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The persistent threat of porcine reproductive and respiratory syndrome virus 
(PRRSV) to the global swine industry is exacerbated by the virus’s high mutation 
rate and frequent recombination events. In China, the emergence of new PRRSV-1 
strains in recent years has posed a significant challenge to the sustainability of 
pork production. This study systematically investigated the epidemiological 
patterns, genetic evolution, recombination dynamics, GP5 genetic diversity, and 
N-glycosylation variants of PRRSV-1 strains circulating in China. Whole-genome 
analysis demonstrated that Chinese PRRSV-1 isolates clustered within subtype 
1, with BJEU06-1-like as the predominant subgroup and NMEU09-1-like as the 
secondary subgroup. Novel subgroups (new subgroups 1, 2, and 3), a new strain, 
GD2022, and an independent branch represented by strain GXFS20220129 were 
concurrently identified. High genetic diversity existed both within and between 
subgroups of Chinese PRRSV-1 strains. Whole-genome recombination has 
predominantly occurred through inter-subgroup exchange, primarily involving 
the BJEU06-1-like and Amervac-like lineages. Additionally, recombination events 
were identified between the field strain NVDC-FJ and the vaccine strain PRRSV1-
CN-FJFQ-1-2023. Interestingly, the diversity of the ORF5 gene was consistent 
with that of the whole genome; however, there is a deviation in the phylogenetic 
tree position (BJEU06-1-like: 22 vs. 16). To understand the differences between 
ORF5 and whole-genome variations, we analyzed amino acid and glycosylation 
sites of the GP5 protein encoded by ORF5. The results indicated that mutations 
had occurred at amino acid sites within the antigenic epitopes and functional 
domains of GP5. Additionally, the prediction of potential N-glycosylation sites 
identified five locations in GP5: positions 35, 37, 38, 46, and 53. Alterations at 
these sites could facilitate immune evasion. Our analysis of the ORF5 gene 
suggests that PRRSV-1 research should not focus solely on ORF5 but rather 
must consider whole-genome variation, as this may provide insights for vaccine 
development. In summary, whole-genome studies of PRRSV-1 demonstrated 
that major recombinant subgroups and genetic evolution align with the current 
prevalence of BJEU06-1-like strains in China. Analysis of GP5 encoded by ORF5 
confirmed the presence of differences between whole-genome and ORF5 data, 
exhibiting minor discrepancies in both the phylogenetic trees and the level of 
genetic diversity. Thus, instead of focusing solely on specific regions, whole-
genome studies are needed to effectively track variation in PRRSV. This study fills 
a knowledge gap in our understanding of the prevalence and genetic variation of 
PRRSV-1 in China, providing crucial insights for developing PRRS control strategies 
and offering theoretical support for vaccine development.
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Introduction

Porcine reproductive and respiratory syndrome (PRRS), 
caused by the PRRS virus (PRRSV), is a natural pathogen affecting 
domestic pigs and wild boar. First identified in the United States 
in 1987, the virus has persisted as a major threat to the global 
swine industry for over 3 decades (1). Characteristic clinical 
manifestations include severe reproductive disorders in pregnant 
sows (e.g., fetal mummification, stillbirth, and abortion) and 
respiratory symptoms in piglets, with rapid transmission having 
been documented in nearly all pig-producing countries (2). 
PRRSV is an enveloped, single-stranded positive-sense RNA virus 
featuring a ~ 15 kb genome and spherical virions (3). Its genomic 
architecture includes a 5′-untranslated region (UTR), a 3′-terminal 
poly (A) tail, and at least 11 open reading frames (ORFs)– ORF1a 
and ORF1b encode 16 non-structural proteins (Nsps) spanning 
~80% of the genome, while ORF2–ORF7 encode eight structural 
proteins (4). ORF5 serves as the primary target for molecular 
surveillance and phylogenetic analysis (5, 6), with its encoded 
GP5 protein (a major immunogenic structural protein) 
representing the focal point for vaccine development (7–10). 
Phylogenetic analysis based on ORF5 gene sequences and global 
PRRSV classification systems assigns PRRSV-1 into three or four 
subtypes [subtype 1 (global), subtype 1 (Russian), subtype 2, and 
subtype 3] (11, 12), while PRRSV-2 comprises 11 lineages (L1–
L11) (13). Despite sharing only ~60% nucleotide sequence 
homology, PRRSV-1 and PRRSV-2 exhibit nearly identical 
pathogenic mechanisms and transmission patterns (14, 15). 
PRRSV’s high rates of mutation and recombination are the 
primary obstacles to disease control, creating an urgent global 
public health challenge that demands effective prevention 
strategies. In China, PRRSV-2 predominates through widespread 
circulation of lineages L8 (HP-PRRSV), L5 (VR-2332), L3 
(QYYZ), and L1 (NADC30-like, NADC34-like) (16–21). 
Concurrently, PRRSV-1 has persisted for decades, with 
contemporary Chinese isolates clustering within Subtype 1 and 
forming four principal subgroups: Amervac-like, BJEU06-1-like, 
HKEU16-like, and NMEU09-like (22, 23). The Chinese strains 
have historically been understudied due to their low pathogenicity 
and low detection rates. Recent evidence indicates divergence in 
virulence among the Chinese PRRSV-1 strains (24). For example, 
the domestically isolated ZD-1 strain induces fever, pulmonary 
lesions, and mortality in piglets, suggesting a shift in virulence 
toward low-to-moderately virulent phenotypes (25). Notably, 
PRRSV-1 detection has surged, with genetically diverse strains 
now reported across more than 23 provinces. The southward 
expansion of BJEU06-1-like strains from northern regions is an 
emerging concern (26). Persistent PRRSV-1 detection, coupled 
with high mutation rates and genetic diversity, poses a substantial 
latent threat to China’s swine industry (19). Critical research gaps 
persist regarding the pathogenesis and immune mechanisms, as 
well as vaccine development, resulting in inadequate control 
strategies and surveillance systems. Consequently, commercial 
PRRSV-1 vaccines remain rare. China prohibits modified live 

vaccines (MLVs) due to recombination risks: MLV strains may 
recombine with endemic field variants (e.g., BJEU06-1-like 
strains), potentially generating novel variants with enhanced 
virulence or transmissibility (11, 27). Given these findings, there 
is an urgent need for enhanced surveillance of the understudied 
PRRSV-1 strains. A comprehensive analysis of Chinese PRRSV-1 
whole-genome sequences, including genetic divergence, diversity 
patterns, recombination events, and GP5 protein characteristics 
(amino acid substitutions and N-glycosylation sites), will enhance 
epidemic monitoring and provide foundational insights for PRRS 
control strategies.

Materials and methods

Genome sequence retrieval and processing

All available Chinese PRRSV-1 complete genomes (n = 46; 
Supplementary Table S2) were retrieved from GenBank (Release 265). 
The sequences were aligned with MAFFT along with two reference 
strains (PRRSV-1: M96262.2; PRRSV-2: AY150564.1; 
Supplementary Table S2), followed by manual trimming of the 
terminal non-coding regions (28).

Genotyping and genetic distance analysis

The trimmed sequences were used to construct phylogenetic trees 
in MEGA7.0.26 using the Kimura two-parameter model and the 
neighbor-joining method, with 1,000 bootstrap replicates. Genotypic 
classification was determined based on topological clustering. 
Pairwise nucleotide p-distances were calculated genome-wide using 
the same K2P model (29, 30).

Detection of recombination

Putative recombination events were identified using RDP4, 
with eight detection algorithms (3seq, BootScan, Chimera, 
GENECONV, LARD, MaxChi, RDP, and SiScan). Events supported 
by three or more methods were considered validated. 
Recombination breakpoints within the ORF1–ORF7 regions were 
confirmed via Simplot 3.5.1 (reference strain: M96262.2; 
Supplementary Figure S2). Recombination frequency statistics 
were computed in Excel 365 (31).

GP5 protein characterization

ORF5-encoded GP5 protein sequences were analyzed for the 
following. Sequence homology and variation: alignment via MegAlign 
(DNASTAR) with the identification of substitutions/deletions (32). 
N-glycosylation sites: prediction using NetNGlyc 1.0 (threshold: > 0.5) 
at the Asn-X-Ser/Thr motifs (33).
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Results

Phylogenetic analysis of whole genomes of 
Chinese PRRSV-1

A phylogenetic analysis of 46 complete genomes of Chinese 
PRRSV-1 and representative strains (PRRSV-1: LV; PRRSV-2: 
VR-2332) demonstrated that all Chinese isolates belonged to 
subtype 1, forming four subgroups: BJEU06-1-like, Amervac-like, 
HKEU16-like, and NMEU09-1-like (Figure  1). Among these, 
BJEU06-1-like was the predominant subgroup (16 strains in the 
whole-genome vs. 22  in the ORF5 analysis). Additionally, 
we  identified several small novel subgroups designated as new 
subgroups 1, 2, and 3, while also detecting a new strain, GD2022, 
within these subgroups.

There were several notable differences between the whole-genome 
and ORF5 phylogenies (Figure 2). Vaccine strains (SHE, NPUST-
2789-3 W-2) clustered within Amervac-like in the whole-genome 
trees but grouped with field strains (HeB47, LV, HLJB1, and GZ11-G1) 
in the ORF5-based analysis. New subgroups 2 and 3 formed separate 
branches in the whole-genome trees, but clustered within BJEU06-1-
like in the ORF5 phylogenies. Strain GXFS20220129 comprised an 
independent branch in both analyses. These differences indicated that 

whole-genome analysis provides a more detailed characterization of 
the variation in PRRSV-1. The continuous emergence of new strains 
and variants necessitates more intensive research on PRRSV-1  in 
China, and whole-genome analysis would better capture the 
epidemiological trends of the virus, thereby improving the control 
of PRRS.

Genetic diversity of Chinese PRRSV-1 
whole genomes

The observed variation in whole genomes of PRRSV-1 reflects inter-
subgroup divergence. We calculated nucleotide genetic distances for the 
complete genome sequences to understand evolutionary relationships 
among the PRRSV-1 subgroups. Intra-subgroup genetic distances were 
lowest in new subgroup  1 (0.005), while BJEU06-1-like (0.118), 
NMEU09-1-like (0.127), and new subgroup 2 (0.139) exhibited greater 
distances than the other subgroups, consistent with their status as 
predominant epidemic subgroups (Table 1). Inter-subgroup genetic 
distances showed greater divergence between BJEU06-1-like and 
NMEU09-1-like (0.189), new subgroups 1 (0.190), 2 (0.191), and 3 
(0.207). BJEU06-1-like had the least distance from the prototype strain 
LV (0.110). Strain GXFS20220129 was more distant than 

FIGURE 1

Phylogenetic tree of the complete genome of PRRSV-1 in China.
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NMEU09-1-like (0.193), new subgroup  1 (0.191), new subgroup  3 
(0.205), and BJEU06-1-like (0.164). New subgroup  3 exhibited 
significant divergence from all other subgroups (0.173 ~ 0.220). Greater 
genetic distances are correlated with increased genetic diversity. 
Considerable genetic variation exists among Chinese PRRSV-1 
subgroups, particularly in phylogenetically distinct lineages 
GXFS20220129 and new subgroup 3, both of which exhibit diversity 
across subgroups. This variability complicates the control of PRRSV-1 in 
China and requires attention (Table 2).

Recombination analysis of Chinese 
PRRSV-1 whole genomes

Recombination is recognized as a key driving force of high 
mutation rates and genetic diversity in PRRSV genomes (11, 34–
36). We analyzed the recombination events in PRRSV-1 whole 
genomes, identifying 32 recombination events, of which 9 intra-
subgroup events (mainly BJEU06-1-like) and 23 inter-subgroup 
events (primarily BJEU06-1-like + Amervac-like, n = 7). A 
recombination analysis of strain HLJB1 using Simplot 3.5.1 and 
RDP4 confirmed a recombination event with breakpoints at 
nucleotides 9,966–12,606 nt (Figure 3A). Subsequent segmented 
phylogenetic analysis of recombinant regions in this strain 
(HLJB1) identified both major and minor parental lineages 
belonging to PRRSV-1 (Figure 3B). In addition, inter-subgroup 
recombination occurred between the vaccine and field strains. For 
the vaccine strain PRRSV1-CN-FJFQ-1-2023 (Amervac-like), the 
major parental strain was GZ11-G1 (Amervac-like), and the 
minor parental strain was NVDC-FJ (NMEU09-1-like). A 
recombination hotspot analysis showed frequent breakpoints in 
the ORF1a and ORF1b genes (Supplementary Figure S2).

FIGURE 2

Phylogenetic tree of ORF5 Chinese PRRSV-1.

TABLE 1 Genetic distance of nucleotides within subgroups.

Genotype Subgroup

Type 1

BJEU06-1-like 0.118

Amervac-like 0.076

HKEU16-like 0,051

NMEU09-1-like 0.127

New subgroup 1 0.005

New subgroup 2 0.139

New subgroup 3 0.023
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Novel subgroups exhibited inter-subgroup recombination: strain 
MK303390.1 (new subgroup  3) had PRRSV1-CN-FJEU02-2023 
(NMEU09-1-like) as the major parent and LV as the minor parent. 
Recombination occurred between two of the new subgroups: strain 
SCPJ2023 (new subgroup 2) had EUGDHD2018 (new subgroup 1) as the 
major parent and SL-01 (new subgroup 2) as the minor parent. These 
findings indicate that recombination has contributed to the genetic 
variation and phylogenetic differences among subgroups, thereby 
explaining, to some extent, the recent spread of PRRSV-1  in China. 
We  observed a shift from simple intra-subgroup recombination to 
complex inter-subgroup recombination in Chinese PRRSV-1, a factor that 
complicates the potential control of the disease (Supplementary Table S1).

ORF5 nucleotide and amino acid homology 
analysis

ORF5 is routinely used for molecular epidemiological surveillance 
and vaccine development. The genetic diversity analysis of ORF5 has 
provided insights into the evolutionary trends of PRRSV-1 in China. 
We  therefore examined the nucleotide and amino acid homology of 
ORF5 genes from Chinese PRRSV-1 whole genomes. The results showed 
that the nucleotide homology of PRRSV-1 ORF5 genes ranged from 77.7 
to 100%, with amino acid homology ranging from 77.2 to 100%. Within 
HKEU16-like strains, the level of nucleotide homology (92.4–99.7%) 
indicated higher conservation and lower genetic variation compared to 

TABLE 2 Genetic distances of nucleotides between subgroups.

Subgroup BJEU06-
1-like

Amervac-
like

HKEU16-
like

NMEU09-
1-like

New 
subgroup 1

New 
subgroup 2

New 
subgroup 3

M96262.2

Amervac-like 0.153

HKEU16-like 0.156 0.139

NMEU09-1-like 0.189 0.171 0.180

New subgroup 1 0.190 0.168 0.181 0.205

New subgroup 2 0.191 0.178 0.176 0.207 0.209

New subgroup 3 0.207 0.196 0.194 0.218 0.220 0.196

M96262.2 0.110 0.089 0.092 0.151 0.145 0.089 0.173

OR333953.1 0.164 0.152 0.155 0.193 0.191 0.152 0.205 0.130

FIGURE 3

Reorganization analysis results of HLJB1 strain.
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TABLE 3 ORF5 nucleotide and amino acid homology analysis.

Subgroup Nucleotide ORF5 Amino acid 
ORF5

New subgroup 1 99.2 98.5

New subgroup 2 81.7–99.8 81.2–99.5

New subgroup 3 94.6–99.2 92.6–98

Amervac-like 88.4–96.7 82.7–97.5

HKEU16-like 92.4–99.7 92.1–99.5

NMEU09-1-like 85.1–100 85.6–100

BJEU06-1-like 83.3–97 81.7–99.5

M96262.2 81.8–94.6 81.7–93.6

OR333953.1 80.2–89.9 81.2–88.6

PRRSV-1 77.7–100 77.2–100

other subgroups. Chinese PRRSV-1 sequences shared 81.8–94.6% 
homology with European reference strain M96262.2 (LV), suggesting 
limited genetic diversity between regional and European strains. Notably, 
intra-subgroup homology varied substantially, with BJEU06-1-like, 
NMEU09-1-like, and new subgroup 2 exhibiting higher variability. The 
amino acid homology was elevated in new subgroup 1 (98.5%), new 
subgroup  3 (92.6–98%), and HKEU16-like (92.1–99.5%), patterns 
consistent with the nucleotide results. Inter-subgroup comparisons 
revealed greater genetic divergence, with nucleotide and amino acid 
homology in the ranges 77.7–100% and 77.2–100%, respectively (Table 3).

GP5 protein amino acid substitution analysis

Given the high variability of the ORF5-encoded GP5 protein, 
analyzing GP5 genetic variation has become essential for developing 
novel PRRSV vaccines and controlling viral transmission. We analyzed 
the amino acid substitution sites in GP5 from 47 PRRSV-1 ORF5 genes 
using MegAlign (DNASTAR) to characterize the GP5 composition for 
improved control of PRRSV-1. The GP5 protein comprises 201 amino 
acids encoded by 603 nucleotides. Structural prediction revealed a 
signal peptide, a hypervariable region, and multiple B-cell and T-cell 
epitopes. In the signal peptide region, position 9 Arg (R) was mutated 
to His (H) in most strains (Figure 4). Cys24 (C24) and 29WSFADGN35 
regions were correlated with neutralizing antibody epitopes, where C24 
was highly conserved except for a mutation in GZ11-G1 (Figure 5). 
Neutralizing epitopes play critical roles in anti-PRRSV responses; 
we  observed substitutions at the 29W-35N epitopes, including 
Trp29 → Cys (C) in HKEU16. At B-cell epitope position 37 Asn (N), the 
GD2022 and LV strains exhibited Asn37 → Asp (D) mutations, 
BJEU06-1 had Asn37 → Thr (T), and SHE/TZJ226/TZJ637/180900–5 
exhibited Asn37 → Ser (S). In addition, mutations of Val32 (V) occurred 
in the Amervac-like strains (SHE, GZ11-G1, NPUST-2789-3 W-2) and 
the BJEU06-1-like strain LNEU12 (Table 3).

Analysis of potential N-glycosylation sites 
in the GP5 protein

As a major structural protein inducing protective antibodies, 
alterations in the glycosylation sites of the PRRSV-1 GP5 protein will 

impact its immunological efficacy. We  thus investigated potential 
glycosylation sites for the protein. The analysis revealed five potential 
N-glycosylation sites at amino acid positions 35, 37, 38, 46, and 53 
(Table  4). Consistent with the patterns of amino acid variation, 
mutations occurred at position 37 N in strains GD2022, LV, SHE, 
BJEU06-1, TZJ226, TZJ637, 180,900–5, and AHB1. At position 
35 N—an antigenic epitope site—amino acid additions were observed 
in SHE, BJEU06-1, TZJ226, TZJ637, and 180,900–5. Concurrently, 
position 46 N exhibited deletions in GXFS20220129, PRRSV1-CN-
FJFQ-4-2023, and 180,900–5 (Table 4).

Discussion

The increasing prevalence of PRRSV, driven by its 
characteristically high mutation and recombination rates (37, 38), 
coincides with the rise in PRRSV-1 detection across China. 
Concurrently, effective prevention and control strategies remain 
critically underdeveloped. The investigation of epidemiological 
trends and geographic distribution of PRRSV-1 in China provides 
essential data to inform the development of vaccines and efforts to 
contain the epidemic. Genetic differentiation reflects inter-
population genetic variation and the dynamics of disease prevalence. 
Our genetic differentiation analysis of 46 Chinese PRRSV-1 whole-
genome strains, together with the reference strain VR-2332 and 
thorough phylogenetic analysis, revealed that contemporary Chinese 
PRRSV-1 primarily clustered into four subgroups: BJEU06-1-like, 
Amervac-like, HKEU16-like, and NMEU09-1-like (23). Among 
these, BJEU06-1-like represented the dominant subgroup, followed 
by NMEU09-1-like. The identification of novel branches and 
emerging strains (e.g., GD2022) (11, 39) indicates increasing 
complexity in PRRSV-1 epidemiology within China, with substantial 
genetic variation necessitating heightened vigilance. Since the ORF5 
gene serves as the primary diagnostic target for PRRSV detection, 
we constructed a phylogenetic tree using ORF5 sequences derived 
from whole genomes. Notably, discrepancies emerged between the 
ORF5-based and whole-genome phylogenies: strains classified as 
Amervac-like (SHE, NPUST-2789-3 W-2, GZ11-G1) in the whole-
genome analysis clustered with LV and BJEU06-1-like strains 
(HeB47, HLJB1) in the ORF5 tree. Previous studies have documented 
recombination between HeB47/HLJB1 and Amervac-like strains 
(23, 40). We attribute this phylogenetic convergence to high ORF5 
sequence homology and inter-strain recombination events. The new 
subgroups 2 and 3 clustered within BJEU06-1-like in the ORF5 tree, 
whereas new subgroup  1 formed a distinct branch in both 
phylogenies, suggesting potential inter-subgroup recombination. 
The continuous emergence of novel branches and strains 
demonstrates the persistent evolution of the virus in China, posing 
a significant risk of viral enhancement that demands increased 
surveillance. Genetic diversity reflects viral divergence and the 
potential for mutation. Analysis of whole-genome genetic diversity 
revealed elevated diversity within the prevalent subgroups BJEU06-
1-like, NMEU09-1-like, and Amervac-like, which may explain their 
epidemiological success. Novel branches also exhibited high 
diversity, indicating potential for future dominance and warranting 
close monitoring. Motivated by the observed phylogenetic 
discrepancies, we conducted nucleotide and amino acid homology 
analyses of the ORF5 gene. The results confirmed high 
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intra-subgroup diversity within BJEU06-1-like, NMEU09-1-like, 
and new subgroup 3, consistent with the whole-genome findings and 
indicative of heightened mutability. The intricate relationship 
between genetic diversity and variation warrants increased attention. 
While the ORF5 phylogeny partially diverged from the 

whole-genome analysis, homology assessment alone cannot establish 
causality. Frequent recombination of PRRSV-1 drives continuous 
variation among strains and significantly facilitates the emergence 
of novel strains. The recombination analysis of 46 whole-genome 
sequences and reference strain LV identified 32 recombination 

FIGURE 4

Amino acid site analysis of Chinese PRRSV-1 GP5 protein (Amino acids 1 to 101).

FIGURE 5

Amino acid site analysis of Chinese PRRSV-1 GP5 protein (Amino acids 102 to 201).
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TABLE 4 Analysis of potential N-glycosylation sites in the GP5 protein.

Strains Potential N-glycosylation sites

35 37 38 46 53

GD2022 NLT NGT

EUGDHD2018 NSS NLT NGT

PRRSV1-CN-FJFQ-1-2023 NSS NLT NGT

PRRSV1-CN-FJFQ-4-2023 NSS NGT

HKEU16 NSS NLT NGT

HK5 NSS NLT NGT

HK10 NSS NLT NGT

HK3 NSS NLT NGT

HK8 NSS NLT NGT

SHE NDS NLT NGT

NPUST-2789-3 W-2 NSS NLT NGT

GZ11-G1 NSS NLT NGT

LV NLT NGT

BJEU06-1 NGT NLT NGT

HeB47 NSS NLT NGT

NVDC-NM1-2011 NSS NLT NGT

LNEU12 NSS NLT NGT

HeB3 NSS NLT NGT

HENZMD-10 NSS NLT NGT

ZD-1 NSS NLT NGT

HLJB1 NSS NLT NGT

FJEU13 NSS NLT NGT

KZ2018 NSS NLT NGT

15HEN1_EU NSS NLT NGT

HL85 NSS NLT NGT

GXFS20220129 NNS NST NGT

HLJTZJ155-2001 NSS NLT NGT

TZJ226 NGS NLT NGT

TZJ637 NGS NLT NGT

HBEU-328 NSS NLT NGT

GDXNF94-1804 NSS NLT

PRRSV1-CN-FJEU02-2023 NSS NMT NGT

FJQEU14 NSS NLT

NMEU09-1 NSS NMT NGT

P073-3 NSS NLT NGT

NVDC-NM2 NGS NLT NGT

NVDC-NM3 NGS NLT NGT

NVDC-FJ NGS NLT NGT

GDXNF161-1806 NSS NLT NGT

AHEU2024-2671 NSS NLT NGT

SC-2020-1 NSS NLT

SCPJ2023 NSS NLT

GZ0308 NSS NLT NGT

(Continued)
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events, with inter-subgroup recombination exceeding intra-
subgroup events. This indicates an epidemiological shift from single-
subgroup dominance to co-circulation among multiple subgroups 
in China. BJEU06-1-like (12 events) and NMEU09-1-like (seven 
events) were the predominant recombinant subgroups, aligning with 
their status as major epidemic strains. Recombination is thus a key 
mechanism driving their dominance, high level of diversity, and 
adaptability. Beyond confirming the documented recombination 
between vaccine strains (e.g., Amervac-like) and field strains such 
as HLJB1/HeB47 (23, 40), we  detected additional vaccine-field 
recombination events. Notably, vaccine strain Amervac-like_
GQ461593.1_SHE exhibited frequent recombination with field 
strains—a finding with potential implications for vaccine design that 
warrants further vigilance. Frequent recombination between 
BJEU06-1-like and Amervac-like strains necessitates caution to 
prevent the emergence of epidemic strains and co-infections 
involving vaccine and field viruses. Strains showing phylogenetic 
discordance (Amervac-like: SHE, NPUST-2789-3 W-2, GZ11-G1; 
BJEU06-1-like: HeB47, HLJB1) demonstrated mutual 
recombination, which explains their ORF5 clustering. The novel 
branch (11), arising exclusively from inter-subgroup recombination, 
exhibits high variability and potential epidemic significance, thereby 
demanding prioritized surveillance. Collectively, these findings 
reveal increasingly complex transmission dynamics and growing 
challenges to controlling PRRSV-1  in China. There was partial 
discordance between whole-genome and ORF5 phylogenies; 
GD2022 formed a distinct branch in both trees without evidence of 
recombination, suggesting an emerging lineage (39). The disparity 
in detected recombination events (32 whole-genome vs. one ORF5) 
highlights the inadequacy of ORF5 as a full-genome surrogate. 
Nevertheless, ORF5 remains crucial for surveillance due to its key 
roles in neutralizing antibody responses, receptor binding, immune 
evasion (41), and as a primary subunit vaccine target. Substitutions, 
deletions, and insertions drive PRRSV evolution (42), with variation 
in the GP5 protein concentrated in the signal peptide as well as 
neutralizing and non-neutralizing epitope regions (43). Further GP5 
amino acid analysis revealed that GD2022’s B-cell epitope mutation 
(33A) significantly reduces neutralizing antibody titers against 
vaccine strains and compromises cross-protection (39). Position C24 
is highly conserved in PRRSV-1 genomes, with mutation observed 
only in GZ11-G1 (44), demonstrating intra-subgroup amino acid 
heterogeneity and highlighting viral complexity. Detailed 
characterization of the GP5 amino acid distribution is vital for 
vaccine design (45) and understanding the patterns of viral 
pathogenicity and transmission (46). Predicting N-glycosylation 
sites offers insights into the evolution and regulation of PRRSV-1, as 
glycosylation modulates immune recognition (47). The amino acid 

acquisitions at position 35 N in strains SHE, BJEU06-1, TZJ226, 
TZJ637, and 180,900–5 may have contributed to the prevalence of 
BJEU06-1-like/NMEU09-1-like. Interestingly, GXFS20220129 
possesses a unique acquisition at 38 N, potentially altering the 
virulence of the strain, explaining its phylogenetic divergence, and 
signaling an emerging risk that demands specific attention. In 
summary, these findings have advanced our understanding of the 
prevalence, genetic diversity, recombination patterns, and divergent 
amino acid sites of PRRSV-1  in China. Future research must 
prioritize whole-genome sequencing over exclusive reliance on 
ORF5, as single-gene analysis cannot fully capture epidemiological 
complexity. This study provides critical insights for developing 
effective PRRS prevention and control strategies to mitigate 
viral transmission.
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