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This study evaluated the effects of Alterion supplementation on growth rate, 
feed conversion ratio, intestine morphology, carcass quality, and blood indices 
in both commercial and local chicken breeds. Two chicken breeds (Local Omani 
and Cobb 430 broilers) and two dietary treatments (Control and 0.05% Alterion) 
were used in a 2 × 2 factorial design. The results showed that, across both breeds, 
supplementation significantly improved weight gain over 42 days compared to 
the control. Specifically, the Alterion group exhibited a 12.1% increase in Cobb 
430 and a 26.7% increase in Omani birds, with all differences being statistically 
significant (p < 0.001). Furthermore, the jejunum and ileum of both breeds fed 
supplemented diets exhibited higher villus height and villus-to-crypt ratio than 
the control group (p < 0.05). The counts of red blood cells (RBCs), white blood 
cells (WBCs), and total protein increased significantly in both chicken breeds fed 
supplemented diets compared with controls (p < 0.05). Carcass and internal organs 
were remarkably larger in Cobb 430 than in Omani chickens (p < 0.05), and in 
Alterion treatments than in controls (p < 0.05). In both chicken breeds, meat quality 
parameters were not significantly affected by Alterion. Alterion supplementation 
modulated gut microflora composition and relative abundance, with Bacilli being 
the most abundant class in all treatments and gut segments (p < 0.05). While 
Alterion supplementation had minimal influence on the overall composition of the 
bacterial community, it contributed to maintaining a normal ecological balance 
of the microbiota. In summary, supplementation with 0.05% Alterion improved 
growth, intestinal health, blood parameters, carcass yield, and internal organ 
weight, and beneficially modulated the gut microbiome in Cobb 430 and Omani 
chickens. Further research is recommended to determine the optimal dosage of 
Alterion for Omani chickens, thereby optimizing their performance.
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1 Introduction

Microbial colonization of the chicken gastrointestinal (GI) tract 
begins shortly after hatch (1). The establishment of intestinal 
microbiota typically starts within the first 2 to 4 days post-hatching, 
with the microbial community in the small intestine becoming 
relatively stable by approximately 2 weeks of age. Conversely, the cecal 
microbiota may take up to 30 days to fully mature (2). The composition 
of these microbial populations is not static; rather, it undergoes 
continuous changes influenced by multiple factors such as the bird’s 
age and nutritional intake (3). Significant differences in microbial 
communities occur across various regions of the GI tract (4), with 
each section hosting a specific microbiota profile. Diversity and 
complexity increase with age, feed composition, genetic background, 
and environmental origin (2, 5–7). In recent years, there has been 
heightened research interest in microbial development across different 
chicken genotypes (8). Despite this, knowledge remains limited 
regarding the variability of gut microbiota among genetically distinct 
chicken lines, particularly in slow-growing types like 
indigenous breeds.

The gastrointestinal microbiota is a key contributor to host 
metabolic processes, nutrient assimilation, growth efficiency, and 
overall health status (9). Maintaining optimal gut health in poultry 
production is crucial for achieving maximum performance and 
ensuring bird welfare, as microbial imbalances may trigger 
inflammatory responses and gastrointestinal disorders (10). Several 
studies have documented the use of probiotics as a strategy to 
stabilize or restore the intestinal microbiota (11, 12). The proposed 
health benefits of probiotics include mitigating disease risk, 
potentially limiting the colonization and proliferation of 
pathogenic microorganisms, preserving microbial homeostasis, 
and enhancing immune defense mechanisms (13–15). In the 
poultry industry, probiotic supplementation has also been 
associated with improved growth metrics and favorable carcass 
characteristics (16). However, to date, there appears to be a lack of 
comprehensive investigations examining the impact of probiotics 
on production traits and gut microbial diversity in indigenous 
Omani chicken breeds. While extensive research exists on the 
genetic determinants of growth performance in commercial broiler 
strains, these findings may not apply directly to slower-growing 
native chicken populations.

Monitoring the composition of intestinal microflora is of 
significant importance, as various bacterial species with pathogenic 
potential for humans have been identified within the GI tract of 
chickens, posing a risk of transmission through the food chain (17, 
18). Gaining insight into the development of a stable and healthy gut 
microflora enables the identification of disturbances within the 
microbial community and facilitates the assessment of how changes 
in poultry management practices influence gut ecology. Such 
knowledge offers the potential to deliberately alter the gut microbiota 
to enhance gut health and optimize feed conversion ratio (FCR) (9, 
19). Several factors are known to influence the structure and function 
of avian gut microbial communities, including diet composition (20), 
age (5), and environmental conditions (21). Accordingly, this study 
explored the effect of probiotic supplementation on growth 
performance, feed consumption, FCR, hematological and serum 
biochemical profiles, meat quality, intestinal histomorphology, and gut 
microbial composition in indigenous and commercial chicken strains.

2 Materials and methods

2.1 Experimental design

The 2 × 2 factorial designs included two chicken breeds (Local 
Omani and Cobb 430-type broilers) and two dietary treatments: basal 
diet and Alterion (basal diet containing 0.05% Alterion® Bacillus 
subtilis 29,784), as recommended by the manufacturer (Adisseo, 
France), resulting in four experimental treatments: Control Omani, 
Control Cobb, Alterion Omani, and Alterion Cobb.

2.2 Birds and housing

Upon arrival, all chicks were individually weighed and sorted into 
specific weight ranges to ensure uniformity; individuals exhibiting 
extreme body weights (either too low or too high) were excluded from 
the experiment. A total of 440-day-old chicks from each breed were 
utilized in this study. Chicks were randomly allocated in groups of five 
to each of 88 suspended wire cages, ensuring that the initial average 
body weight per cage was approximately equal. Feed and water were 
made available ad libitum throughout the experimental period. The 
cages were housed indoors in an environment-controlled facility, 
where the temperature was maintained at 33°C on day 1, with a 
weekly drop of 3°C until it reached 22°C. A lighting regimen of 23 h 
of light and 1 h of darkness was applied.

2.3 Experimental diets and feeding

Birds were offered their designated experimental diets, formulated 
and administered in mash form. The feeding regimen comprised a 
starter phase (the first 21 days) and a finisher phase (from day 22 to day 
42). All feed formulations (Table 1) were produced without antibiotics 
or feed additives at Atyab Food Tech Company (Oman). Following 
initial grouping, chicks from each breed were randomly assigned to 
one of two treatments: either a control group or a treatment group. 
Each group comprised 22 replicate cages, with five birds allocated to 
each cage. The assignment of treatment-replicate combinations was 
randomized. Body weight, feed intake, and feed conversion ratio (FCR) 
were measured every week. All birds and remaining feed in each cage 
were weighed on days 0, 7, 14, 21, 28, 35, and 42.

2.4 Carcass and visceral organ weights

One bird per cage was selected randomly from each breed/dietary 
treatment and euthanized on day 42 as described below (Section 2.7). 
The body weight before slaughter, as well as the weights of the carcass 
and visceral organs, were measured.

2.5 Assessment of meat quality

One bird per cage was randomly selected from each breed/dietary 
treatment to evaluate meat quality characteristics. The M. pectoralis 
major muscle was excised carefully from the breast region of each 
carcass. Cooking loss, muscle pH, (WB) Warner Bratzler-shear force, 
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and color values a* (redness), b* (yellowness), and L* (lightness) were 
analyzed as previously described by Al-Marzooqi et al. (22).

2.6 Blood and biochemical markers

Following the procedure reported by Al-Aufi et al. (23), one bird 
per cage from each breed/dietary treatment was randomly selected for 
blood sample collection on day 42. Blood indices and biochemical 
parameters were analyzed according to the previously reported 
methodological guidelines (23).

2.7 Bird sedation and euthanasia for sample 
collections

A combination of 10% ketamine and 20% xylazine was 
administered via intramuscular injection to induce a state of deep 
sedation and anesthesia in the selected birds before procedures at 
different age periods. Once complete immobilization was achieved, 
euthanasia was carried out through cervical dislocation (22).

2.7.1 Analysis of gut morphology
On day 42, the jejunum and ileum from two birds per cage from 

each breed/dietary treatment were examined histologically as described 

previously (22). A 3 cm portion was collected from the central region of 
each intestinal segment and preserved in 10% neutral-buffered formalin 
for subsequent analysis. Following fixation, the samples were rinsed with 
phosphate-buffered saline (PBS), embedded in paraffin, and sectioned 
at a thickness of 5 μm. The histological preparation involved two stages: 
embedding in low-melting-point paraffin wax and staining with 
hematoxylin and eosin. Morphometrics of intestinal morphology were 
analyzed using Image-Pro Plus 6.0 software (Media Cybernetics Inc., 
Bethesda, MD). For each intestinal sample, six independent 
measurements were taken for each parameter and averaged. Villus height 
(VH) was determined by measuring the distance between the villus’ apex 
and the lamina propria, whereas crypt depth (CD) was defined as the 
distance between the crypt base and the villus-crypt interface. All 
morphological measurements were conducted at 10 μm intervals using 
Image-PRO® PLUS 6.0 (Media Cybernetics Inc., Bethesda, MD).

2.7.2 Metagenomics study
On days 21 and 42, luminal contents from the jejunum and ileum of 

nine birds per breed per treatment, per intestinal segment, and per 
timepoint (totaling 78 samples per breed) were collected for DNA 
extraction using the QIAamp DNA Stool Mini Kit (QIAGEN, Hamburg, 
Germany). The V3–V4 hypervariable segments of the 16S rRNA gene 
were amplified using universal primers as described by Al-Marzooqi 
(24). PCR reaction composition, thermal cycling, and amplicon 
purification were performed following the protocol by Al-Marzooqi (24). 
The purified amplicons were sent to BGI Genomic Laboratory (China) 
for high-throughput sequencing using the Illumina MiSeq platform.

2.8 Bioinformatics analysis

The reads were inspected, filtered, and trimmed to retain those with 
a Phred quality score of 20 or higher. The qualified reads were assembled 
to form tags for clustering into operational taxonomic units (OTUs). 
QIIME (version 1.8) was used to explore the OTUs. Using the SILVA 
database (SILVA version 1.8), the defined OTUs were grouped into 
different taxonomic levels. The alpha-diversity indices were computed 
using MOTHUR (v.1.31.2) and QIIME (v1.8.0). The alpha-diversity 
indices calculated in this study include several key measures of 
community diversity and richness, such as the Chao and ACE richness 
estimators, the Shannon index, the inverse Simpson diversity index, and 
the Observed Species. Moreover, Good’s coverage estimator was used 
to assess the proportion of diversity captured by the sequencing process 
and estimate sequencing depth. Bray–Curtis dissimilarity, weighted 
UniFrac distance, and unweighted UniFrac distance measures were 
used to calculate beta diversity. At p < 0.05, the differences were deemed 
significant. A Benjamini-Hochberg false discovery rate (FDR) 
correction was applied to the resultant p-value (24).

2.9 Statistical analysis

All data were analyzed using two-way ANOVA with interaction 
when the assumptions were satisfied. Tukey’s HSD test was used to 
investigate whether there were significant differences between 
treatment means. The Kruskal-Wallis test was used when ANOVA 
assumptions were violated. The relative abundance of bacterial 
communities was compared between groups across gut segments to 

TABLE 1 Composition and chemical analysis of the basal diet.

Ingredients* Starter Finisher

Maize 54.138 61.139

Soybean meal 38.53 29.38

Canola oil 1.84 2.01

Monocalcium phosphate 0.84 0.65

Limestone 1.39 1.37

Salt 0.20 0.18

Pellet binder 1.00 3.00

DL-methionine 0.32 0.34

Choline mix 0.60 0.60

Sodium sulfate 0.20 0.23

Lysine HCl 0.126 0.278

L Threonine 0.126 0.143

Premix 0.69 0.68

Chemical analysis %

Crude protein 22.80 19.40

Metabolizable energy 

(kcal/kg)

2,980 3,100

Ether extract 4.01 4.35

Crude fiber 3.01 3.35

Calcium 0.95 0.90

Phosphorus 0.45 0.40

*Each kg of diet was supplemented with 12,500 I. U of vitamin A, 3000 I. U of vitamin D3, 
50 mg of vitamin E, 2 mg of vitamin K3, 2 mg of thiamin, 4 mg of riboflavin, 1 mg of 
pyridoxine, 0.01 mg of cyanocobalamin, 15 mg of pantothenic acid, 50 mg of folic acid, 
10 mg of biotin, 450 mg of choline chloride, 1 mg of iodine, 0.3 mg of selenium, 40 mg of 
iron, 120 mg of manganese, 100 mg of zinc, and 1.5 mg of copper.
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determine whether Alterion would change the bacterial community 
structure. Alpha diversity indices were compared using two-way 
ANOVA, and multiple pairwise comparisons were conducted using 
the FDR method. R (Version 4.4.1) was used for all statistical analyses.

3 Results

3.1 Growth rate, feed intake, and feed 
conversion ratio

The results indicate that Alterion significantly enhanced body 
weight gain and FCR compared to the basal-diet groups (p < 0.001; 

Table  2). Specifically, broilers supplemented with Alterion 
demonstrated higher weight gains than the control group throughout 
weeks 1 to 6. Similarly, Omani chickens fed Alterion showed consistent 
weight gains during the same period. Specifically, the Alterion group 
showed a 12.1% increase in broilers and a 26.7% increase in Omani 
chickens. All differences were statistically significant (p < 0.001). Feed 
intake was significantly higher in Cobb 430 than in Omani chickens 
(p < 0.05), but there was no significant difference between the control 
and treatment groups of the same breed (p > 0.05; Table  2). The 
regression analysis of weight gain and feed intake revealed steeper 
slopes for Cobb 430 broilers than Omani chickens for both treatments 
(Control and 0.05% Alterion; Figure  1). The results indicated 
significant improvement in FCR in Cobb 430 broilers compared with 

TABLE 2 The impact of dietary Alterion on the feed intake (FI), daily gain (DG), and feed conversion ratio (FCR) of Cobb 430 and local chickens.

Breed

Cobb 430 Omani

Alterion (g/kg) Alterion (g/kg) Significance

Level 0.0 0.5 0.0 0.5 SEM B L B*L

Week 1

FI 19.25a 20.62a 11.86b 12.59b 0.525 *** NS NS

DG 17.23b 20.02a 8.679d 10.81c 0.474 *** *** NS

FCR 1.11bc 1.04c 1.36a 1.16b 0.025 *** *** **

Week 2

FI 50.21a 51.31a 17.61b 20.32b 0.819 *** * NS

DG 42.07b 47.15a 11.36d 14.71c 0.792 *** *** NS

FCR 1.19c 1.08d 1.55a 1.38b 0.027 *** *** NS

Week 3

FI 87.23a 87.33a 29.99b 31.57b 0.897 *** NS NS

DG 62.89b 70.80a 15.08d 21.08c 0.717 *** *** NS

FCR 1.38c 1.23d 1.99a 1.52b 0.035 *** *** ***

Week 4

FI 119.21a 122.15a 42.99b 43.92b 2.034 *** NS NS

DG 78.58b 85.50a 19.09d 27.14c 1.584 *** *** NS

FCR 1.52bc 1.42c 2.25a 1.62b 0.032 *** *** ***

Week 5

FI 158.31a 161.88a 59.03b 63.916b 1.797 *** * NS

DG 85.72b 95.82a 25.92d 31.92c 1.514 *** *** NS

FCR 1.84c 1.69d 2.28a 2.00b 0.033 *** *** NS

Week 6

FI 191.93a 194.41a 89.11b 92.96b 1.082 *** ** *

DG 94.28b 105.39a 37.05d 42.29c 0.907 *** *** **

FCR 2.03c 1.84d 2.40a 2.20b 0.041 *** *** NS

Overall

FI 104.70a 106.28a 41.87b 44.21b 0.519 *** ** NS

DG 63.117b 70.776a 19.53d 24.66c 0.444 *** *** **

FCR 1.65c 1.50d 2.14a 1.795b 0.017 *** *** ***

a–dDifferent letters within the same row show statistical significance (p < 0.05). Significance codes: p < 0.05, *; p < 0.01, **; p < 0.001, ***. NS, not significant. SEM, standard error of the means. 
B, breed; L, level; B*L, breed-level interaction.
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Omani chickens in both the Alterion-supplemented and control 
groups (p < 0.001; Table 2).

3.2 Hematology and serum chemistry 
indices

Alterion supplementation significantly increased TP and WBC 
levels in Cobb 430 and native Omani chickens (p < 0.05; Figure 2). 
RBCs, heterophils, and lymphocyte levels were significantly lower in 
control local chickens than in other groups (p < 0.05). However, the 
levels of urea, creatinine, ALT, AST, monocytes, eosinophils, 
hemoglobin, PCV, MCV, MCH, and MCHC were not affected by 
Alterion supplementation in both Cobb 430 broilers and local 
chickens (p > 0.05).

3.3 Intestinal morphometrics

Cobb 430 control birds showed significantly higher VH and VH/
CD ratios in the jejunum and ileum than Omani control chickens 
(p < 0.05; Figure 3). Furthermore, Alterion significantly increased VH 
and VH/CD ratio in both the jejunum and ileum of Cobb 430 and 
Omani chickens when compared with controls (p < 0.05). Conversely, 
Alterion supplementation significantly reduced the CD in the jejunum 
of Cobb 430 broilers (p < 0.05), whereas no significant difference was 
detected for CD in the ileum (p > 0.05).

3.4 Weight of carcass and internal organs

Both the chicken breed and dietary supplementation with 
Alterion significantly influenced carcass yield and internal organ 
weights (p < 0.05; Figure 4). Cobb 430 and local chickens fed the 

supplemented diets showed significantly higher internal organ weights 
and carcass yield (p < 0.05). Conversely, local chickens fed the basal 
diet showed a significantly reduced carcass yield and internal organ 
weights compared to the other groups (p < 0.05).

3.5 Meat quality characteristics

Alterion showed no significant effect on all meat quality 
parameters except for pH, which was significantly elevated in Cobb 
430 broilers supplemented with Alterion compared to the local control 
Omani chickens (p < 0.05; Figure 5).

3.6 Metagenomic study

3.6.1 Sequence assembly and statistics
In Cobb 430 broiler chickens, a total of 3,788,897 sequences were 

obtained from 72 samples, with a mean and standard error of the 
mean (SEM) of 52,623.5 ± 479.7 sequences after quality filtering 
(Supplementary Table 1A). These sequences were grouped at a 97% 
sequence similarity level into a total of 21,306 OTUs, with a mean and 
SEM of 295.9 ± 10.4 OTUs per sample. In local Omani chickens, a 
total of 3,417,436 sequences were obtained from 72 samples, with a 
mean and SEM of 47,464.4 ± 347.1 sequences after quality filtering 
(Supplementary Table 1B). These sequences were grouped at a 97% 
sequence similarity level into a total of 24,992 OTUs, with a mean and 
SEM of 297.4 ± 14.0 OTUs per sample.

3.6.2 Alpha diversity indices
Alterion supplementation significantly influenced several alpha 

diversity indices in Cobb 430 chickens (Figure 6). For example, the 
Observed Species index was remarkably higher (p < 0.05 to 
p < 0.001) in the Alterion group than in the control group at both 

FIGURE 1

Mean weight gain (A) and feed intake (B) for chickens of the two breeds (Cobb 430 and Omani) under two treatments (Control and 0.05% Alterion) 
over the six-week rearing period. Each panel includes regression lines and equations (one for each breed-treatment combination) to describe the 
trends over time.
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sampling timepoints (days 21 and 42) and gut segments (ileum and 
jejunum). A similar trend was observed for the Chao index 
(p < 0.001) and ACE index (p < 0.05 to p < 0.001). Conversely, good’s 
coverage was significantly higher in the control group than in the 
Alterion treatment across all comparisons (p < 0.001). Neither 
Shannon nor Simpson indices were altered by Alterion treatment 
(p > 0.05).

In Omani chickens, the observed species richness was significantly 
higher (p < 0.01) in the ileum on days 21 and 42  in the Alterion 
treatment compared to the control (Figure 7). In the jejunum, the 
observed species index was notably higher in the Alterion group on 
day 42 (p < 0.001), whereas no significant difference was observed on 
day 21 (p > 0.05). For the Chao index, all values were significantly 
higher in the Alterion group than in the controls (p < 0.05), except in 
the jejunum on day 21, where the difference was not significant 
(p > 0.05). The ACE index was significantly higher in the Alterion 
treatment than in the control group on day 21 in the ileum (p < 0.01) 
and on day 42 in the jejunum (p < 0.05). Furthermore, the Shannon 
index was significant (p < 0.01) only at the first sampling time point 
in the ileum. Conversely, no significant difference was detected for the 
Simpson index across treatments or gut segments (p > 0.05). Finally, 
Good’s coverage was significantly lower in the Alterion group in the 

ileum on day 21 (p < 0.01) and on day 42  in both the ileum and 
jejunum (p < 0.05 and p < 0.001, respectively).

3.6.3 Analysis of similarity
The ANOSIM results revealed a moderate separation between 

groups in both the jejunum (R = 0.341, p = 0.001) and the ileum 
(R = 0.336, p = 0.001) of Cobb 430 chickens 
(Supplementary Figure S1A). Since Cobb 430 ANOSIM analysis 
exhibited moderate R values, we applied PERMANOVA analysis with 
999 permutations for robustness, which also showed similar R and p 
values (Jejunum: R = 0.383, p = 0.001; Ileum: R = 0.357, p = 0.001). 
Conversely, Omani chickens exhibited a stronger separation between 
different groups in both the jejunum (R = 0.649, p = 0.001) and the 
ileum (R = 0.513, p = 0.001; Supplementary Figure S1B).

3.6.4 Beta diversity indices
In Cobb 430 jejunum, Principal Coordinate Analysis (PCoA) 

revealed distinct clusters, with Alterion day 42 treatment and Control 
day 21 observed, PC1 and PC2 explaining most of the variance 
(Figure 8A), similar to Cobb 430 ileum (Figure 8B). These differences 
in clustering patterns were more obvious when the PCoA was calculated 
using unweighted UniFrac distance (Supplementary Figure S2A). 

FIGURE 2

Effect of dietary Alterion on blood and serum chemistry indicators of Cobb 430 and local Omani chickens. Significance (p < 0.05) is indicated by 
different letters (a, b, c, d).
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In Omani chickens, different treatments clustered differently in the 
jejunum and ileum, with PC1 explaining about 50% of the weighted 
UniFrac distance and 30% of the Bray–Curtis dissimilarity 
(Figures 8C,D). Similarly, different treatments clustered distinctly for 
the unweighted UniFrac distance, but with lower proportions of 
variance explained by each PC (Supplementary Figure S2B). These 
results suggest shifts in gut microbiome composition due to bird age and 
Alterion supplementation.

3.6.5 Distribution of OTUs among breeds, 
treatments, gut segments, and sampling time 
points

A comparison of the Cobb 430 control and Alterion groups at the 
two studied time points revealed a core bacterial microbiome of 564 
shared OTUs, the highest number among all other comparisons 
(Supplementary Figure S3A). The control group exhibited the highest 
number of unique OTUs on day 42 (Supplementary Figure S3A). In 
the ileum, the core bacterial microbiome shared among all 
comparisons consisted of 226 OTUs, while the highest unique number 
(131 OTUs) occurred in the ileum of the control group on day 42 
(Supplementary Figure S3B). Comparing gut segments across 
treatments with days combined revealed a core microbiome of 493 
shared OTUs among all comparisons, with Alterion jejunum and 
Alterion ileum sharing 244 OTUs (Supplementary Figure S3C). In the 
jejunum, 213 OTUs were shared across treatments and days, compared 

with 59 and 93 unique OTUs in the Alterion treatment on days 21 and 
42, respectively (Supplementary Figure S3D).

The results were similar in the local Omani chickens, although the 
number of OTUs was generally higher than in Cobb 430. For example, 
when considering treatments and gut segments together, the core 
bacterial microbiome shared between days 21 and 42 included 855 
OTUs (Supplementary Figure S4A). In the ileum, 371 OTUs were 
shared among treatments across days, compared with 64 and 167 
OTUs unique to the Alterion treatment on days 21 and 42, respectively 
(Supplementary Figure S4B). A comparison of the jejunum and ileum 
revealed 649 shared OTUs accompanied by 51 and 93 OTUs unique 
to the Alterion ileum and jejunum, respectively 
(Supplementary Figure S4C). Finally, the highest number of unique 
OTUs (210) was found in the jejunum segment of Alterion chickens 
on day 42, followed by 175  in the control jejunum on day 21 
(Supplementary Figure S4D).

3.6.6 Relative abundance of bacterial 
communities

3.6.6.1 Class level
In the jejunum of Cobb 430 chickens (Figure 9A), the three most 

abundant classes in all treatments were the Bacilli, Clostridia, and 
Actinobacteria. Bacilli were significantly lower (84.20%, p < 0.05) in 
the Control Day 21 group than the other three groups (97.93% for 

FIGURE 3

Effect of dietary Alterion on intestinal morphometrics in the jejunum (A) and ileum (B) of Cobb 430 and local Omani chickens. These metrics include 
villi height (VH), crypt depth (CD), and VH/CD ratio. Significance (p < 0.05) is indicated by different letters (a, b, c, d).
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control day 42, 96.56% for Alterion day 21, and 96.43% for Alterion 
day 42). Conversely, Clostridia and Actinobacteria were significantly 
higher in the Control Day 21 group (9.17 and 5.25%, respectively; 

p < 0.05) than the other three groups. In the ileum of Cobb 430 
chickens (Figure  9B), Bacilli were also the most abundant class 
(90.35% for Control Day 21; 97.11% for Control Day 42; 81.16% for 

FIGURE 4

Effect of dietary Alterion on carcass yield and internal organ weights of Cobb 430 and local Omani chickens. Significance (p < 0.05) is indicated by 
different letters (a, b, c, d).

FIGURE 5

Effect of dietary Alterion on meat quality parameters of Cobb 430 and local Omani chickens. Significance (p < 0.05) is indicated by different letters (a, 
b, c, d).
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Alterion Day 21; and 85.81% for Alterion Day 42; p < 0.05). Clostridia 
were the second most abundant class (5.82% for Control Day 21; 
1.27% for Control Day 42; 16.21% for Alterion Day 21; and 6.41% for 
Alterion Day 42; p < 0.05). The relative abundance of Actinobacteria 
in the ileum of Cobb 430 broilers was not statistically significant 
among different treatments (p > 0.05; Figure 9B).

In the jejunum of Omani birds (Figure 10A), Bacilli were the most 
prevalent bacterial class (90.75% for Control Day 21; 75.99% for 
Control Day 42; 80.16% for Alterion Day 21; 77.01% for Alterion Day 
42); however, these differences were not significant (p > 0.05). 
Clostridia were the second most abundant class, representing 3.85% 
in Control Day 21, 13.96% in Control Day 42, 8.63% in Alterion Day 
21, and 9.41% in Alterion Day 42, but the differences were not 
significant (p > 0.05). The third most-abundant class was the 
Actinobacteria, representing 2.34% in Control Day 21, 7.05% in 
Control Day 42, 6.71% in Alterion Day 21, and 10.08% in Alterion 
Day 42 (p < 0.05). In the ileum of Omani chickens (Figure  10B), 
Bacilli were the most abundant class (97.26% for Control Day 21; 
62.85% for Control Day 42; 93.35% for Alterion Day 21; 88.57% for 
Alterion Day 42; p < 0.001), followed by Clostridia (1.93% for Control 
Day 21; 21.33% for Control Day 42; 4.60% for Alterion Day 21; 4.32% 

for Alterion Day 42; p < 0.01). Actinobacteria were the third most 
abundant class in the ileum of Omani chickens (0.22% for Control 
Day 21; 6.79% for Control Day 42; 1.17% for Alterion Day 21; 4.60% 
for Alterion Day 42; p < 0.001).

3.6.6.2 Genus level
The three most abundant bacterial genera in Cobb 430 jejunum 

included Lactobacillus, Rothia, and Bifidobacterium 
(Supplementary Figure S5A). Lactobacillus was the most abundant, 
representing 83.52% in Control Day 21, 97.27% in Control Day 42, 
95.99% in Alterion Day 21, and 95.79% in Alterion Day 42; however, 
these differences were not statistically significant (p > 0.05). Rothia 
and Bifidobacterium were significantly higher in the Control Day 21 
group (2.61 and 1.19%, respectively; p < 0.05) than in the other three 
Cobb 430 groups. In the ileum, Lactobacillus was the most prevalent 
genus in all treatments (Supplementary Figure S5B), representing 
89.61% in Control Day 21, 96.45% in Control Day 42, 80.46% in 
Alterion Day 21, and 78.20% in Alterion Day 42 (p < 0.05).

In the jejunum of Omani chickens, Lactobacillus was the most 
abundant genus (Supplementary Figure S6A), accounting for 
87.09% in Control Day 21, 63.71% in Control Day 42, 75.63% in 

FIGURE 6

Alpha-diversity indices of gut microbiota in the jejunum and ileum of Cobb 430 broilers on days 21 and 42 following Alterion supplementation with 
0.05% compared with control chickens that received only the basal diet. Significance levels include: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and non-
significant (ns).
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Alterion Day 21, and 63.59% in Alterion Day 42 (p < 0.05). 
Streptococcus was the second most abundant genus on day 42 
compared with day 21, regardless of Alterion supplementation 
(p < 0.001). Similarly, the relative abundance of Bifidobacterium 
was also higher on day 42 than on day 21 for both the control and 
Alterion, but the difference was not significant (p > 0.05). 
Comparable results were obtained for the ileum, where 
Lactobacillus was also the most abundant genus (96.56% for 
Control Day 21, 54.26% for Control Day 42, 86.45% for Alterion 
Day 21, 79.96% for Alterion Day 42; p < 0.001), followed by 
Streptococcus (0.36% for Control Day 21, 4.66% for Control Day 
42, 0.66% for Alterion Day 21, 5.58% for Alterion Day 42; 
p < 0.001).

4 Discussion

Extensive research has explored the application of feed additives 
to enhance animal health and production outcomes (25–27). 
Nevertheless, investigations into their effects on slower-growing 
poultry breeds remain relatively scarce, as the majority of studies have 

concentrated on rapidly growing commercial lines (28). This study 
aimed to assess the influence of dietary supplementation with Alterion 
on the performance of Cobb 430 and Omani chickens raised under 
conventional Omani environmental conditions, characterized by 
ambient temperatures ranging between 23.5°C and 34.0°C. The results 
demonstrated that incorporating 0.05% Alterion into the diets of both 
breeds significantly enhanced growth performance and feed efficiency. 
The regression analysis reveals an improvement trend over time and 
can also be used to predict weight gain or feed intake values for each 
breed/treatment on any day from week 1 to week 6 using the 
corresponding equation.

These results agree with previous research on poultry and other 
livestock species, where dietary supplementation strategies, such 
as probiotics or protected amino acids, improved FCR, weight gain, 
and nitrogen utilization, largely due to improved nutrient 
digestibility and modulation of gut microbiota (29–31). Additional 
evidence suggests that the most substantial benefits occur when 
probiotics are administered from the first day of life (32). Sklan 
(33) emphasized that early access to feed supports post-hatch 
intestinal development. In the present study, breed-specific 
differences in feed intake emerged early, independent of the dietary 

FIGURE 7

Alpha-diversity indices of gut microbiota in the jejunum and ileum of native Omani chickens on days 21 and 42 following Alterion supplementation 
(0.05%) compared with control chickens that received only the basal diet. Significance levels include: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and 
non-significant (ns).
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FIGURE 8

Principal coordinate analysis (PCoA) based on weighted UniFrac distance and Bray–Curtis dissimilarity of gut microbiota in Cobb 430 and local Omani 
chickens across the two dietary treatments (Control and 0.5% Alterion) for each intestinal segment (Jejunum and Ileum) at the two sampling time 
points (Days 21 and 42). Dashed ellipses represent the 95% confidence interval for each group, while the proportion of variance explained by PC1 and 
PC2 is indicated on the X and Y axes, respectively. (A) Cobb 430 jejunum, (B) Cobb 430 ileum, (C) Local Omani jejunum, (D) Local Omani ileum.
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treatment applied. This increased feed consumption was associated 
with the development of the digestive tract and elevated enzymatic 
activity related to digestion and metabolism (34). Blood profiling 
is widely recognized as a reliable method to evaluate birds’ 
physiological responses to environmental and dietary factors (35). 
Moreover, Muneer et al. (36) reported a direct association between 
diet quality and serum biochemical parameters. Supplementation 
with Alterion in this study modulated the hematological markers 
in both chicken breeds beneficially, with blood and serum values 
remaining within established reference ranges for broilers (37).

The observed rise in RBC counts following Alterion 
supplementation may contribute to enhanced oxygen transport, 
thereby supporting the birds’ overall physiological performance 

(37). Concurrent increases in hemoglobin concentrations further 
suggest improved oxygen delivery to body tissues, a critical factor 
in the optimal growth and development (37). Elevated WBC 
counts indicate immune system activation, which may increase 
resistance to pathogens and reduce the incidence of diseases. Such 
immunological improvements, alongside other physiological 
benefits, are likely linked to the antimicrobial and 
immunomodulatory effects of probiotics. These functional 
properties have been essential in minimizing the reliance on 
medically important antibiotic growth promoters in poultry 
production (38). Moreover, probiotic supplementation has been 
shown to positively influence immune regulation and promote 
intestinal health in chickens (39).

FIGURE 9

Relative abundance of the top 10 bacterial classes in the jejunum (A) and ileum (B) of Cobb 430 chickens under different treatments and time points 
(Control Day 21, Control Day 42, Alterion Day 21, and Alterion Day 42) and their statistical significance [p-value/False Discovery Rate (FDR)]. For 
optimum visualization, relative abundance data were log2-transformed before plotting. The dashed line represents the 0.05 p-value threshold.
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The increase in serum total protein levels in Alterion-
supplemented birds can be  attributed to the additive’s role in 
enhancing intestinal morphology, particularly through increased VH, 
which facilitates improved nutrient digestion and absorption within 
the small intestine. Enhanced absorption efficiency likely promotes 
greater uptake of amino acids and peptides, essential precursors for 
protein synthesis. Consequently, this improved nutrient assimilation 
may explain the higher circulating protein concentrations observed in 
the supplemented groups. These findings support the hypothesis that 
Alterion supplementation contributes to enhanced protein 
metabolism and biosynthesis in broiler and local Omani chickens. 
Similar outcomes have been reported in earlier studies, where feed 
additives improved protein utilization by optimizing digestive 
efficiency and nutrient availability (40, 41).

Furthermore, the present results demonstrate that Alterion 
supplementation has a positive influence on intestinal morphology in 
both chicken breeds. These improvements align with previous studies 
indicating that the inclusion of Alterion (0.01%) enhances FCR, 

promotes small intestinal development, and increases VH in broiler 
chickens (30, 42). Increased VH, reduced CD, along with a higher 
VH/CD ratio, indicate improved nutrient absorption efficiency, which 
is positively correlated with enhanced growth performance in chickens 
(43, 44). In particular, reduced CD is associated with a slower 
intestinal epithelial cell turnover, implying a decrease in metabolic 
demand (45, 46). This may account for the lower FCR observed in the 
treatment groups of both chicken breeds in the present study. 
Supporting this, prior investigations (47, 48) have reported that a 
diminished epithelial turnover rate reduces maintenance energy 
requirements, thereby facilitating more efficient growth. The observed 
improvements in intestinal histomorphology in broiler and Omani 
chickens, relative to controls, may be due to the beneficial effects of 
dietary additives on nutrient digestion and assimilation. Thus, these 
morphological enhancements likely contributed to improved feed 
utilization, resulting in increased weight gain and overall performance.

In addition, shorter villi and deeper crypts are typically 
correlated with a reduction in absorptive cells and an increase in 

FIGURE 10

Relative abundance of the top 10 bacterial classes in the jejunum (A) and (B) ileum of local Omani chickens under different treatments and time points 
(Control Day 21, Control Day 42, Alterion Day 21, and Alterion Day 42) and their statistical significance [p-value/False Discovery Rate (FDR)]. For 
optimum visualization, relative abundance data were log2-transformed before plotting. The dashed line represents the 0.05 p-value threshold.
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secretory cells, which can affect nutrient absorption efficiency 
(49). Furthermore, changes in the structure of the intestinal 
mucosa may hinder nutrient absorption or increase the energy 
demands for intestinal maintenance (50). Previous studies have 
shown that deeper crypts stimulate crypt cell proliferation while 
reducing the synthesis and secretion of digestive enzymes, 
potentially impairing digestion (51). Enlarged crypts can lead to 
accelerated tissue turnover, raising nutrient requirements for 
tissue regeneration and thus decreasing nutrient absorption 
efficiency (52). The lower performance in the control groups of 
Cobb 430 and local birds may be due to the differences in the 
histological characteristics of the intestinal segments compared to 
those in the Alterion-supplemented groups. These findings align 
with those of Rysman et al. (44) and Ringenier et al. (53), who 
observed poor performance in broilers with shorter villi, deeper 
crypts, and a lower VH/CD ratio under field conditions.

A morphological study by Al-Marzooqi et al. (22) found that 
Cobb 500 chickens exhibited significantly greater VH than a local 
breed. This increase in VH is generally associated with enhanced 
digestive and absorptive functions, as it expands the surface area 
for absorption, boosts the expression of brush border enzymes, 
and improves nutrient transport mechanisms (54). The structure 
and enzymatic activity of enterocytes are critical aspects of 
intestinal mucosal function (55). Al-Marzooqi et al. (22) reported 
the significant impact of villus development on the growth 
performance of chickens.

The slower growth rate observed in  local chickens in this 
study may be attributed, in part, to their lower feed intake. Even 
though feeder designs are optimized to minimize losses, local 
birds frequently behave like scavengers, resulting in feed waste. 
The growth of intestinal absorptive capacity is associated with 
changes in digestion and nutritional absorption (56). Young 
chicks’ villi grow more when feed is included in their diet, which 
increases their surface area and improves their capacity for 
absorption (57). To improve the growth performance of local 
chickens, it is recommended that a crossbreeding program 
be implemented that considers the intestinal developmental rates 
and the associated histological changes that influence 
intestinal function.

The current study also revealed significant differences in the 
bacterial microflora within each breed across various intestinal 
segments. These results suggest that each intestinal segment developed 
unique bacterial populations with distinct relative abundances (58). 
Although dietary supplementation had a minimal effect on the overall 
bacterial composition, it played a role in maintaining the normal 
ecological balance of the microbiota. These findings align with previous 
studies that have indicated the intestinal bacterial community is 
transient and evolves into a more stable population as the intestine 
develops (1, 2, 7).

Beta diversity analysis revealed the effect of Alterion on gut 
microbiome composition, with more pronounced effects in 
Cobb430 broilers, where Alterion showed a breed-specific or 
segment-specific impact on gut microbial community differing 
by age. Alpha-diversity indices, including observed species, Chao, 
and ACE, showed increased bacterial diversity in birds 
supplemented with Alterion at most timepoints, indicating that 
Alterion promoted the colonization of a broad range of microbial 

taxa. In addition, Shannon and Simpson’s indices indicated a 
more stable and even bacterial community, suggesting that 
Alterion increased the number of bacterial taxa without 
introducing severe shifts in the dominant species. Although 
Good’s coverage was significantly lower in the Alterion group 
than in control birds, it was still greater than 0.997 on average, 
suggesting richer microbial communities in the Alterion 
treatment. However, we suggest deeper sequencing coverage in 
future studies to ensure sufficient coverage of rare taxa. Overall, 
the results support the hypothesis that Alterion enhances 
microbial diversity and richness without disrupting microbial 
balance (30), which may explain the performance improvement 
reported in the current study.

5 Conclusion

The inclusion of Alterion as a feed additive has demonstrated several 
beneficial effects, including faster growth, better FCR, healthier intestinal 
morphology, and a positive impact on the structure and diversity of gut 
microbiota in Cobb 430 and native Omani chicken breeds. However, the 
impact of feed additives may vary depending on chicken breeds and 
environmental factors, such as housing conditions and climate. 
Therefore, results observed in one breed or environment may not 
be  universally applicable. Factors like sample size, environmental 
settings, and the ability to generalize findings across various breeds 
should be  considered. Future research should explore how these 
supplements influence intestinal mucosal responses and their potential 
role in protecting chickens from enteric infections. Furthermore, 
additional research is recommended to understand the mechanisms 
through which these supplements modulate the immune system 
in poultry.
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