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Introduction: Genomic breeding values and multi-trait selection indices have
significantly advanced geneticimprovementin livestock but remain underutilized
in guide dog breeding. This study developed a genomically informed selection
framework for a population of Labrador Retrievers by integrating health (e.g.,
dental, ocular, and dermatological conditions) and behavioral (e.g., trainability,
distraction level, pace) traits into a “Behavior Score,” “"Health Score,” and “Total
Score” index by applying Genomic Best Linear Unbiased Prediction (GBLUP) to
estimate breeding values.

Results: Phenotypic and genotypic data were collected from 844 dogs over
26 years at The Seeing Eye guide dog school. Predictive performance was
evaluated via five-fold cross-validation and correlation-based metrics. Results
showed that some dentition related health traits exhibited moderate to high
Area Under Receiving Operating Characteristic (AUROC) values (0.79-0.87),
indicating potential for immediate use for genetic improvement. In contrast,
most other health traits demonstrated weak to moderate predictive accuracy.
Behavioral traits exhibited lower predictive accuracy but showed a stronger
association with training success. Models were commonly unable to correctly
classify individuals for binary or ordinal traits yet performed well in ranking
individuals, likely due to lower heritability or strong environmental influences
of traits or limitations of the dataset itself. The behavior-focused Total Score
(AUROC ~0.72) outperformed health-based indices as a fixed effect in predicting
breeding success despite the weaker predictive ability of individual behavioral
traits. Incorporating parental scores as fixed effects modestly improved breeding
values for success, indicating the importance of integrating additional data
sources where available.

Discussion: While these findings underscore the utility of genomic selection
for guide dog breeding, they also highlight constraints stemming from small,
genetically homogeneous populations and variable phenotyping. Ultimately,
we provide the first usable individual and multi-trait genomic approaches to
enhance both health and performance outcomes in working dog programs
and a foundation to expand upon the reference population and behavioral trait
assessment to improve prediction accuracy in the future.
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1 Introduction

Selective breeding has long been a cornerstone of genetic
improvement in domesticated animals, with the dairy cattle industry
leading the way in developing sophisticated selection indices that
integrate multiple economically and functionally important traits. In
species such as dairy cattle, indices such as Net Merit, developed by
the United States Department of Agriculture (USDA), have
significantly enhanced genetic gain by simultaneously optimizing
traits such as milk yield, fertility, longevity, and disease resistance (1,
2). These indices use weighted selection to balance productivity with
sustainability. Breeders may apply them to make informed decisions
that maximize long-term efficiency and performance with selection
weights derived from either economic importance or based on the
perceived importance of genetic gain in the desired trait (2, 3). Despite
the success of multi-trait selection in livestock breeding, its systematic
application in canine breeding programs, particularly those focused
on working dogs, remains largely underdeveloped.

In guide dog breeding, genetic selection faces unique challenges
(4). Unlike livestock, where economically valuable traits are more
directly quantifiable, the success of a guide dog depends on behavioral
attributes such as trainability, temperament, and response to
environmental stimuli, which must be assessed at multiple
developmental stages and are less economically defined (5).
Historically, selection in guide dog programs has relied heavily on
subjective trainer evaluations and pedigree-based breeding strategies.
This has limited genetic progress due to incomplete or inconsistent
data collection that cannot account for differences in genetic
inheritance not captured by pedigrees (6). An increasing number of
guide dog organizations have adopted estimated breeding values
(EBVs) to improve selection accuracy with The Seeing Eye being the
first to implement them in the early 1980s. The integration of EBV's
and genomic selection methodologies offers an opportunity to
improve the precision and efficiency of breeding decisions by
leveraging genetic information to enhance selection accuracy.

One of the most notable applications of pedigree EBVs in canine
breeding has been the long-term effort to reduce the prevalence of hip
and elbow dysplasia in working dogs (7-9). Since the 1980s,
incorporating EBVs into selection decisions has substantially reduced
hip dysplasia rates (7-9). Despite this success, the broader adoption
of genomic selection models in working dog breeding has been
hindered by several challenges, including small population sizes,
varied breeding goals, and limited standardization of trait
measurements (10). Additionally, while traditional EBVs have
provided genetic improvement, they remain limited by their reliance
on pedigree-based relationships rather than genomic data, reducing
selection accuracy compared to methods that incorporate direct
genomic information.

Genomic Best Linear Unbiased Prediction (GBLUP) has emerged
as a powerful tool to generate genomic estimated breeding values
(gEBV) across domesticated species by replacing traditional pedigree-
based relationship matrices with genomic relationship matrices
derived from single nucleotide polymorphism (SNP) markers (11, 12).
By incorporating genomic data, GBLUP enhances the accuracy of
breeding value estimation, facilitates earlier selection decisions, and
accelerates genetic progress. While extensively validated in livestock
breeding, where it has revolutionized genetic selection in dairy cattle
and poultry, its potential application in guide dog breeding remains
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largely unexplored with fewer examples of utilization (6, 12, 13).
Given its ability to refine selection strategies and improve genetic gain,
integrating GBLUP into guide dog breeding programs represents a
significant opportunity to enhance health and behavioral outcomes.

A multi-trait selection index tailored to guide dogs would allow
breeders to evaluate multiple key traits at the same time, reflecting
methods proven effective in livestock breeding. Rather than evaluating
individual traits in isolation, a total performance index incorporating
health and behavioral metrics would provide a holistic framework for
ranking and selecting breeding candidates (4). This approach would
promote genetic progress and streamline selection decisions by
condensing complex genomic and phenotypic information into a
single, interpretable index.

This study aims to develop and apply a performance index for a
guide dog breeding population by integrating genomic selection
methodologies, specifically GBLUP. By constructing a Total Score that
combines health and behavioral measures, we seek to establish a
scientifically rigorous, multi-trait selection framework to improve the
accuracy of breeding value estimates. We evaluate the predictive
power of genomic selection models in identifying key genetic
contributors to guide dog success and assess their potential to enhance
breeding efficiency. By leveraging genomic technologies and multi-
trait selection models, this research aims to provide a data-driven
foundation for optimizing genetic selection in guide dog programs,
ultimately improving working dogs health, performance, and
success rates.

2 Materials and methods

This study used 26 years of phenotypic and genomic data from
The Seeing Eye, Inc. (NJ, United States), a nonprofit that breeds and
trains guide dogs. The Seeing Eye breeds and trains German
Shepherds, Golden Retrievers, Labrador Retrievers, and Labrador-
Golden Retriever crosses. Only Labrador Retrievers were included in
this study to ensure a standardized approach to genetic evaluation and
selection index development. The dataset included 844 Labrador
Retrievers, forming the largest available group with both phenotypic
and genotypic records. All data were collected routinely as part of
standard operations at The Seeing Eye and did not involve new sample
collection or protocols requiring Institutional Animal Care and Use
Committee approval.

2.1 Phenotypic data collection

Phenotypic data were collected through the puppy raising and
training phases from birth until approximately 4.5 years of age. Upon
completion, staff classified dogs as either successful guide dogs or
failures based on whether they were selected for guide work or
breeding (success) or not (failure). An in-house veterinary team
recorded health conditions while professional trainers assessed
behavioral traits. Dogs missing either phenotypic or genotypic data
were excluded to ensure data integrity. The final dataset included 844
Labrador Retrievers with complete data. It also included a subset of
172 dogs whose parents also had full records available which enabled
fixed-effect modeling using parental phenotypes. Since behavioral
data were scored during the mid-training blindfold test (about
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6-8 weeks into guide dog training), all included dogs had cleared early
health screening. Thus, the dataset excludes severe early onset
conditions and may underestimate health trait effects due to
prior removals.

2.2 Health trait assessment

Staff diagnosed health phenotypes through standardized physical
examinations at four developmental milestones: a puppy physical at
approximately 5 weeks of age; a pre-training physical at 14-16 months;
and, depending on the dog’s career path, either a pre-breeder physical
approximately 3 months after the pre-training physical for those
selected as prospective breeders, or a pre-class physical approximately
4 months after the pre-training physical for those not selected as
breeders. Each health trait was classified using a predefined diagnostic
coding system with a team of five veterinarians independently
reviewing all diagnoses. Consensus discussions by the veterinary team
allowed for complex cases to maintain diagnostic consistency.

Health conditions were grouped into several categories. Dental
conditions included supernumerary teeth, retained deciduous teeth,
anodontia, mandibular distocclusion, mandibular prognathism,
mandibular mesiocclusion, base narrow mandibular canines, and
malocclusion class I. Ocular conditions consisted of distichiasis and
persistent pupillary membranes (PPM). Dermatological conditions
included histiocytoma, atopic dermatitis, allergic dermatitis, alopecia
at the bridge of the nose, acral lick dermatitis, and muzzle folliculitis.
Neurological and musculoskeletal conditions included loose
interphalangeal collateral ligaments and panosteitis. Other conditions
included umbilical hernia and the infectious disease oral
papillomatosis. For multi-trait index development, individual counts
for dental, ocular, and dermatological conditions were summed to
generate Dental Count, Ocular Count, and Dermal Count scores.

2.3 Behavior evaluation and scoring

Each dog underwent a comprehensive evaluation based on several
behavioral and performance characteristics which were rated using
standardized scales. These included Trainability, Rating, Soundness,
Distraction, Control Level for Instinct (Neck), Pace, and Pull Strength.

Trainability scores were assigned to all dogs in the study using
standardized assessment procedures. A single trainer assigned scores
from 1983 until their retirement in 2007, after which a new trainer
took over and has remained responsible for scoring to the present day.
This continuity helped minimize inter rater variability because only
one scorer change occurred over the 26-year period. Both scorers
followed established guidelines, and informal harmonization was
achieved through shadowing and internal documentation. Still, the
possibility of slight drift in scoring interpretation over time cannot
be ruled out.

Trainability assessments were conducted at different stages
depending on the dog’s progression through the program. Dogs that
completed training were scored as they approached their first class.
Dogs rejected earlier received their trainability rating at the time of
rejection, and breeding dogs were rated upon completion of training.
For dogs with multiple assessments, the final available score for each
individual was used in the analyses to ensure consistency.
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Rating: This scale assessed the dog’s ability to be controlled
verbally and physically by handlers of varying skill levels. Ratings
ranged from 1 (highly manageable with minimal distraction, suitable
for weak handlers) to 5 (high instinct levels, requiring a
competent handler).

Soundness: This measure evaluated the dogs confidence and
reaction to environmental stimuli, determining its ability to handle
the stress of guide work. Ratings ranged from Sound (fully confident
in all environments) to Unsound (lacking the confidence necessary for
guide work, with no potential for improvement) across a seven-point
scale with the present data containing four levels.

Distraction Level: The extent to which a dog’s instincts interfered
with its ability to focus on guide work was recorded. Scores ranged
from No Distraction (extremely rare, nearly machine-like focus) to
High Distraction (instincts too strong to allow consistent guide work)
across a six-point scale with four levels present in the population.

Neck (Control Level for Instinct): This category assessed the
physical control necessary to manage the dog when it became
distracted. Ratings ranged from Soft (highly sensitive, requiring
minimal control) to Hard (useable but only by the strongest handlers)
across a five-point scale.

Pace: The dog’s average walking speed was recorded in miles per
hour (MPH), classified into five categories by The Seeing Eye for
evaluation: Slow: <2.0 MPH, Less than Average: 2.0-2.4 MPH,
Average: 2.5-3.2 MPH, High Average: 3.3-3.9 MPH, Above average:
>4.0 MPH.

Pull Strength: The force exerted by the dog while in harness was
measured in pounds and categorized as: Light: <2.5 Ibs., Less than
Average: 2.5-5 Ibs., Average: 5-7.5 Ibs., Above Average: 7.5-10 lbs.,
Hard: >10 Ibs.

These standardized ratings provided a structured approach to
evaluating each dogs suitability for guide work and its optimal handler
match. All ratings were then converted into numeric values based on
the trait distributions in Table 1 to allow for consistent model
combinations and performance evaluations. Pace, pull, and neck
scores were condensed to allow for an ordinal scale due to the selection
toward the mean so distinction between high, low, and average was
needed with groups of at least 5% of the total population. For
distraction and soundness, the traits were converted to binary and
ordinal due to the unidirectional selection of those traits.

2.4 Genotyping and quality control

The Seeing Eye routinely collects whole-blood samples for DNA
extraction and storage in its biobank. DNA extraction followed
standard Qiagen PureGene protocols with in-house buffers. Quality
control and quantification ensured DNA integrity prior to genotyping.
Genotyping was conducted using three SNP arrays: the EMBARK
(Embark Veterinary Inc. Boston, MA, United States) (Illumina
microarray), a 220 K Illumina (Illumina Inc., San Diego, CA,
United States) microarray chip, and a 173 K Illumina microarray chip.
Datasets were merged, resulting in an initial dataset of 239,478 SNPs
across 2,176 dogs, including dogs across three breeds and without
complete phenotypic records, with an overall genotyping rate of
91.4%. SNP quality control was performed using PLINK v1.9, applying
genotype call rate thresholds of less than 90%, sample call rates below
90%, Hardy-Weinberg equilibrium at p < 1 x 107%, and minor allele
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TABLE 1 Behavior trait standardization.

Trait and trait categories Count of animals* Count of animals*
Pace
Fast 2
Above average 42 2 249
High average 205
Average 551 1 551
Less than average 44 0 44
Distractibility
High 20

1 384
Above average 364
Average 412

0 460
Less than average 48
Pull
Hard 3

2 49
Above average 46
Average 511

1 744
Defined average 233
Less than average 51 0 51
Neck
Hard 9

2 273
Above average 264
Average 496 1 496
Less than average 69

0 75
Easy 6
Rating
5 8 7 8
4+ 10 6 10
4 174 5 174
4— 11 4 11
3+ 305 3 305
3 282 2 282
3— 32 1 32
2+ 22 0 22
Soundness
Sound 262 2 262
Above average 484 1 484
Average 92

0 98
Less than average 6

*The count of animals corresponds to the number of animals within that category based on the original and updated scores.

frequencies less than 0.01. After quality filtering, 166,463 SNPs  dogs with full phenotypic data in the final GBLUP analysis to allow
remained for imputation (14). for easy comparison to existing SNP datasets.
Phasing and imputation were conducted using Beagle v5.2 (15),
leveraging a reference panel mapped to CanFam 3.1, which included
660 dogs across 157 modern breeds and village dogs, including 23 2.5 GBLUP model evaluation
Labrador Retrievers (16-19). The final dataset, pruned for linkage
disequilibrium, contained 1,219,623 SNPs. A reduced subset of 220 K An additive Genomic Relationship Matrix (GRM) was
SNPs corresponding to the Illumina chip was retained for the 844  constructed using SNP data to quantify the genetic relatedness
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among individuals, and all analyses were conducted with a
mixed-model association approach using a Restricted Maximum
Likelihood (REML) algorithm to estimate variance components.
The GBLUP model used to obtain the gEBV included the fixed
effects of birth year and the first three principal components as
linear covariates (20). Model performance was evaluated through
five-fold cross-validation, partitioning data into five subsets,
training on four, and validating the remaining subset. Through
this, each individual was a part of the testing dataset for a fold
and had a predicted and actual phenotype that could
be compared. In addition, pseudo-heritability was calculated for
each trait utilizing Golden Helix SNP and Variation Suite SNP
Analysis v8.9.1 (RRID: SCR_001285) (Golden Helix, Inc.,
Bozeman, MT, United States).!

Multiple metrics were employed to assess prediction accuracy.
These included the Matthews Correlation Coefficient (MCC) and
Area Under the Receiver Operating Characteristic Curve (AUROC)
for binary traits, Kendall’s Tau and Spearman’s Rho for ordinal traits,
and Pearson’s Correlation (R) and the normalized mean squared error
(NMSE) for continuous traits.

MCC measures the quality of binary classifications and accounts
for true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) in a single statistic. Values of MCC range from —1
(complete misclassification) to +1 (perfect classification), with 0
indicating a result no different than random guessing.

AUROC quantifies how well the model differentiates between
classes by plotting the true positive rate (sensitivity) against the false
positive rate (1 — specificity). AUROC scores generally range from 0.5
(no different than random) to 1.0 (perfect discrimination). Scores
below 0.5 indicate worse-than-chance performance.

Kendall's Tau and Spearman’s Rho are rank-based correlation
coefficients that measure ordinal and monotonic relationships ranging
from —1 to +1, with 0 indicating no relationship.

Pearson’s Correlation (R) quantifies the linear relationship
between predicted and observed values, ranging from —1 to +1. A
value of 0 indicates no linear correlation, while +1 denotes a
perfect relationship.

Normalized Mean Squared Error (NMSE) is a metric that
evaluates how well a model’s predictions match the actual data. This
approach is similar to Mean Squared Error (MSE) but adjusted for the
scale of the data. While MSE measures the average squared difference
between predicted and actual values, NMSE divides this error by the
variance of the actual data, making it easier to compare across datasets
with different scales. An NMSE value closer to 0 indicates more
accurate predictions, while higher values

suggest greater

prediction error.

2.6 Multi-trait index creation
Composite indices were developed to systematically capture
guide dogs’ overall health and behavioral suitability. These indices

were the Health Count, Dental Count, Ocular Count, Dermal
Count, Behavior Score, Health Score, and Total Score, each

1 www.goldenhelix.com
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designed to integrate relevant traits into a single
standardized metric.

The health counts represent the total number of diagnosed health
conditions for each dog. Conditions were categorized as dental (for
instance, supernumerary and retained deciduous teeth, enamel
defects, and various malocclusions), ocular (including distichiasis,
retinal folds and dysplasia, corneal cholesterolosis, iris cyst, and
persistent pupillary membrane), dermatological (such as histiocytoma,
atopic and allergic dermatitis, alopecia on the bridge of the nose, acral
lick dermatitis, and muzzle folliculitis), neurological (laryngeal
paralysis), congenital defects (umbilical hernia), musculoskeletal
(panosteitis and loose interphalangeal collateral ligaments), and viral/
infectious (oral papillomatosis). Each diagnosed condition
contributed one point to the individual’s Health Count. The Dental
Count captures only dental anomalies. All recorded dental conditions
added to the total Dental Count for that individual. The Ocular Count
reflects the number of ocular abnormalities. Each condition detected
in an individual added one point to the Ocular Count. The Dermal
Count is the total of all dermatological conditions present in
an individual.

The Behavior Score was derived by normalizing each behavioral
trait according to its relationship with guide dog success. A
transformation was used for traits negatively correlated with
success, including neck, distraction, and rating, so higher raw
values produced lower normalized scores using Equation 1. Traits
positively correlated with success (soundness and trainability) were
normalized with retained directionality using Equation 2. Traits
with an optimal intermediate value (pace and pull) were normalized
to reflect how far each raw score deviated from the ideal point
using Equation 3. Each trait was assigned a weight based on its
correlation with success, and the overall Behavior Score was
calculated as the weighted sum of these transformed values. This
resulted in scores between 0 and 1 for each trait, with 1 being closer
to optimal and 0 negatively correlated to success. The values were
then multiplied by the Pearson correlation for that trait with

success and summed.

Negative Behavior Normalized =| X max— X individual| + X max(1)
Positive Behavior Normalized = X individual + X max 2)

Neutral Behavior Normalized =1-| X individual —1| 3)

The Health Score was constructed by normalizing each health-
related measure to ensure comparability. This was done by
multiplying the binary status with the correlation to success for
that trait. Summing these normalized trait values provided a
composite Health Score that captured each dog’s overall severity of
health conditions. All trait correlations to success are listed in
Table 2.

Finally, the Total Score was determined by combining the Health
Score and Behavior Score into a single weighted index using
Equation 4:

Total Score = Wyeaph X (health score) + Whehavior
x (behavior score) (4)
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TABLE 2 Trait correlations to success.

Trait Correlation to success

Base narrow mandibular canines —0.026
Malocclusion class I —0.035
Distichiasis —0.032
PPM —0.025
Loose interphalangeal collateral —0.003
ligaments

Umbilical hernia —0.009
Histiocytoma —0.036
Atopic dermatitis -0.1
Allergic dermatitis —0.009
Alopecia bridge of nose —0.027
Acral lick dermatitis —0.029
Muzzle folliculitis —0.009
Panosteitis —0.02
Oral papillomatosis —0.02
Supernumerary teeth —0.024
Retained deciduous teeth —0.013
Anodontia —0.014
Mandibular distocclusion —0.105
Mandibular prognathism —0.031
Mandibular mesiocclusion —0.047
Distraction —0.107
Neck —0.108
Soundness 0.127
Rating —0.144
Pace 0.02
Pull 0.017
Trainability 0.531
Health score —0.02
Behavior score 0.324

Wheatth a0d Wiehavior are weighting factors derived from correlation
analyses linking these traits to guide dog success. This combined score
ensures that health and behavioral traits are appropriately emphasized
in selection decisions.

A subset of animals also had complete phenotypic records on both
parents in the dataset. These 172 animals were used as a subset to
determine the utility of parental phenotypes as fixed effects on the
breeding value performance of the offspring. The indices used were
Parent Health Score, Parent Behavior Score, and Parent Total Score as a
fixed effect for both Total Score and Success breeding values.

3 Results

The performance of estimated breeding values (EBVs) and
selection indices was evaluated across multiple health and behavioral
traits using Genomic Best Linear Unbiased Prediction (GBLUP).
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Predictive accuracy was assessed through Matthews correlation
coefficient (MCC), area under the receiver operating characteristic
curve (AUROC), Kendall’s Tau, and Spearman’s Rho, with five-fold
cross-validation employed for model validation.

3.1 Individual traits

The heritability of the individual trait and the model’s predictive
performance were evaluated. The predictive performance was assessed
using MCC, AUROC, Kendall's Tau, and Spearmans Rho as
appropriate based on the data type. The results are summarized in
Table 3 and Figures 1, 2.

For most traits, the MCC values were 0.000, indicating poor
classification performance. Across the traits, pseudo-heritability
estimates were generally low to moderate (median ~ 0.14), suggesting
that while genetic factors contribute, substantial environmental or
measurement noise remains. Related, the AUROC values varied across
traits, with the highest AUROC observed for mandibular distocclusion
(AUROC =0.865, pseudo-heritability = 0.269),  followed by
malocclusion class I (AUROC = 0.790, pseudo-heritability = 0.148)
and mandibular mesiocclusion (AUROC =0.785, pseudo-
heritability = 0.139). Although MCC remained at 0.000 for these traits,
the elevated AUROC scores indicate that the model still provided
meaningful risk ranking, even if strict classification thresholds were not
optimized. This apparent contradiction arises because MCC and
AUROC measure different aspects of model performance. MCC
evaluates the quality of binary classifications made at a particular
decision threshold, balancing true and false positives and negatives. It
is especially sensitive to class imbalance, commonly seen in our traits,
and requires the model to make discrete decisions. In contrast, AUROC
assesses the model’s ability to discriminate between classes across all
possible thresholds, capturing how well the model ranks positive cases
above negative ones. Thus, a high AUROC paired with a low MCC
indicates that while the model can correctly order cases by risk, it
struggles when forced to commiit to a binary decision using a single
cutoff point.

Among other dentition-related conditions, retained deciduous
teeth  (AUROC =0.655,  pseudo-heritability =0.131)  and
supernumerary teeth (AUROC = 0.453, pseudo-heritability <0.000)
had differing levels of classification accuracy and base narrow
mandibular canines (AUROC = 0.700, pseudo-heritability = 0.146)
also showed moderate AUROC values. Notably, anodontia was the
only health trait with an MCC greater than zero (MCC = 0.084,
AUROC = 0.706, pseudo-heritability = 0.247), suggesting marginal but
the first non-trivial predictive power in proper classification.

For dermatological conditions, histiocytoma (AUROC = 0.631,
pseudo-heritability = 0.039), atopic dermatitis (AUROC = 0.591,
pseudo-heritability = 0.044), allergic dermatitis (AUROC = 0.598,
pseudo-heritability = 0.019), and alopecia of the bridge of the nose
(AUROC = 0.562, pseudo-heritability = 0.022) had moderate AUROC
values, indicating weak but non-random ranking performance.
However, conditions such as muzzle folliculitis (AUROC = 0.527,
pseudo-heritability = 0.023) and acral lick dermatitis (AUROC = 0.534,
pseudo-heritability = 0.046) exhibited lower discrimination abilities.
Distichiasis (AUROC = 0.704, pseudo-heritability = 0.092) and oral
papillomatosis (AUROC =0.611, pseudo-heritability = 0.089) also
demonstrated moderate classification performance.
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TABLE 3 Scoring metrics for individual traits.

10.3389/fvets.2025.1628161

Pseudo-heritability Kendall Tau Spearman Rho
Base narrow mandibular 0.146 0.000 0.700
canines
Malocclusion class I 0.148 0.000 0.790
Distichiasis 0.092 0.000 0.704
PPM 0.142 0.000 0.672
Loose interphalangeal 0.109 0.000 0.710
collateral ligaments
Umbilical hernia 0.037 0.000 0.699
Histiocytoma 0.039 0.000 0.631
Atopic dermatitis 0.044 0.000 0.591
Allergic dermatitis 0.019 0.000 0.598
Alopecia bridge of nose 0.022 0.000 0.562
Acral lick dermatitis 0.046 0.000 0.534
Muzzle folliculitis 0.023 0.000 0.527
Panosteitis 0.163 0.000 0.738
Oral papillomatosis 0.089 0.000 0.611
Supernumerary teeth <0.000 0.000 0.453
Retained deciduous teeth 0.131 0.000 0.655
Anodontia 0.247 0.084 0.706
Mandibular distocclusion 0.269 0.000 0.865
Mandibular prognathism 0.080 0.000 0.750
Mandibular mesiocclusion 0.139 0.000 0.785
Success 0.041 0.000 0.570
Distraction 0.177 0.183 0.639
Neck 0.209 0.201 0.251
Soundness <0.000 —0.009 —-0.012
Rating 0.179 0.150 0.199
Pace 0.153 0.187 0.233
Pull 0.066 0.094 0.117
Trainability 0.147 0.120 0.158

The orthopedic and musculoskeletal conditions also showed
variable AUROC performance. Panosteitis (AUROC = 0.738, pseudo-
heritability = 0.163) had one of the higher scores in this category,
suggesting some predictive value. Loose interphalangeal collateral
ligaments (AUROC =0.710, pseudo-heritability = 0.109), PPM
(AUROC = 0.672, pseudo-heritability = 0.142) and umbilical hernia
(AUROC = 0.699, pseudo-heritability = 0.037) had slightly lower but
notable predictive performance.

The success and distraction traits had mixed results. Success
(AUROC = 0.570, pseudo-heritability = 0.041) had a weak
classification performance, while distraction (MCC =0.183,
AUROC = 0.639, pseudo-heritability = 0.177) performed slightly
better than most traits, and its higher heritability underscores a clearer
genetic influence. Other behavioral traits and performance metrics
were evaluated using Kendall’s Tau and Spearman’s Rho. The highest
correlations were observed for neck (Kendall’s Tau = 0.201, Spearman’s
Rho =0.251, pseudo-heritability = 0.209) and pace (Kendall’s
Tau = 0.187, Spearman’s Rho = 0.233, pseudo-heritability = 0.153),
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suggesting a weak to moderate association between predicted and
actual values. Rating (Kendall’s Tau = 0.150, Spearmans Rho = 0.199,
pseudo-heritability = 0.179) and trainability (Kendall’s Tau = 0.120,
Rho=0.158,  pseudo-heritability = 0.47)  also
demonstrated weak but notable correlations. Pull (Kendall’s
Tau = 0.094, Spearman’s Rho = 0.117, pseudo-heritability = 0.066) was
weaker than the previously mentioned behavioral traits but still

Spearman’s

showed a minor positive association. However, soundness (Kendall’s
Tau = —0.009, Spearman’s Rho = —0.012, pseudo-heritability < 0.000)
showed effectively no relationship, indicating poor predictive
capability.

3.2 Selection indices and fixed effects

The analysis evaluated multi-trait index scores which included
different fixed effects. The performance comparisons utilized
AUROC, MCC, Kendall’s Tau, Spearman’s Rho, Pearsons R, and
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Bar charts of performance for each binary trait's genomic breeding value prediction, with traits sorted from highest to lowest along the x-axis. The
dashed red lines indicate null performance. (A) The area under the receiving operating curve (AUROC), where larger values reflect better ranking of
affected versus unaffected dogs in GBLUP risk-ranking. (B) Matthew's Correlation Coefficient (MCC), where larger values indicate better discrimination
of affected versus unaffected dogs in GBLUP risk-classification. In both panels, traits with higher scores demonstrate greater predictability, whereas

NMSE to quantify the effectiveness of the GBLUP model in
index performance.

The model’s ability to predict count-based indices showed weak to
negligible correlations. The dental count had the highest correlation,
with Kendall’s Tau = 0.197 and Spearman’s Rho = 0.247, suggesting a
weak but notable relationship displayed in Figures 3, 4. Ocular count
performed slightly worse, with Kendall’s Tau = 0.129 and Spearman’s
Rho = 0.158, indicating a weaker association. Dermal count, exhibited
no meaningful correlation with Kendall's Tau = —0.020 and Spearman’s
Rho = —0.025, implying this trait’s lack of predictive accuracy.

Correlations improved slightly from weak to moderate when
evaluating the model’s ability to predict broader performance-based
scores. Health score had a low correlation, with Pearson’s R = 0.168
and a high error rate (NMSE = 0.983), as shown in Figures 5, 6,
indicating poor predictive capability. In contrast, behavior scores and
total scores performed slightly better, with Pearson’s R ~ 0.23 and
NMSE ~ 0.96, suggesting a slightly stronger but still weak association.
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Incorporating parental phenotypes improved the model’s ability
to predict the total score of an individual. Figures 5, 6 show how total
score using the parental total score as a fixed effect achieved a
Pearson’s R = 0.347 and NMSE = 0.886 while using both parent health
score and parent behavior score yielded nearly identical results
(Pearson’s R ~ 0.35, NMSE ~ 0.89). These findings suggest that while
genetic or inherited factors play a role, their contribution
remains modest.

The model’s predictive performance for success varied widely
depending on the features used. Using health score as a fixed effect
alone resulted in an MCC = 0.000 and AUROC = 0.514, indicating
performance no better than chance as shown in Figures 7, 8. However,
when behavior score was included, performance improved notably
(MCC =0.212, AUROC = 0.718), suggesting a stronger link between
behavioral traits and success in this dataset. Similarly, total score as a
fixed in MCC=0.216 and AUROC =0.716,
demonstrating a comparable predictive power level.

effect resulted
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FIGURE 2
Bar charts of each ordinal trait's genomic breeding value prediction, with traits sorted from highest to lowest correlation along the x-axis. The dashed
red lines indicate null performance. (A) Kendall's Tau values, where larger values indicate stronger agreement between predicted and actual ranking.
(B) Spearman’s Rho values reflect the correlation between predicted and actual ranking in GBLUP values. In both panels, lower correlation scores
indicate weaker predictability for this dataset.

When using ocular, dermal, and dental counts as fixed effects, the
model again performed at chance level (MCC =0.000,
AUROC = 0.516) displayed in Figures 7, 8, indicating that these
factors were not useful in predicting success. Finally, incorporating the
parent total score shows a slight decline in performance for MCC and
a slight increase in AUROC (MCC = —0.022, AUROC = 0.608),
suggesting that parental influence, while somewhat predictive of
overall scores, was less useful in predicting success outcomes.

4 Discussion

4.1 Advantages of genomic estimated
breeding values

Historically, breeding values have been predicted from pedigree-
derived datasets. However, replacing these with genomic relationship
estimates may sharpen that estimate to allow for a more granular
view of the genomic architecture. This challenge is exemplified by
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work using a wheat dataset supplemented with simulations of
varying numbers of quantitative trait loci (QTL). The work
demonstrated that the performance of different methods including
GBLUP depended heavily on the trait’s genetic architecture with
model performance altered by the difference between many minor
QTL compared to only a few QTL with larger effects. Further
illustrating the point, multi-generation simulations demonstrated
that genomic estimated breeding values (gEBV) substantially
exceeded traditional BLUP for low-heritability traits, provided
sufficient training data were collected, particularly in situations such
as sex-limited traits or those costly to measure (21). In a long-term
field study of Soay sheep, leveraging genome-wide SNP data
including 37 k markers allowed investigators to derive more accurate
relatedness than incomplete pedigrees, leading to both less-biased
heritability estimates and improved separation of direct genetic
effects from maternal components (22). Pig data collected with 60 k
SNP showed that carefully constructed genomic relationship
matrices yielded high correlations to true genome sharing,
translating to more precise breeding values than those obtained from
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FIGURE 3

Violin plots of Kendall's Tau for dental, ocular, and dermal count breeding values. Each point represents a single fold's score with the red line indicating
a null model's performance. The x axis corresponds to the model performance for dental, ocular and dermal count breeding values with the y-axis
corresponding to the Kendall's Tau score. The lower values correspond to lower predictive ability of the model.
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FIGURE 4

Violin plots of Spearman Rho for dental, ocular, and dermal count breeding values. Each point represents a single fold's score with the red line
indicating a null model's performance. The x-axis corresponds to the model performance for Dental, Ocular, and Dermal Count breeding values, and
the y-axis corresponds to the Spearman’s Rho score. Lower values indicate weaker predictive ability of the model.
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FIGURE 5

Violin plots of Pearson R for health, behavior, total score, and total score with parental fixed effects breeding values. Each plotted point represents the
Pearson correlation for an individual fold within the cross-validation. The x-axis displays the different breeding value models evaluated including Health
Score, Behavior Score, and Total Score along with Total Score including Parent Total Score and Total Score including Parent Health and Behavior
Scores as fixed effects. The y-axis reflects the corresponding Pearson'’s R values, which quantify the linear relationship between predicted and observed
scores. A red reference line indicates the expected performance under a null model. Lower correlation values denote weaker predictive performance.

pedigree alone (23). The benefits of dense genomic information for
low-heritability traits are further highlighted in a commercial
rainbow trout population, where gEBV for disease resistance far
exceeded pedigree-based BLUP and allowed breeders to exploit
within-family variation (24). Additionally, attempts to implement
selection programs in smaller sheep flocks demonstrated that
pedigree-only methods were hampered by missing sire information
and limited accuracy. In contrast, adding genomic information
offered at least modest improvements that were more apparent as
flock size increased (25). These findings suggest that pedigree-based
selection alone may not fully capture the subtle genetic architecture
of complex traits. By contrast, genomic breeding values incorporate
realized genomic relationships, allowing for a more precise
estimation of genetic merit in populations with low heritability, high
QTL counts, or incomplete pedigrees. Consequently, this paper
focuses on genomic selection to address the inherent constraints of
traditional approaches, thereby improving the reliability of breeding
decisions for complex traits.

4.2 Performance of individual trait genomic
EBVs

The findings of this study provide a critical evaluation of the
potential for genomic selection methodologies, particularly Genomic
Best Linear Unbiased Prediction (GBLUP), to enhance guide dog
breeding programs. While the effectiveness of GBLUP has been well-
established in livestock breeding, its application to working dog
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populations remains largely unexplored. This study sought to develop
a multi-trait selection index integrating health and behavioral metrics
to optimize breeding decisions for guide dog success. The results
highlight both the opportunities and limitations of genomic selection
in this complex context, with broader implications for reference
population construction and breeding value estimation in
novel populations.

To begin, individual trait breeding values were generated and
assessed for predictive performance. Individual trait gEBV provides
a more targeted selection of specific traits. The predictive accuracy
of gEBV varied across individual traits, with dentition-related
conditions, such as mandibular distocclusion, malocclusion class I,
and mandibular mesiocclusion, exhibiting a generally higher
predictive performance. The estimated heritabilities aligned with
the model performance with generally higher predictive power for
more heritable traits. These results suggest that certain health traits
have a strong genetic basis and may be more immediately improved
through genomic selection. We expect these dental traits to respond
similarly to genetic selection through EBVs, as seen with the
decrease in hip dysplasia prevalence in guide dogs (7-9). However,
other conditions, including dermatological and neurological traits,
showed weaker predictive accuracy, indicating a lower genetic
heritability or significant environmental influences. Another
potential limitation is the markers used within the study, which may
not capture all variation in the breeds of interest. The purpose of
commercial arrays are to capture variation across all breeds in a
cost-effective manner but are still limited by SNP density and array
design. Despite this potential limitation, previous work did not
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FIGURE 6
Violin plots of NMSE for health, behavior, total score, and total score with parental fixed effects breeding values. Each plotted point represents the
NMSE for an individual fold within the cross-validation. The x-axis differentiates the breeding values for Health Score, Behavior Score, and Total Score,
along with Total Score models incorporating Parent Total Score and Total Score incorporating Parent Health and Behavior Scores as fixed effects. The
y-axis shows the corresponding NMSE values, which measure the average squared prediction error normalized by the variance of the observed values.
A red reference line indicates the expected performance under a null model. Higher NMSE values indicate greater prediction error and thus poorer
model performance.

identify significant increases in GBLUP predictive performance
with increased marker density in guide dog gEBV model
performance (12). More specialized breed-specific genotyping has
been implemented in cattle to alleviate this specific problem, but it
would require more investment to implement in guide dog
populations (26). Regardless, these traits may still be strong
candidates for selection as genomic selection sees the most
improvement compared to pedigree-based selection in less
heritable, more complex to predict traits when genomic marker
association is available (27).

Most behavioral traits were difficult to predict accurately using
genetic data. Correlations were generally weak, particularly for traits
like soundness and trainability, highlighting the challenge of linking
complex behaviors to genetics. The weak correlations observed for
most behavioral traits, especially soundness and trainability, reflect a
broader challenge in canine genetics: the difficulty of reliably
predicting complex behavioral phenotypes from genetic data alone.
Across all traits, MCC was low to 0, indicating that the unbalanced
nature of the datasets leads to poor predictive accuracy even if the
AUROC shows that risk ranking is more useful. The exception to
lower behavioral trait performance and the only one with an MCC
score above 0 was distraction, which exhibited the highest predictive
accuracy of all behavioral traits and may reflect increased consistency
in the rating of this trait and heritability.

Because inclusion required each dog to reach the mid-term
blindfold assessment (~6-8 weeks into training), our analysis
necessarily omits any animal eliminated by the initial health or
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temperament screens. These limitations mean that severe, early-onset
diagnoses that guarantee rejection do not appear in the dataset and
the health phenotypes we do have are almost all incidental findings
noted during routine physical exams. These conditions are far less
informative than the six behavioral scores that instructors assign at
the mid-term and, for dogs that progress further, again at the final
blindfold test (x12-14 weeks). This pipeline produces a cohort
already biased toward eventual success, so the traits we examine are
precisely those that remain hard to filter out before substantial
resources have been committed to raising, caring for, and training
each dog. Including these early failure dogs would have introduced
imbalance for the composite indices as the animals would lack most
behavior and health data collected later in training. The early removal
of animals would leave incomplete trait profiles making them,
categorically different, and less comparable to those of dogs who
progressed far enough for structured assessment. For future
application purposes, each trait will include all available dogs with
the respective trait data. This will likely improve trait prediction
accuracy but would not have provided comparable analysis across
traits for the purpose of this research.

In summary, many traits showed MCC values of 0.000, indicating
poor classification performance in an unbalanced dataset, yet some
(e.g., mandibular distocclusion, malocclusion class I, mandibular
mesiocclusion) exhibited relatively high AUROC scores (0.785-
0.865), suggesting that while the model struggled to set an optimal
threshold for binary classification, it still demonstrated useful ranking
ability. Moreover, traits such as anodontia had an MCC greater than
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FIGURE 7

Violin plots of MCC for success with parental total score, total score, behavior score, and ocular, dermal, and dental counts as fixed effects. Each
dot represents the MCC from a single fold in the cross-validation process. The x-axis identifies the fixed effects included in the model including
Health Score, Parent Total Score, Total Score, Behavior Score, and the Ocular, Dermal, and Dental Counts. The y-axis presents the MCC values,
which reflect the model's ability to correctly classify success outcomes. A red dashed line marks the performance expected under a random model.
Lower MCC scores suggest reduced accuracy in binary classification.
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FIGURE 8

Violin plots of AUROC for success with parental total score, total score, behavior score, and ocular, dermal, and dental counts as fixed effects. Each
point represents the AUROC value from a single cross-validation fold. The x-axis corresponds to the fixed effects included in the model including
Health Score, Parent Total Score, Total Score, Behavior Score, and the Ocular, Dermal, and Dental Counts. The y-axis displays the AUROC scores,
which quantify the model's ability to distinguish between successful and unsuccessful outcomes across all classification thresholds. A red reference
line indicates the expected performance of a random classifier. Lower AUROC values reflect weaker predictive discrimination.
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zero (0.084), highlighting a marginal but notable capacity for
classification. These mixed results underscore the complexity of
leveraging GBLUP for binary classification and are an example of the
potential strengths of ranking risk compared with correct
categorization. These results suggest that even with an unbalanced
dataset of health traits, risk can still be a viable metric to allow for the
utilization of breeding values.

4.3 Performance of targeted and total
score indices

A key insight from this study is the greater correlation of
behavioral traits compared with health traits in determining guide dog
success in our dataset of animals that passed initial health assessments.
The lower performance of health-based indices as fixed effects to
improve the model’s ability to predict success suggests that genetic
predisposition to specific health conditions does not necessarily
preclude a dog from successfully completing training. This outcome
is likely reflective of the health traits included in this dataset due to
limiting the dogs included based upon their behavior testing timeline.
Instead, behavioral attributes such as the behavior score and total
score weighted for behavior showed stronger associations with guide
dog outcomes as fixed effects. In particular, success had an AUROC
of 0.570 when predicted alone. However, including the behavior score
as a fixed effect raised the AUROC to 0.718 and yielded an MCC of
0.212, emphasizing the importance of specific behavioral traits in
determining training completion.

The moderate performance of the breeding values to predict the
behavior score index and total score index means that the fixed effects
for success may need to rely more on phenotypic values as opposed to
being able to use gEBV's as the fixed effects for earlier determination
before phenotypic records are collected. These findings parallel recent
efforts in service dog breeding programs, where temperament and
trainability are recognized as more important selection criteria than
physical health alone (4, 28). This underscores the need for multi-trait
selection frameworks that place greater weight on behavioral
indicators while considering health-related risk factors to help prevent
unintentional negative selective pressures. Although the dairy
industry has led the way in genomic improvement, this lesson about
the importance of monitoring and selecting for all desired traits, not
only ones highly correlated to a “successful” animal, comes from the
negative correlation between reproductive and production traits. After
selecting heavily for production traits for decades, a decline in fertility
led to changing selective weights to incorporate selection for
reproductive traits to correct the decline in fertility (29, 30).

Notably, many binary health traits had MCC values at or near
zero, reflecting limited strict classification utility in this unbalanced
dataset; however, some dentition conditions, e.g., mandibular
distocclusion AUROC = 0.865, malocclusion class  AUROC = 0.790,
mandibular mesiocclusion AUROC =0.785, and anodontia
AUROC = 0.706, MCC = 0.084 exceeded an AUROC threshold of
~0.70, supporting risk-ranking value in a breeding program. By
contrast, supernumerary teeth AUROC = 0.453 and numerous
dermatological conditions such as muzzle folliculitis AUROC = 0.527
and acral lick dermatitis AUROC = 0.534 offered weaker predictive
discrimination. Similarly, composite metrics like Dental Count
showed a modest correlation (Kendall’s Tau = 0.197, Spearman’s
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Rho = 0.247), but Dermal Count was essentially uninformative
Kendall’s Tau = —0.020, Spearman’s Rho = —0.025. While the overall
Health Score exhibited only low correlations (Pearson’s R ~ 0.1), the
Behavior Score and Total Score indices performed better, both as
individual targets (Pearson’s R ~ 0.23) and especially when used as
fixed effects for predicting success (AUROC ~0.72). Based on these
findings, breeding programs can implement dentition EBVs and
behavior and total score indices immediately using top-quartile or
other clear ranking cutoffs. In contrast, traits with AUROC values
below ~0.65 will likely require larger datasets or refined phenotyping
before they can substantively guide selection.

4.4 Study limitations

The reference population constrained the effectiveness of
genomic selection in this study, an issue widely recognized in other
species (3, 31). The accuracy of breeding values is inherently tied to
the reference population’s size, diversity, and representativeness. In
livestock, where genomic selection has been most successful, large,
multi-institutional datasets have provided extensive training
populations for genomic prediction (2, 30). In contrast, guide dog
breeding programs typically operate with relatively small, closed
populations. This leads to reduced genetic variance and limited
selection intensity due to the lack of diverse variants for associations
to be identified (10). This study’s modest predictive power of health
and behavioral indices suggests that the reference population may not
yet be large or genetically diverse enough to fully capture the genetic
variation underlying some key guide dog traits, particularly of less
related individuals from other organizations. This finding is
consistent with the idea that large populations are necessary for
training datasets, and as the diversity of the target population
increases, the reference population must expand to match.

Another challenge lies in the subjectivity and standardization of
behavioral assessments. Unlike physical health traits, which can
often be more objectively measured, many behavioral traits rely on
trainer evaluations, which may introduce observer bias and
variability. While efforts were made to standardize assessments in
this study, such as the use of only a few evaluators to minimize
interrater discrepancies, differences in handler interpretation and
environmental contexts may have contributed to inconsistencies in
trait expression, a challenge recognized in previous research on
canine behavioral genetics (32). Within organizational breeding
programs, this variability may be adjusted for. However, for optimal
integration of breeding values across organizations, this remains a
significant challenge. Future studies may also consider more
objective measures of behavior, such as biometric and
neurophysiological markers, to enhance the precision of behavioral
trait assessments (33, 34).

4.5 Future application
Despite these challenges, this study highlights several
opportunities for advancing genomic selection in guide dog breeding.
The moderate predictive performance of behavioral indices suggests
that genomic data can contribute to selection decisions, albeit with
some consideration for the population and fixed effects included.
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Expanding genotypic and phenotypic datasets will also be critical.
Increasing sample sizes and collecting additional behavioral, health,
and physiological phenotypes may enhance the robustness of genomic
selection models.

Additionally, collaborations between guide dog and other dog
breeding organizations could provide access to larger, more
genetically diverse populations, improving statistical power and
enhancing the reliability of selection indices. A coordinated effort
across multiple dog breeding programs would accelerate genetic
improvement efforts and create a more comprehensive genomic
database for working dogs. The possibility of including AI models
and biometric data for phenotypic data also offers a roadmap from
livestock that could be adopted to address the challenges of
combining phenotypic data from multiple organizations (35).

This study demonstrates the significant potential of genomic
selection methodologies, particularly Genomic Best Linear
Unbiased Prediction (GBLUP), to improve the efficiency and
accuracy of breeding decisions in guide dog programs. Integrating
multi-trait selection indices incorporating health and behavioral
attributes provides a scientifically rigorous framework for
enhancing genetic gain, selection efficiency, and overall breeding
outcomes.

Our findings highlight the greater predictive power of
behavioral traits over most health conditions in determining guide
dog success, reinforcing the necessity of incorporating behavior
into selection models. These findings must be considered with the
caveat that the included health traits did not include severe, early-
onset diagnoses that may cause dismissal before behavioral
assessment. Among health conditions, dental abnormalities
exhibited the strongest genetic predictability, while dermatological
traits showed weaker associations, likely due to environmental
influences. Including parental fixed effects improved predictive
accuracy, supporting the value of multi-generational genomic data
in selection decisions.

Despite these advancements, challenges remain. The relatively low
predictive power of some binary health traits and the need for
standardized phenotypic assessments present ongoing hurdles for
genomic selection in guide dog breeding. Future research should focus
on expanding genomic reference populations and refining behavioral
and health trait phenotyping across organizations.

By leveraging genomic technologies and multi-trait selection
indices, guide dog breeding programs can systematically enhance
selection accuracy, reduce hereditary conditions’ prevalence, and
improve working dogs” success rate. As genomic tools continue to
evolve, their integration into breeding strategies will be crucial for
ensuring the long-term health, performance, and sustainability of
guide dog populations, ultimately improving the lives of both the dogs
and the individuals they serve.
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