term 
blindfold assessment (~6–8 weeks into training), our analysis 
necessarily omits any animal eliminated by the initial health or 

temperament screens. These limitations mean that severe, early-onset 
diagnoses that guarantee rejection do not appear in the dataset and 
the health phenotypes we do have are almost all incidental findings 
noted during routine physical exams. These conditions are far less 
informative than the six behavioral scores that instructors assign at 
the mid-term and, for dogs that progress further, again at the final 
blindfold test (≈12–14 weeks). This pipeline produces a cohort 
already biased toward eventual success, so the traits we examine are 
precisely those that remain hard to filter out before substantial 
resources have been committed to raising, caring for, and training 
each dog. Including these early failure dogs would have introduced 
imbalance for the composite indices as the animals would lack most 
behavior and health data collected later in training. The early removal 
of animals would leave incomplete trait profiles making them, 
categorically different, and less comparable to those of dogs who 
progressed far enough for structured assessment. For future 
application purposes, each trait will include all available dogs with 
the respective trait data. This will likely improve trait prediction 
accuracy but would not have provided comparable analysis across 
traits for the purpose of this research.

In summary, many traits showed MCC values of 0.000, indicating 
poor classification performance in an unbalanced dataset, yet some 
(e.g., mandibular distocclusion, malocclusion class I, mandibular 
mesiocclusion) exhibited relatively high AUROC scores (0.785–
0.865), suggesting that while the model struggled to set an optimal 
threshold for binary classification, it still demonstrated useful ranking 
ability. Moreover, traits such as anodontia had an MCC greater than 

FIGURE 6

Violin plots of NMSE for health, behavior, total score, and total score with parental fixed effects breeding values. Each plotted point represents the 
NMSE for an individual fold within the cross-validation. The x-axis differentiates the breeding values for Health Score, Behavior Score, and Total Score, 
along with Total Score models incorporating Parent Total Score and Total Score incorporating Parent Health and Behavior Scores as fixed effects. The 
y-axis shows the corresponding NMSE values, which measure the average squared prediction error normalized by the variance of the observed values. 
A red reference line indicates the expected performance under a null model. Higher NMSE values indicate greater prediction error and thus poorer 
model performance.
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FIGURE 7

Violin plots of MCC for success with parental total score, total score, behavior score, and ocular, dermal, and dental counts as fixed effects. Each 
dot represents the MCC from a single fold in the cross-validation process. The x-axis identifies the fixed effects included in the model including 
Health Score, Parent Total Score, Total Score, Behavior Score, and the Ocular, Dermal, and Dental Counts. The y-axis presents the MCC values, 
which reflect the model’s ability to correctly classify success outcomes. A red dashed line marks the performance expected under a random model. 
Lower MCC scores suggest reduced accuracy in binary classification.

FIGURE 8

Violin plots of AUROC for success with parental total score, total score, behavior score, and ocular, dermal, and dental counts as fixed effects. Each 
point represents the AUROC value from a single cross-validation fold. The x-axis corresponds to the fixed effects included in the model including 
Health Score, Parent Total Score, Total Score, Behavior Score, and the Ocular, Dermal, and Dental Counts. The y-axis displays the AUROC scores, 
which quantify the model’s ability to distinguish between successful and unsuccessful outcomes across all classification thresholds. A red reference 
line indicates the expected performance of a random classifier. Lower AUROC values reflect weaker predictive discrimination.
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zero (0.084), highlighting a marginal but notable capacity for 
classification. These mixed results underscore the complexity of 
leveraging GBLUP for binary classification and are an example of the 
potential strengths of ranking risk compared with correct 
categorization. These results suggest that even with an unbalanced 
dataset of health traits, risk can still be a viable metric to allow for the 
utilization of breeding values.

4.3 Performance of targeted and total 
score indices

A key insight from this study is the greater correlation of 
behavioral traits compared with health traits in determining guide dog 
success in our dataset of animals that passed initial health assessments. 
The lower performance of health-based indices as fixed effects to 
improve the model’s ability to predict success suggests that genetic 
predisposition to specific health conditions does not necessarily 
preclude a dog from successfully completing training. This outcome 
is likely reflective of the health traits included in this dataset due to 
limiting the dogs included based upon their behavior testing timeline. 
Instead, behavioral attributes such as the behavior score and total 
score weighted for behavior showed stronger associations with guide 
dog outcomes as fixed effects. In particular, success had an AUROC 
of 0.570 when predicted alone. However, including the behavior score 
as a fixed effect raised the AUROC to 0.718 and yielded an MCC of 
0.212, emphasizing the importance of specific behavioral traits in 
determining training completion.

The moderate performance of the breeding values to predict the 
behavior score index and total score index means that the fixed effects 
for success may need to rely more on phenotypic values as opposed to 
being able to use gEBVs as the fixed effects for earlier determination 
before phenotypic records are collected. These findings parallel recent 
efforts in service dog breeding programs, where temperament and 
trainability are recognized as more important selection criteria than 
physical health alone (4, 28). This underscores the need for multi-trait 
selection frameworks that place greater weight on behavioral 
indicators while considering health-related risk factors to help prevent 
unintentional negative selective pressures. Although the dairy 
industry has led the way in genomic improvement, this lesson about 
the importance of monitoring and selecting for all desired traits, not 
only ones highly correlated to a “successful” animal, comes from the 
negative correlation between reproductive and production traits. After 
selecting heavily for production traits for decades, a decline in fertility 
led to changing selective weights to incorporate selection for 
reproductive traits to correct the decline in fertility (29, 30).

Notably, many binary health traits had MCC values at or near 
zero, reflecting limited strict classification utility in this unbalanced 
dataset; however, some dentition conditions, e.g., mandibular 
distocclusion AUROC = 0.865, malocclusion class I AUROC = 0.790, 
mandibular mesiocclusion AUROC = 0.785, and anodontia 
AUROC = 0.706, MCC = 0.084 exceeded an AUROC threshold of 
~0.70, supporting risk-ranking value in a breeding program. By 
contrast, supernumerary teeth AUROC = 0.453 and numerous 
dermatological conditions such as muzzle folliculitis AUROC = 0.527 
and acral lick dermatitis AUROC = 0.534 offered weaker predictive 
discrimination. Similarly, composite metrics like Dental Count 
showed a modest correlation (Kendall’s Tau = 0.197, Spearman’s 

Rho = 0.247), but Dermal Count was essentially uninformative 
Kendall’s Tau = −0.020, Spearman’s Rho = −0.025. While the overall 
Health Score exhibited only low correlations (Pearson’s R ~ 0.1), the 
Behavior Score and Total Score indices performed better, both as 
individual targets (Pearson’s R ~ 0.23) and especially when used as 
fixed effects for predicting success (AUROC ~0.72). Based on these 
findings, breeding programs can implement dentition EBVs and 
behavior and total score indices immediately using top-quartile or 
other clear ranking cutoffs. In contrast, traits with AUROC values 
below ~0.65 will likely require larger datasets or refined phenotyping 
before they can substantively guide selection.

4.4 Study limitations

The reference population constrained the effectiveness of 
genomic selection in this study, an issue widely recognized in other 
species (3, 31). The accuracy of breeding values is inherently tied to 
the reference population’s size, diversity, and representativeness. In 
livestock, where genomic selection has been most successful, large, 
multi-institutional datasets have provided extensive training 
populations for genomic prediction (2, 30). In contrast, guide dog 
breeding programs typically operate with relatively small, closed 
populations. This leads to reduced genetic variance and limited 
selection intensity due to the lack of diverse variants for associations 
to be identified (10). This study’s modest predictive power of health 
and behavioral indices suggests that the reference population may not 
yet be large or genetically diverse enough to fully capture the genetic 
variation underlying some key guide dog traits, particularly of less 
related individuals from other organizations. This finding is 
consistent with the idea that large populations are necessary for 
training datasets, and as the diversity of the target population 
increases, the reference population must expand to match.

Another challenge lies in the subjectivity and standardization of 
behavioral assessments. Unlike physical health traits, which can 
often be more objectively measured, many behavioral traits rely on 
trainer evaluations, which may introduce observer bias and 
variability. While efforts were made to standardize assessments in 
this study, such as the use of only a few evaluators to minimize 
interrater discrepancies, differences in handler interpretation and 
environmental contexts may have contributed to inconsistencies in 
trait expression, a challenge recognized in previous research on 
canine behavioral genetics (32). Within organizational breeding 
programs, this variability may be adjusted for. However, for optimal 
integration of breeding values across organizations, this remains a 
significant challenge. Future studies may also consider more 
objective measures of behavior, such as biometric and 
neurophysiological markers, to enhance the precision of behavioral 
trait assessments (33, 34).

4.5 Future application

Despite these challenges, this study highlights several 
opportunities for advancing genomic selection in guide dog breeding. 
The moderate predictive performance of behavioral indices suggests 
that genomic data can contribute to selection decisions, albeit with 
some consideration for the population and fixed effects included. 
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Expanding genotypic and phenotypic datasets will also be critical. 
Increasing sample sizes and collecting additional behavioral, health, 
and physiological phenotypes may enhance the robustness of genomic 
selection models.

Additionally, collaborations between guide dog and other dog 
breeding organizations could provide access to larger, more 
genetically diverse populations, improving statistical power and 
enhancing the reliability of selection indices. A coordinated effort 
across multiple dog breeding programs would accelerate genetic 
improvement efforts and create a more comprehensive genomic 
database for working dogs. The possibility of including AI models 
and biometric data for phenotypic data also offers a roadmap from 
livestock that could be  adopted to address the challenges of 
combining phenotypic data from multiple organizations (35).

This study demonstrates the significant potential of genomic 
selection methodologies, particularly Genomic Best Linear 
Unbiased Prediction (GBLUP), to improve the efficiency and 
accuracy of breeding decisions in guide dog programs. Integrating 
multi-trait selection indices incorporating health and behavioral 
attributes provides a scientifically rigorous framework for 
enhancing genetic gain, selection efficiency, and overall breeding  
outcomes.

Our findings highlight the greater predictive power of 
behavioral traits over most health conditions in determining guide 
dog success, reinforcing the necessity of incorporating behavior 
into selection models. These findings must be considered with the 
caveat that the included health traits did not include severe, early-
onset diagnoses that may cause dismissal before behavioral 
assessment. Among health conditions, dental abnormalities 
exhibited the strongest genetic predictability, while dermatological 
traits showed weaker associations, likely due to environmental 
influences. Including parental fixed effects improved predictive 
accuracy, supporting the value of multi-generational genomic data 
in selection decisions.

Despite these advancements, challenges remain. The relatively low 
predictive power of some binary health traits and the need for 
standardized phenotypic assessments present ongoing hurdles for 
genomic selection in guide dog breeding. Future research should focus 
on expanding genomic reference populations and refining behavioral 
and health trait phenotyping across organizations.

By leveraging genomic technologies and multi-trait selection 
indices, guide dog breeding programs can systematically enhance 
selection accuracy, reduce hereditary conditions’ prevalence, and 
improve working dogs’ success rate. As genomic tools continue to 
evolve, their integration into breeding strategies will be crucial for 
ensuring the long-term health, performance, and sustainability of 
guide dog populations, ultimately improving the lives of both the dogs 
and the individuals they serve.
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