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Intense neuroendocrine and molecular pathways with environmental sensitivity
maintain reproductive efficiency in seasonal breeders, together with donkeys.
The hypothalamic—pituitary-gonadal (HPG) axis functions as a primary controller
through modifying gonadotropin-releasing hormone (GnRH) secretion that
depends on melatonin levels, which induces photoperiodic instructions to the
system. The activation of HPG axis is triggered by decreasing melatonin levels
during long-day seasons, yet sustained high levels of melatonin during short-
day seasons cause its suppression. The reproductive pulsatility of GnRH depends
on kisspeptin-neurokinin B-dynorphin (KNDy) neurons, which are controlled by
melatonin through activity regulation to produce seasonal reproductive suppression.
Reproductive ability depends on metabolic signaling, which connects nutrient
availability to gonadal functions to maintain fertility during optimum nutritional
status. Studies have demonstrated that oxidative stress is a primary disruptor of
reproductive functions as it produces gonadal cell damage while stopping steroid
synthesis and increasing cell death. Endocrine-disrupting chemicals (EDCs) cause
additional reproductive problems through interfering with steroidogenic enzymes,
which results in hormonal imbalance and infertility. Prolactin works in association
with gonadotropins and metabolic pathways to control reproductive adaptations
under seasonal variation. Understanding of molecular mechanisms is essential for
increasing reproductive success among donkeys and other seasonal breeders in
general. The breeding programs might benefit from solutions such as photoperiod
manipulation and melatonin treatments, together with nutritional supplementation
and antioxidant therapies. The review focuses on seasonal reproductive processes,
endocrinology, assisted reproductive technologies (ARTs), and peculiarities of
anatomy and behavior. Discoveries in sperm vitrification, testicular immunology,
metabolic endocrinology, and follicular dynamics give important clues to fertility
manipulation in this species and suggest interventions to be pursued to enhance
fertility outcomes and conservation approaches.
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Introduction

Donkeys are long-lived polyestrous equids that are vital to
livelihoods and biodiversity. The reproductive efficiency of farm
mammals, including donkeys, is affected by seasonal variations, which
subsequently impacts production traits by affecting milk yield together
with meat quality and reproductive outcomes (1). Some mammals
such as Cattle exhibit regular reproductive cyclicity throughout the
year, yet sheep, together with goats, horses, and donkeys, demonstrate
seasonal breeding cycles with peak births in late stages and early
spring to maximize offspring survival (2). The reproduction cycles of
these species function through neuroendocrine systems that control
the frequency of ovulation along with spermatogenic activity, gamete
quality, and sexual behavior (3). The regulation of seasonal
reproduction depends on two main factors: natural endogenous
circannual rhythms and external photoperiod signals, which the
pineal gland, mediating melatonin secretion, controls (4). External
(HPG) axis
functioning so the reproductive cycles undergo major neuroendocrine

signals adjust hypothalamic-pituitary-gonadal
alterations (5). Although donkeys are distributed worldwide, the
reproductive inefficiency of reproduction, especially due to seasonality
and metabolic-endocrine interactions, restricts their productivity and
conservation (6).

Artificial breeding programs use photoperiodic manipulation
through external daylight exposure for mares, sheep, and goats,
together with melatonin supplementation specifically for sheep and
goats to achieve seasonal reproductive synchronization as well as
seasonal reproductive control (7). The interventions alongside genetic
selection programs focus on maximizing reproductive performance
within controlled breeding programs (8).

Donkeys are long-day breeders as the estrous cycle is more regular
and pronounced during long-day periods (9). The reproductive
activity peaks in spring and summer, while it is reduced or exhibits
anestrus in autumn and winter (10). Almost every reproductive
parameter of donkeys varies with seasonal variability, like foaling rate,
which is higher in warmer months due to increased mating success
and favorable conditions, improved semen motility and concentration
during spring and early summer (11).

Donkey reproductive patterns respond to various molecular
systems that combine hormones with energy homeostasis and natural
environmental stimuli, including light duration, weather, and diet
quality (9, 11). Unlike horses, donkeys have a distinctive reproductive
physiology that requires species-specific investigations and molecular
treatments (12). The purpose of this review is to summarize what is
known about donkey sexual biology and suggest biologically realistic
ways to improve fertility.

Hypothalamic—pituitary-gonadal axis
dysregulation

The hypothalamic-pituitary-gonadal (HPG) axis functions as
the primary mechanism to regulate reproductive functions among
all mammals, including the donkey, although it operates as a
seasonal breeder (11). Through this axis, the hypothalamus
produces gonadotropin-releasing hormone (GnRH) in pulsatile
patterns that trigger the anterior pituitary to release both
luteinizing hormone (LH) and follicle-stimulating hormone (FSH)
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(13). The gonadotropins exercise their effects on the gonads to
control gametogenesis as well as hormone synthesis, where males
produce testosterone and females produce estrogen and
progesterone (14).

Seasonal regulation of the HPG axis

Seasonal breeders closely link their reproductive efficiency to
environmental cues that mainly include photoperiod (day length),
temperature, and nutritional status (15). The pineal gland produces
melatonin as a response to dark conditions, which controls the
seasonal pattern of GnRH secretion (16). From winter months’
short-day periods, melatonin secretion extends over time until it
suppresses GnRH release, which reduces LH and FSH secretion and
causes reproductive inactivity (17). The reduction of melatonin during
long-day periods results in the reactivation of GnRH pulsatile action
and restores reproductive capacity (18).

Relational dynamics of the HPG axis are most prominent in
mares together with sheep, goats, and donkeys because their breeding
patterns match photoperiod modifications of melatonin release (16).
Donkeys share the reproductive pattern of horses by being long-day
breeders, and their breeding season occurs during spring and
summer when day length expands (11). The natural birth cycle
results in foal births when environmental conditions offer the
best resources.

Stress-induced dysregulation of the HPG
axis

The hypothalamic-pituitary-adrenal (HPA) axis that controls
stress responses creates a feedback mechanism with the HPG axis.
Between chronic stress and HPA axis activation arises the production
of corticotropin-releasing hormone (CRH) and adrenocorticotropic
hormone (ACTH) that stimulate cortisol production from adrenal
glands (19). The release of GnRH diminishes when cortisol levels
increase, which subsequently decreases LH and FSH production, thus
leading to reproductive system suppression.

The release of GnRH decreases when cortisol levels increase,
which subsequently reduces LH and FSH production, thereby leading
to suppression of the reproductive system (20). The reproductive
system of female seasonal breeders shows adverse effects from chronic
stress because this results in anovulation together with irregular
estrous cycles and reduced estrogen production, which frequently
causes ovarian dysfunction and persistent follicles or ovarian cysts
(21). The prolonged exposure to stress in male individuals decreases
testosterone levels along with spermatogenesis and causes sperm
quality to decline while diminishing sexual desire, so fertility remains
impaired in breeding periods (22).

The neurochemical agents serotonin (5-HT), along with
dopamine and norepinephrine (NE), function as vital elements for
controlling HPG axis responses under stress conditions (23). GnRH
release receives stimulation from serotonin, although the changing
sensitivity of serotonin receptors during seasonal periods may
contribute to reproductive suppression caused by environmental
stressors like nutritional deficiencies, changes in social standing, and
climate patterns (24).
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Metabolic and nutritional effects on the
HPG axis

The HPG axis operates under significant control from energy
balance regulation. Reproductive function regulation occurs through
the AMPK-mTOR signaling pathway that detects energy levels by
influencing GnRH neurons (19). AMPK activation stops GnRH
secretion to cause reproductive dormancy when the body faces
nutritional hardships or negative energy conditions (such as winter
months). The HPG axis receives a signal from adequate energy storage
to activate mTOR signaling, which then triggers GnRH release and
increases reproductive capability (25).

The reproductive hormone regulation of donkeys that
experience seasonality depends on their body condition changes
and how much they eat between seasons (26). Studies performed
on mares and sheep proved that minimal body fat, together with
low leptin levels, restrict normal GnRH signal pulsing which
causes breeding season delays. The HPG axis becomes fully active
once the nutritional condition improves, thus breeding occurs at
the most appropriate time for the environment (27). The
molecular pathway Hypothalamic-Pituitary-Gonadal (HPG)
Axis Dysregulation is shown in Figure 1.

There is a different gonadotropin secretion pattern in
donkeys. Jennies exhibit two FSH peaks during one estrous cycle
and a long-lasting LH surge that frequently continues after
ovulation (28). This differs from the single peak of FSH and
closely timed LH surge in mares and ewes. These hormonal

10.3389/fvets.2025.1633945

patterns can provide distinct follicular and luteal sustainability
processes in donkeys (29).

An impressive molecular difference is seen in the ligand specificity
of the FSH receptor (FSHR). Cloned FSHRs in donkeys can to bind
FSH and LH/chorionic gonadotropin (CG) in a ligand promiscuous
manner, which has not been observed in horses or sheep (30, 31). This
is due to differences in amino acids of the extracellular domain of the
receptor (~96% homology with equine FSHR). The physiological
significance of such receptor flexibility on follicular development has
yet to be understood (32).

LH and eCG bioactivity

Equine chorionic gonadotropin (eCG) is LH-like, as well as
FSH-like, in non-equines (33). Nevertheless, in donkeys, LH and
CG are largely LH-active with little FSH-like activity in in vitro
assays. This also emphasizes species-specific hormone-receptor
interactions that may have effects on ovulatory regulation and
folliculogenesis (29).

Implications of HPG axis for seasonal
breeding management

The mechanism through the HPG axis functions in seasonal
breeders complicates the management of reproduction and breeding
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operations. The following potential strategies can be used to improve
reproductive efficiency in seasonal breeders (34):

1. Artificial lighting techniques that replicate long-day conditions
can be employed to induce early estrus in mares and donkeys,
thus increasing their reproductive effectiveness.

2. The body condition managed properly during the pre-breeding
period reduces the impact of seasonal reproductive suppression.

3. The outcome of fertility improves when stress levels decrease
through reducing environmental and social pressure factors.

The reproductive system of donkeys, alongside other seasonal
breeders, controls the HPG axis through interactions between
photoperiod signals, metabolic indicators, and stress responses (35).
The reproductive efficiency of animals becomes compromised when
the stress axis becomes nonfunctioning due to chronic stress
combined with poor nutritional status, along with unsuitable
environmental elements (36). Understanding seasonal regulatory
processes better will allow scientists to create specific measures that
enhance the breeding performance of seasonal species. The summary
of the molecular pathway is shown in Table 1.

Melatonin signaling athway
(photoperiodic regulation)

In seasonal breeders, the information on photoperiod is encoded
in the melatonin secretion of the pineal gland, which regulates the
hypothalamic-pituitary-gonadal (HPG) axis (12). In sheep, melatonin
can influence the pituitary pars tuberalis MT1 and MT2 receptors in
the pars tuberalis to modulate TSH and downstream thyroid
hormones, which then modulate kisspeptin and GnRH release (37).

TABLE 1 HPG Axis dysregulation in seasonal breeders.

Factor Potential effects on reproductive
functions

Role of HPG Disrupts GnRH, LH, and FSH release, thus impairs follicular

Axis development, ovulation, or spermatogenesis, reducing

dysregulation reproductive efficiency (22).

Seasonal Photoperiod influences melatonin secretion, which modulates

regulation GnRH pulsatility, leading to reproductive activation in long-
day breeders (166).

Photoperiodic Long days — Reduced melatonin — Increased GnRH —

influence Reproductive activation. Short days — Increased melatonin —

Suppressed GnRH — Reproductive inactivity (167).

Stress-induced = Chronic stress activates the HPA axis, increasing cortisol levels,

dysregulation which suppresses GnRH, leading to reproductive dysfunction

(anovulation, poor sperm quality) (22

Neurochemical | Serotonin stimulates GnRH; dopamine and norepinephrine
modulation contribute to seasonal reproductive regulation. Environmental
stressors impact neurotransmitter sensitivity (168).
Management Artificial lighting to induce estrus, optimized nutrition to
strategies prevent reproductive suppression, and stress reduction to

improve breeding outcomes (21).
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It is the same with horses, which express melatonin receptors in the
hypothalamus, pituitary, and ovary (38).

Comparatively, there is no information on the expression and
signaling of melatonin receptors in donkeys. The submissive
photoperiodic reactivity of the species and the lack of clear seasonal
patterns indicate that melatonin transduction may be distorted or an
alternative environmental signaling may be used (39).

Role of photoperiod in seasonal
reproduction

The reproductive patterns of seasonal breeders are controlled
through environmental signals that primarily include changes in day
length (photoperiod) (40). The adaptation brings about offspring
births in optimal times, which usually matches the spring season when
environmental factors create favorable conditions for survival. The
main regulator for this process functions through melatonin, which
the pineal gland produces because of daily darkness. Through its
neuroendocrine role, melatonin carries photoperiodic data, which
subsequently affects reproductive hormone release (41).

Horses, together with donkeys, show suppressed melatonin
production when daylight stretches out, which activates their gonads
(42). Short-day breeders like sheep and goats activate reproduction
during periods when their nightly melatonin hormone production
reaches higher levels. Knowledge of the melatonin signaling pathway
stands vital for determining the seasonal mechanisms thatdonkey
reproductive effectiveness (43).

Mechanism of mammalian seasonal
reproduction

Light perception and transmission to the pineal
gland

Relying on the retina for light detection stands as the main
photoreceptor mechanism for mammals since birds use deep-brain
photoreceptors (44). The ipRGCs inside the retina carry melanopsin
photopigment as they detect light exposure through their intrinsic
photosensitive function. The photic signals travel through the
retinohypothalamic tract (RHT) until they reach the suprachiasmatic
nucleus (SCN) of the hypothalamus, which acts as the central
circadian pacemaker (45). Light information from the SCN passes
through the PVN and IML section of the spinal cord before reaching
the SCG, which makes its way to the pineal gland (46).

When light stimulation ends in darkness, the SCN exhibits
reduced activity, while norepinephrine (NE) produced in the SCG
activates f-adrenergic receptors in pinealocytes through these
receptors. The successive neural events increase the activity of
arylalkylamine N-acetyltransferase (AANAT), which results in
nighttime melatonin production (47).

Melatonin as a photoperiodic messenger

The secretion of melatonin follows a daily cycle of 24 h, where the
hormone remains in the body for an amount equivalent to the duration.
It connects to MT1 and MT2 melatonin receptors, which exist mainly
inside the pars tuberalis (PT) from the pituitary gland as well as the
hypothalamus (48). The MT1 receptor functions as the primary
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photoperiodic information transmitter within seasonal breeders
because it displays high expression levels in these animals (49).

The secretion of melatonin decreases in donkeys and horses when the
photoperiod lasts longer, which activates the hypothalamic-pituitary-
gonadal (HPG) axis to increase gonadotropin-releasing hormone
(GnRH) release (50). The regulatory hormone melatonin creates positive
effects on gonadal activity through thyroid hormone regulation of the
mediobasal hypothalamus (MBH) during extended exposure durations
in short-day breeders like sheep and goats (51).

Thyroid hormone regulation in seasonal breeders

The regulation of seasonal reproduction by melatonin occurs
mainly through modifications in thyroid hormone metabolic patterns.
The posterior pituitary (PT), a region of the pituitary gland, plays a
crucial role in this process (52).

The reduction of melatonin activates thyroid-stimulating hormone
(TSHP) expression in the PT under long-day stimulus conditions. The
activity of type 2 deiodinase (DIO2) is downregulated, resulting in the
hypothalamus producing less triiodothyronine (T3). The stimulation of
the reproductive axis occurs because of this process, and it advances both
follicular development and spermatogenesis (53).

The extended exposure to melatonin stimulates TSHp expression
in the PT, which activates DIO3 to convert T3 into inactive reverse T3
through its enzymatic activity. The hormone GnRH becomes
suppressed, which prevents the release of reproductive signals during
seasonal anestrous periods (54).

Molecular mechanisms involved in
melatonin signaling

Role of circadian clock genes

The SCN acts as a circadian oscillator that manages melatonin
production by controlling the expression of BMALI and CLOCK together
with Period (Per1, Per2) and Cryptochrome (Cryl, Cry2). All these genes
create a transcription-translation feedback loop that controls the length
of melatonin production based on photoperiod (55).

Long-day conditions cause changes in the phase relationships of
SCN neurons, which affect clock gene expression patterns and
decrease melatonin production levels. The expression patterns of clock
genes under short-day conditions extend melatonin production, that
results in reproductive inhibition in donkeys long-day breeders (56).

Kisspeptin, originating from the Kiss1 gene, operates as a strong
activator of GnRH release. The arcuate nucleus of the hypothalamus
experiences decreased Kiss1 expression because of melatonin effects,
which results in reproductive inactivity (57).

The reduction of melatonin levels in donkeys with long-day
breeding patterns stimulates Kissl gene expression to trigger the
activation of GnRH along with gonadotropins that initiate reproductive
functions. Sheep display seasonal anestrus by having melatonin
suppress Kiss1 expression, which prevents the release of GnRH (58).

Role of RFamide-related peptides

The mammalian ortholog of gonadotropin-inhibitory hormone
(GnIH) is RFamide-related peptide-3 (RFRP-3), which controls the
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activity of the HPG axis by suppression. The secretion of RFRP-3 shows
both melatonin-regulated patterns and species-specific responses toward
GnRH release (59). Sheep experience seasonal anestrus because RERP-3
reduces GnRH secretion in their system. Short-day conditions stimulate
RFRP-3 to boost GnRH secretion in the brains of hamsters, that helps the
reproductive system to function normally (60). Researchers have not
confirmed the function of RFRP-3 in donkeys, even though its
relationship to Kisspeptin and thyroid hormone regulation might help
understand seasonal reproductive patterns (61).

Species-specific photoperiodic
mechanisms

In sheep and horses, the melatonin TSH thyroid kisspeptin GnRH
cascade regulates photoperiodic reproduction tightly (62). Donkeys
might not be fully involved in this axis. Their reproduction physiology
seems to be less responsive to a change of daylight, which suggests that
they depend on other stimuli like dietary conditions, temperature, or
socialization (63). This hypothesis has not been molecularly confirmed
because there is a lack of neuroendocrine mapping.

Applications in reproductive management
of seasonal breeders

The examination of the melatonin signaling pathway enabled
researchers to create methods that control reproductive patterns in
donkeys along with other seasonal breeders (64).

1. Strategies involving artificial lighting can halt the production
of melatonin, which leads to the acceleration of the breeding
period. The technique is applied most frequently in equine
breeding operations.

2. The administration of exogenous melatonin through implants
provides a treatment that can halt reproduction while improving
breeding seasons in animals with distinct seasonal cycle patterns.

3. Genetic Selection based on changing the photoperiodic
responses has the potential to improve breeding outcomes of
donkeys during unfavorable seasonal periods (Figure 2).

The reproductive efficiency of seasonal breeders, including
donkeys heavily depends on the functioning of their melatonin
signaling pathway. The neuroendocrine transducer function of
melatonin depends on its ability to process photoperiodic cues with
the SCN while working with PT and thyroid hormones alongside
(65).
advancement regarding these mechanisms enables developers to

Kisspeptin and RFamide-related peptides Knowledge

create successful breeding management strategies that improve

reproductive success for donkeys and other seasonal breeders (66).
The summary of the molecular pathway is shown in Table 2.

Kisspeptin-neurokinin B-dynorphin
neuron regulation

A major role in gonadotropin-releasing hormone (GnRH)
secretion regulation belongs to the KNDy neuron system, which
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FIGURE 2
Role of photoperiod and its association with melatonin affecting reproduction in seasonal breeders.

resides in the hypothalamic arcuate nucleus (ARC) (67). These
neurons co-express three key neuropeptides: kisspeptin, neurokinin
B (NKB), and dynorphin (Dyn). Kisspeptin functions as a powerful
stimulant for GnRH release through the KNDy, neurons yet NKB
activates the KNDy neurons at the same time Dyn plays an inhibitory
role to maintain reproductive hormone balance (68).

Kisspeptin neurons play an important role in being upstream
controllers of GnRH. Their expression is photoperiod-dependent and
has been mapped in sheep and horses, where they gate seasonal
activation of reproductive activity (69). The axis seems to be intact in
donkeys: a kisspeptin analog (C6 peptide) can trigger ovulation and
LH surges. The distribution, the density, and the photoperiodic
control of kisspeptin neurons are however, still unknown, and this
restricts us to comprehend its complete role in the reproductive
physiology of the donkey (70, 71).

Mechanism of KNDy neuron function

GnRH pulsatility regulation

The reproductive axis functions properly because GnRH secretion
exists as pulsatile signals. The mechanical pulsations of neural signals
depend on KNDy neurons through an auto-regulatory feedback
mechanism (68). Neurokinin B (NKB) activates KNDy neurons
through its stimulating effect, which produces more kisspeptin release.
The direct activation of GnRH neurons by Kisspeptin results in
elevated levels of GnRH hormone that is released into the bloodstream
(72). The neurochemical activity of dynorphin creates negative
feedback that limits KNDy neuron function for controlling GnRH
release during required periods. The complex regulatory system

Frontiers in Veterinary Science

maintains the correct timing of GnRH secretion because it functions
as a crucial factor for reproductive health (73).

Experimental evidence of KNDy neuron function

o The GnRH pulse generator disappears permanently when
scientists use NK3-SAP to destroy KNDy neurons, proving these
cells hold the essential position for reproductive regulation (74).

« Studies involving ablating KNDy neurons establish that their
destruction results in reduced gonadotropin release, infertility
and body weight alterations (75).

KNDy neurons in seasonal breeders

» Donkeys belong to the seasonal breeders whose reproductive
functions are controlled through seasonal photoperiod
changes (11).

o The reduction of GnRH secretion and reproductive quiescence
occurs because shorter daylight hours trigger melatonin
secretion, which downregulates KNDy neuron activity (68).

o The reduction of melatonin secretion during breeding seasons
enables KNDy neurons to become active once more, which
results in fertility (76).

Additional regulatory factors
o The three main regulators that control KNDy neuron function
are kisspeptin, together with NKB and Dyn, but SP (Substance P)

and NKA (Neurokinin A) may also contribute to this
modulation (77).
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« Additional research about alternative regulatory mechanisms of

GnRH secretion that bypass kisspeptin pathways should
be conducted (76) (Figure 3).

The summary of the molecular pathway is shown in Table 3.

AMPK-MTOR energy sensing pathway
(nutritional effect on reproduction)

Organisms need high amounts of energy to produce offspring,
and metabolic conditions control reproductive regulatory
mechanisms. The AMP-activated protein kinase (AMPK), together
with the mammalian target of rapamycin (mTOR), constitutes
important cellular energy sensors regulate reproductive function by
sensing metabolic signals (78).

AMPK: the energy sensor in reproductive
regulation

Activation and function

« The enzyme AMPK starts its operation when energy supplies fall
low (such as during fasting or periods of caloric restriction) to
save fuel (79).

« The energy-saving process includes steroidogenesis, follicular
development, and ovulation, which AMPK prevents during times
of low energy (80).

o The activation of AMPK leads to the prevention of GnRH release,
which results in delayed puberty and deficient reproductive
function (78).

AMPK in follicular development

 Healthy Ovarian cells, together with oocytes and theca cells,
express high levels of AMPK protein (81).

 The maturation of oocytes becomes delayed through AMPK
activation because it blocks signaling pathways required for
meiosis (82).

Research findings demonstrate that blocking AMPK activity
helps follicles grow, which implies that activated AMPK
controls reproductive function as an energy deficit
regulator (83).

AMPK in granulosa cell function and hormone
secretion

o Under FSH and IGF-I regulation, granulosa cells create both
estrogen and progesterone compounds (84).

« Through activation of AMPK, the production of progesterone
decreases by preventing the function of steroidogenic acute
regulatory (StAR) protein and 3f-hydroxysteroid dehydrogenase
(3p-HSD) (78).

« The activation of AMPK by metformin treatment results in
suppressed granulosa cell proliferation in ruminant cattle, which
leads to modifications in follicular development (85).
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TABLE 2 Melatonin signaling pathway in seasonal breeders.

Aspect Details

Role of Day length regulates seasonal reproduction through

photoperiod melatonin secretion, ensuring optimal timing for offspring
birth (166).

Light perception Retinal photoreceptors detect light — Signal relayed via

Retin hypothalamic tract (RHT) — Suprachiasmatic

nucleus (SCN) modulates melatonin production (167).

Melatonin secretion | Darkness triggers norepinephrine (NE) release — Activates

mechanism pineal gland via f-adrenergic receptors — Stimulates

AANAT enzyme — Increases melatonin synthesis (169).

Melatonin as a Melatonin binds to MT1 and MT2 receptors, influencing

photoperiodic the hypothalamic-pituitary-gonadal (HPG) axis and

messenger seasonal reproductive cycles (48).

Effect on long-day Longer daylight — Reduced melatonin — Increased GnRH

breeders (donkeys, — Activation of reproductive function (167).

horses)

Thyroid hormone Long-day exposure reduces melatonin — Increases TSHf
regulation — Suppresses DIO3 — Elevates T3 — Activates

reproductive function. Short-day exposure increases
melatonin — Suppresses TSHP — Activates
DIO3 — Converts T3 into inactive form — Inhibits

reproduction (170).

Circadian clock SCN clock genes (BMALL, CLOCK, Per, Cry) regulate

gene influence melatonin secretion duration, affecting reproductive

activation or suppression (171).

Kisspeptin's Melatonin inhibits Kiss1 gene expression in short-day

association with conditions, reducing GnRH release and causing seasonal
melatonin anestrus. In long-day breeders, reduced melatonin

stimulates Kiss1 expression, triggering reproductive

activity (172).

mMTOR: the energy sensor for reproductive
activation

Under high-energy conditions, mTOR acts as a crucial
controller of reproductive function while managing cell growth
together with protein synthesis and reproductive abilities (86).
The activation of mTOR leads to cellular growth, protein
synthesis, and reproductive functions through stimulation of
follicular development, steroid hormone production, and oocyte
maturation. The ovarian system requires mTOR activation to
activate primordial follicles and stimulate granulosa cell growth,
together with ovulation (87). The medication rapamycin, together
with other mTOR inhibitors, blocks follicular development,
which can result in infertility. The research on seasonal breeders
has established that mTOR signaling decreases in periods outside
breeding seasons, which results in reproductive dormancy (88).

Reproductive function requires the oppositional regulatory
mechanism between mTOR and AMPK, which interact with each
other (89). Under situations of energy deficiency, AMPK becomes
active, thus it blocks mTOR signaling to reduce reproductive processes
for metabolic energy conservation (90). The reproductive process gets
activated through mTOR signaling, while energy-rich conditions lead
to AMPK suppression. The AMPK, together with mTOR, works in a
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Kisspeptin-neurokinin B-Dynorphin (KNDy) neuronal regulation of reproduction in seasonal breeders.

balanced opposition to maintain reproductive outcomes based on
metabolic health status (91).

Essential for determining reproductive cycles in donkeys and
other seasonal breeding species is the metabolic regulation mechanism
(78). Low food availability leads to AMPK activation, which inhibits
GnRH secretion along with reproductive functions, thus stopping the
expenditure of energy for reproduction. An increase in food
availability results in mTOR activation, which leads to ovarian
function, thereby allowing reproduction to occur only in favorable
metabolic situations. Seasonal breeding creatures use nutrition-
dependent reproductive regulation to maximize their reproductive
performance (92).

The KNDy neuron system together with the AMPK-mTOR
pathway acts as an important regulatory mechanism for reproductive
efficiency in seasonal breeding animals (93). GnRH pulsatility
depends on signals from KNDy neurons, which receive photoperiod
information through melatonin signaling along with the AMPK-
mTOR pathway acting as a metabolic control mechanism for
reproduction under sufficient energy conditions. Knowledge about
these pathways reveals crucial information about seasonal
reproductive control, thus offering possibilities to develop fertility
enhancement practices for domestic animals (79). The summary of
the molecular pathway is shown in Table 4 (Figure 4).

Ovarian transcriptomic profiles of donkeys
Transcriptomic study of donkey granulosa cells has demonstrated
high enrichment of PI3K-Akt and focal adhesion pathways, suggesting
active participation in cell proliferation, steroidogenesis, and follicular
support (32). Differential expression of genes, e.g., endomucin
(EMCN) and synaptotagmin-like protein 12 (SYT12), indicates
potential molecular actors that are specific to donkey follicular biology
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(94). Sheep follicular gene networks are well described, and horse
research is also growing, but donkeys are poorly characterized at the
transcriptomic level (95).

Steroidogenesis pathway disruption

The reproductive efficiency of seasonal breeders, including
donkeys, is regulated by ovarian steroidogenesis through its vital
function. The reproductive cycles depend on correct sex hormone
synthesis that results from this process to support follicular
development and regulate ovulation (96). The pathway of ovarian
steroidogenesis undergoes disruption when exposed to endocrine-
disrupting chemicals (EDCs) since these chemicals create hormonal
imbalances that negatively affect fertility processes (97). The function
of sex hormones and hormone receptors becomes disrupted because
of environmental chemicals, which are mainly present in pesticides,
plastics, and industrial waste, thus resulting in reproductive
complications. The evaluation of seasonal breeders requires knowledge
about how EDCs modify steroidogenesis at the molecular level (98).

Ovarian steroidogenesis and its regulation

The ovary produces sex hormones through a coordinated process
involving two different cell types as well as two different hormones
(99). Luteinizing hormone (LH) activates cholesterol conversion to
androgens in the theca cells so that these hormones move on to
granulosa cells. The hormone FSH in granulosa cells turns on
aromatase activity that transforms androgens into estradiol (100). The
restrictive hormone control system completes the proper functioning
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TABLE 3 Kisspeptin-neurokinin B-Dynorphin (KNDy) neuron regulation in
seasonal breeders.
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TABLE 4 AMPK-mTOR energy sensing pathway and its role in
reproductive regulation.

Factor Effects on reproductive functions Factor Effects on reproductive functions

Loss of KNDy neurons leads to reduced gonadotropin

release, infertility, and metabolic changes (174).

Role in seasonal Shorter daylight — Increased melatonin — Suppresses

breeders KNDy activity — Reduced GnRH and reproductive
quiescence. Longer daylight — Decreased melatonin —
Reactivates KNDy neurons — Restores fertility (76).

Additional Substance P (SP) and Neurokinin A (NKA) also

regulatory factors contribute to KNDy neuron modulation, especially in

response to environmental cues like photoperiod (175).

Future research Explore the precise mechanisms by which KNDy neurons

directions integrate photoperiodic and metabolic cues to regulate
GnRH pulsatility to modulate reproductive timing and

enhance fertility during non-breeding seasons (176).

of estrous cycles and ovulation while sustaining pregnancy in seasonal
reproduction cycles. Hormone production becomes impaired through
disruptions in this pathway, which occurs from environmental
stressors or EDC exposure, thus causing irregular reproductive cycles
along with infertility (101).

Endocrine disrupting chemicals
interference in ovarian steroidogenesis

EDCs interrupt ovarian steroidogenesis either by blocking
essential enzymes, duplicating natural hormones, or obstructing
various receptors (97). Studies show that the chemical substances
bisphenol A (BPA), phthalates, and Polychlorinated Biphenyls (PCBs)
block aromatase activity, which decreases estradiol production.
Pesticides together with dioxins disrupt the steroidogenic acute
regulatory (StAR) protein required for cholesterol transport into
mitochondria (102). These environmental toxins interfere with vital
molecular pathways to change the regulation of the estrous cycle as
well as the reproductive efficiency of species that align with seasonal
mating patterns (103).

Impact on reproductive function in
seasonal breeders

The reproduction of seasonal breeders such as donkeys strongly
depends on environmental clues, including photoperiod and
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granulosa cell

Function of KNDy Located in the arcuate nucleus (ARC), co-expresses Role of AMPK in  Activated under low-energy conditions (fasting, caloric

neurons Kisspeptin, Neurokinin B (NKB), and Dynorphin (Dyn) energy sensing restriction) to conserve metabolic resources by suppressing
to regulate GnRH secretion (68). reproduction (177).

GnRH Pulsatility NKB stimulates KNDy neurons — Increases Kisspeptin AMPK and Prevents steroidogenesis, follicular development, and

regulation release — Activates GnRH neurons. Dynorphin provides reproductive ovulation. Suppresses GnRH release, delaying puberty and
negative feedback to regulate GnRH pulses (173). inhibition reducing reproductive function (78).

Estrogen feedback KNDy neurons mediate estrogen’s positive and negative AMPK in Highly expressed in ovarian cells, oocytes, and theca cells.
feedback on GnRH secretion, maintaining reproductive follicular Delays oocyte maturation by inhibiting meiosis-related
balance (72). development signaling pathways. Blocking AMPK activity promotes

Experimental NK3-SAP ablation of KNDy neurons eliminates GnRH follicular growth (178).

evidence pulses. AMPK in Regulates estrogen and progesterone production under FSH

and IGF-I control. Inhibits StAR protein and 3p-HSD,

regulation of

reproduction

function reducing progesterone levels. Metformin-induced AMPK
activation suppresses granulosa cell proliferation in
ruminants, altering follicular development (78).

Role of mTOR in Activated under high-energy conditions to promote cell

reproductive growth, protein synthesis, and reproductive functions.

activation Stimulates follicular development, steroidogenesis, and
oocyte maturation. Essential for primordial follicle
activation and granulosa cell proliferation (87).

mTOR and mTOR signaling decreases outside breeding seasons, leading

seasonal to reproductive dormancy. Rapamycin and other mTOR

reproductive inhibitors suppress follicular development, potentially

dormancy causing infertility (179).

AMPK-mTOR AMPK inhibits mTOR under energy-deficient conditions to

interaction prevent reproductive activation. mTOR suppresses AMPK
under energy-rich conditions to promote reproductive
functions (180).

Nutritional Low food availability activates AMPK, inhibiting GnRH and

reproductive processes to conserve energy. High food
availability activates mTOR, restoring ovarian function and

reproductive activity (91).

Integration with

seasonal breeding

The AMPK-mTOR pathway interacts with KNDy neurons
and melatonin signaling to regulate reproductive cycles.
Understanding these mechanisms aids in fertility
management strategies for domestic seasonal breeders like

donkeys (181).

nutrition, because disruptions in steroidogenesis cause major
reproductive effects (104). Endocrine-disrupting compounds
affecting sex hormone equilibrium control the duration of the
estrous cycle, delay ovulation, and decrease fertility potential (105).
Juvenile animals become unable to sustain pregnancy because the
corpus luteum function fails to maintain normal progesterone
levels, and when estrogen production becomes disrupted, it affects
follicle maturation. The dependence of these species on hormonal
changes for seasonal reproduction makes exposure to EDCs a
possible cause and
problems (106).

The essential hormonal process of steroidogenesis controls

of declining fertility reproductive

reproductive efficiency, but environmental pollutants create major
difficulties for seasonal breeders to maintain their reproductive
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Schematic illustration of AMPK-MTOR energy sensing pathway regulating reproduction in seasonal breeders (Nutritional effect on reproduction).

functions (107). The impact of environmental pollutants on hormone
biosynthesis steps results in reproductive breakdowns, which creates
permanent effects on fertility (108). Research must be conducted to
determine how much seasonal breeders encounter environmental
pollutants while developing new approaches to lessen the reproductive
health damage. The identification of environmental polluting factors
will enable better decision-making regarding protection plans for
species suffering from pollution exposure effects (109) (Figure 5).
The summary of the molecular pathway is shown in Table 5.

Oxidative stress pathways and
apoptosis in gonads

The reproductive performance of seasonal breeders, including
donkeys, depends significantly on oxidative stress (OS) because their
reproductive cycles follow environmental signals closely (110). The
correct relationship between reactive oxygen species (ROS) and
antioxidants is necessary for proper reproductive system operation
(111). When ROS production becomes excessive, it interferes with the
balance, which subsequently damages cells through steroidal hormone
production failure and triggers cell death in gonadal tissue (112). The
reproductive functions of oocyte maturation and sperm function,
together with embryonic development, undergo disturbances that
affect fertility and seasonal breeding performance (113).

Oxidative stress in reproductive tissues

The metabolism of cells produces ROS byproducts mainly in
mitochondria, which serve as crucial signaling agents during
folliculogenesis and ovulation and corpus luteum development (114).
High levels of ROS exceed the capacity of antioxidants to control them,
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which results in damage to lipids, proteins, and DNA, leading to gonadal
cell death through apoptosis (115). The reproductive patterns of seasonal
breeders respond directly to photoperiodic changes and metabolic status,
thus making this research important for their breeding cycles (116). The
level of oxidative stress tends to increase throughout the non-breeding
cycle to maintain reproductive dormancy, yet specific ROS regulation
helps execute important reproductive processes, including follicular
rupture together with sperm capacitation during the breeding
period (117).

Apoptosis in gonads and its regulation

Gonadal functionality depends on programmed cell death known as
apoptosis since this process regulates the death of follicles while also
controlling sperm formation (118). Seasonal breeders primarily depend
on the intrinsic apoptotic pathway, which originates from mitochondrial
dysfunction combined with oxidative damage to their cells (119).
Excessive ROS activates cytochrome c release from mitochondria to
activate caspases, which in turn causes the death of follicular cells and
germ cells (120). The existence of a balance between pro-apoptotic
proteins BAX and BAK and anti-apoptotic protein BCL-2 decides
whether cells will survive. The reproductive efficiency of reproductive
systems is impacted by season-dependent modifications of gonadotropin
levels and melatonin signaling that control oxidative stress mechanisms
and apoptosis rates in gonadal tissues (121).

Impact on reproductive efficiency in
seasonal breeders

The reproductive efficiency of seasonal breeders such as donkeys
is directly affected by oxidative stress and apoptosis because they harm
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gametes and their reproductive organs’ functionality (122). Controlled
oxidative signaling supports ovulation together with sperm maturation
during the breeding season. Excessive oxidative damage during times
outside the breeding period quickens the process of follicular atresia
while causing sperm viability to decrease (123). Reproductive success
suffers from environmental stressors such as heat exposure, poor
nutrition, and toxic environmental substances, which increase the rate
of oxidative damage in animals (124).

Strategies to mitigate oxidative stress

The improvement of reproductive performance in seasonal
breeders depends on implementing methods that reduce oxidative
stress damage (125). The combination of antioxidant supplements,
including vitamins C and E, and selenium, and melatonin, leads to
better gonadal function and fertility results (126). The reproductive
potential can benefit from nutritional measures that activate
endogenous antioxidant enzymes, including superoxide dismutase,
catalase, and glutathione peroxidase (127). Proper control of
environmental stressors together with appropriate nutritional
provision during breeding seasons will help reduce oxidative damage,
which in turn leads to improved reproductive outcomes across
donkeys and other seasonal breeders (128).

The regulation of reproductive efficiency in seasonal breeders
depends heavily on oxidative stress together with apoptosis mechanisms
(129). The body needs regulated ROS production to maintain normal
reproductive functions, yet too much oxidative damage triggers problems
with gamete quality along with hormonal imbalancing and infertility
(130). Laboratory research on oxidative stress mechanisms interacting
with seasonal reproductive signals will enable scientists to develop better
treatments for enhancing donkey breeding performance alongside other
seasonal breeders (131) (Figure 6).

The summary of the molecular pathway is shown in Table 6.

Frontiers in Veterinary Science

11

Prolactin pathway in seasonal
breeders

As akey hormone in seasonally breeding animals, prolactin (PRL)
regulates reproductive periods and helps the body adapt to
environmental shifts (132). The hormone shows seasonal patterns
where the secretion rate reaches its highest point during the spring
and summer months and its lowest point in the autumn and winter
months (133). The hormonal regulation of prolactin depends mostly
on Photoperiod which controls pineal gland melatonin production
and ultimately directs prolactin output (134).

Photoperiodic regulation of prolactin

The duration of daylight throughout seasons strongly controls the
production of melatonin and therefore controls the anterior pituitary’s
release of prolactin (135). The hypothalamus, along with the pars
tuberalis of the pituitary, contains receptors that allow melatonin to
trigger seasonal endocrine responses (136). The control mechanism
for both gonadotropins as well as prolactin functions through the
shared regulation of luteinizing hormone (LH), follicle-stimulating
hormone (FSH), and prolactin by melatonin (137).

The mechanisms that regulate seasonal prolactin changes differ
from gonadotropin patterns because prolactin relies on direct
neuroendocrine regulation, but gonadotropins follow feedback-based
control (138). Current research does not provide enough evidence to
prove that winter prolactin reduction happens only through increased
dopamine inhibition (139). At this time, pituitary becomes more
responsive to dopamine, which could be a factor in the decrease of
prolactin, secretion throughout seasonal cycles. The intricate
relationship between melatonin, prolactin and gonadotropins
demonstrates how the human body readjusts reproductive and
metabolic systems because of seasonal variations (132).
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TABLE 5 Steroidogenesis pathway disruption and its impact on seasonal

breeders.

Aspect
Role of
steroidogenesis in

reproduction

Endocrine-disrupting
chemicals (EDCs)
and their effects
Mechanisms of EDC
interference in

steroidogenesis

Impact on seasonal

breeders

Consequences of
steroidogenesis

disruption

Future research needs

‘ Details

Ovarian steroidogenesis is essential for reproductive
efficiency in seasonal breeders, including donkeys.
Regulates sex hormone synthesis, follicular development,

ovulation, and pregnancy maintenance (182).

EDCs cause hormonal imbalances, leading to
reproductive dysfunction. Found in pesticides, plastics,

industrial waste, and environmental pollutants (183).

EDCs block essential steroidogenic enzymes, mimic
natural hormones, or disrupt hormone receptors. BPA,
phthalates, and PCBs inhibit aromatase, reducing
estradiol production. Pesticides and dioxins impair StAR
protein function, blocking cholesterol transport into

mitochondria (184).

Alters estrous cycle duration and ovulation timing.
Disrupts corpus luteum function, leading to inadequate
progesterone levels. Affects follicle maturation and

reduces fertility potential (185).

Reproductive inefficiency and fertility decline in seasonal
breeders. Increased pregnancy loss due to hormonal
imbalances. Long-term environmental exposure may

permanently impact reproductive health (97).

Investigate the extent of EDC exposure in seasonal
breeders. Develop strategies to mitigate environmental
pollutant effects on reproduction. Identify protective
measures to enhance fertility in species affected by

pollution (98).

Prolactin’s role in seasonal reproduction

10.3389/fvets.2025.1633945

over how gonadotropes react to GnRH which helps stop the
glands from overstimulation (143).

« The photoperiod of the breeding environment determines how
powerfully prolactin inhibits gonadotropin secretion through its
photoperiodic dependency, where short-day breeders (sheep)
demonstrate stronger inhibition but long-day breeders (horses)
display a more regulatory effect (144).

Molecular and cellular mechanisms

The regulatory patterns of pituitary hormone secretion might
be influenced by seasonal shifts observed in folliculostellate cells,
which belong to the category of pituitary support cells (145). Research
indicates that breeding_season triggers an increase in cell-adherens
junctions between these cells while prolactin and gonadotropin
interactions simultaneously evolve (146). The GnRH hormone
canstimulate prolactin release, but its effect on this process depends
on the season, the species, and the reproductive condition of the
animal (147).

Many mammals use prolactin as their main seasonal regulatory
agent while photoperiodic cues processed through melatonin
pathways control its secretions (148). Prolactin plays an essential part
in seasonal physiological adaptations since it controls molt,
metabolism and energy balance beyond reproduction (149). The
complex dynamic system of prolactin together with gonadotropins
and hypothalamic regulatory components shows that it plays an
essential role in reproductive adaptation to environmental changes
while managing energy, and reproductive resource distribution
annually (150) (Figure 7).

The summary of the molecular pathway is shown in Table 7.

Thus, the prolactin pathway serves as a vital neuroendocrine
mechanism in seasonal breeders, regulating reproductive timing
and physiological adjustments in response to the photoperiod
(133). The regulation of prolactin secretion in response to

o Certain species rely on prolactin as their luteotrophic factor for ~ melatonin affects both the reproductive and metabolic functions

corpus luteum maintenance during pregnancy (140). (132). The pituitary paracrine interactions and dopamine
« The activity of prolactin as an implantation delay factor affects =~ modulation indicate the association between prolactin and
the timing of embryo attachment in Bennetts wallaby, along with ~ gonadotropin output (151). Thus, it indicates the dual role of
the tammar wallaby (141). prolactin in regulating internal hormonal rhythms and external
o The seasonal prolactin secretion pattern seems to be a  seasonal changes.
fundamental biological trait that affects reproductive cycles as The molecular pathways coordinate in response to photoperiod
well as fur shedding (molt) and bodily metabolism (142). and nutritional availability, ensuring optimal reproduction during
long days (151). The summary of these molecular pathways is shown
in Table 8. It is well established that the reproductive activity in
Prolactin and pituitary interactions in

seasonal breeders

donkeys is regulated by interconnected hormonal, signaling, and
metabolic pathways that respond to the environmental and seasonal
variability (16). Thus, disruptions in the HPG axis, melatonin
o The pituitary gland contains prolactin receptor proteins inside  signaling, KNDy neurons, and prolactin pathway result in decreased
both the pars distalis and pars tuberalis areas indicating a  production of GnRH and gonadocorticoids (10). Malnutrition also

paracrine regulatory internal process (132). affects the AMPK-mTOR pathway, resulting in declined reproductive

Gonadotropes (LH and FSH-secreting cells) and lactotropes  performance, and oxidative stress leads to gonadal cell damage.

(PRL-secreting cells) demonstrate direct physical contact — Understanding these mechanisms broadens our knowledge of
throughout the pituitary, but their structural relationships  seasonal fertility and opens the horizon for improving reproductive
fluctuate between seasons according to research findings (134). efficiency through modulation of molecular pathways using hormonal,
o The hormone dopamine functions to block prolactin release  nutritional, and management strategies in seasonal breeders,

while some species demonstrate that prolactin maintains control ~ particularly in donkeys.
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FIGURE 6
Role of oxidative stress pathways and apoptosis in gonads in the regulation of reproduction in seasonal breeders.

TABLE 6 Oxidative stress pathways and apoptosis in gonads of seasonal breeders.

Aspect

Details

Role of oxidative stress (OS) in

reproduction

Seasonal breeders, including donkeys, rely on a balance between reactive oxygen species (ROS) and antioxidants. Excessive ROS

disrupts reproductive functions, affecting oocyte maturation, sperm function, and embryonic development (115).

Sources and effects of ROS in

gonadal tissues

ROS are byproducts of mitochondrial metabolism, playing key roles in folliculogenesis, ovulation, and corpus luteum function.

Uncontrolled ROS levels lead to lipid peroxidation, protein oxidation, DNA damage, and gonadal cell apoptosis (186).

Seasonal variation in oxidative

stress

OS increases during the non-breeding season to maintain reproductive dormancy. Regulated ROS levels are necessary for follicular

rupture and sperm capacitation during the breeding season (22).

Apoptosis in gonads and its

regulation

Apoptosis controls follicular atresia and spermatogenesis. Mitochondrial dysfunction due to oxidative stress triggers cytochrome ¢
release, activating caspases for cell death. The balance between pro-apoptotic proteins (BAX, BAK) and anti-apoptotic proteins (BCL-2)

determines cell survival (118).

Impact on reproductive efficiency

Excess ROS during non-breeding periods accelerates follicular atresia and reduces sperm viability. Environmental stressors (heat, poor

nutrition, toxins) exacerbate oxidative damage, impairing fertility (187).

Strategies to mitigate oxidative

stress

Antioxidant Supplementation: Vitamins C, E, selenium, and melatonin improve gonadal function and fertility. Nutritional
Interventions: Activation of endogenous antioxidant enzymes (SOD, catalase, glutathione peroxidase). Environmental Management:

Reducing stressors and optimizing nutrition during the breeding season (188).

Future research needs

Need to focus on identifying reliable oxidative biomarkers and evaluating antioxidant-based therapeutic strategies that could enhance

fertility regulation across reproductive seasons (115).

Scope of ART in donkey

Thus, donkeys have seasonally regulated reproductive patterns
which are mainly regulated by photoperiod (152). Reproductive traits
of males (e.g., testicular size, semen quality, hormonal changes (e.g.,
testosterone)) differ in breeding and non-breeding seasons (153). The
results of the immunohistochemical studies of the epididymis indicate
the presence of higher epithelial activity and sperm in the spring,
whereas higher markers of oxidative stress and autophagy are
observed in off-seasons (154). These results deny the previous
hypotheses of low seasonality and support the importance of time-
adjusted breeding plans. In addition, Dezhou donkeys immunized
against inhibin exhibited elevated levels of FSH, LH, testosterone, and
activin A, especially out of breeding season (155).

Frontiers in Veterinary Science

Donkeys and horses are very different in their reproductive behavior,
the duration of a cycle, and anatomical characteristics (27). The estrous
cycle and the gestation period of Jennies are longer, and they also respond
to factors other than photoperiod (12). Jacks have bigger reproductive
organs, and they take more time to ejaculate (152). Behavioral peculiarities
of the donkey reproduction, like territoriality and non-harem mating
patterns, as well as reduced spermatogenic efficiency, also distinguish it
among other equids (27). These characteristics require specific assisted
reproductive technology (ART) regimens. It has been found that duration
of the follicular phase, not luteolysis, is the main factor determining
variability in interovulatory interval (IOI) (156). Longer IOIs are
associated with longer estrus, slower follicle development, and larger
follicles at ovulation. Such findings are important to schedule
insemination and forecast fertility periods (27).
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Role of prolactin pathway in the regulation of reproduction in seasonal breeders.

TABLE 7 Prolactin pathway in seasonal breeders.

Aspect Details

Role of prolactin (PRL) in

seasonal breeding

PRL regulates reproductive cycles in response to environmental changes. It peaks in spring/summer; lowest levels in autumn/winter, and is

controlled by photoperiod via melatonin signaling (132).

Photoperiodic regulation of

PRL

Daylight duration influences melatonin release, which affects PRL secretion. Melatonin receptors in the hypothalamus and pars tuberalis

mediate seasonal endocrine responses. PRL is regulated neuroendocrinally, while gonadotropins follow feedback-based control (133).

Prolactin and pituitary

interactions

PRL receptors are present in the pars distalis and pars tuberalis of the pituitary. Gonadotropes (LH/FSH cells) and lactotrophes (PRL-
secreting cells) interact seasonally.
Dopamine inhibits PRL release; PRL modulates gonadotrope responsiveness to GnRH. Short-day breeders (e.g., sheep) show stronger PRL

inhibition on gonadotropins than long-day breeders (e.g., horses) (189).

Molecular and cellular

mechanisms

Seasonal changes influence folliculostellate cells in the pituitary, affecting hormone secretion. GnRH can stimulate PRL secretion

depending on species and reproductive status (132).

Research implications

Further studies on investigating its role in follicular development, luteal maintenance, and interaction with dopamine and GnRH pathways

to optimize breeding outcomes during the off-season (133).

Thc sperm of donkeys has some cryobiological difficulties. The
traditional freezing techniques produce uneven fertility outcomes,
particularly in jennies (157). Nevertheless, the latest developments in
sperm vitrification show positive results. Straws with outer covers,
using 0.25 mL straws, showed similar or better motility and in vivo
fertility than standard frozen semen (158). Remarkably, vitrified
semen caused a less severe and short-term uterine inflammatory
reaction (159). Moreover, Phospholipase C Zeta (PLCzeta) localization
in donkey sperm showed that it was competent in oocyte activation,
particularly during intracytoplasmic sperm injection (ICSI) into horse
oocytes (160). These interspecies ICSI outcomes confirm the
utilization of donkey sperm in the creation of mules and imply the
expansion of ARTs (161).
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Endometritis is a significant limitation to fertility in donkeys. The
use of equine-based histopathological grading of donkey uteri has
been effective, and cytological and biopsy-based assessment would
improve the level of diagnosis (162). These aids enable a superior
categorization of uterine health and an even more accurate treatment
regimen. Donkeys are prone to metabolic problems that affect
reproduction. Metabolic disorders like insulin dysregulation,
hyperlipemia, and Pituitary Pars Intermedia Dysfunction (PPID) are
usually compounded by obesity (29). These conditions either directly
or through systemic effects lead to impaired reproductive performance
(e.g., laminitis, organ dysfunction). Most unfortunately, the majority
of hormonal reference ranges and treatment protocols are based on
horses, in spite of pharmacokinetic differences (163).
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TABLE 8 Summary of the molecular pathways involved in seasonal reproductive decline.

Pathway Key molecules Effect on reproduction

HPG Axis dysregulation GnRH, LH, FSH, Testosterone, Estradiol (21) | HPG function reduces fertility (190)
Melatonin pathway Melatonin (MT1, MT2), Kisspeptin, NKB (169) 1 Melatonin inhibits GnRH secretion (191)
KNDy neurons Kisspeptin, NKB, Dynorphin (76) | Kisspeptin — | GnRH release (75)

AMPK-mTOR energy sensing AMPK, mTOR, Leptin (78)

Poor nutrition suppresses reproduction (192)

Steroidogenesis disruption

StAR, CYP17A1, 3p-HSD, 17-HSD (182)

| Testosterone, Estradiol synthesis (193)

Oxidative stress and apoptosis ROS, SOD, BAX/Bcl-2[136]

1 Gonadal cell death reduces fertility (115)

Prolactin pathway Prolactin, dopamine (133

1 Prolactin suppresses GnRH and steroidogenesis (132)

Breed size also plays a great role in reproductive performance.
Big-bodied breeds such as the Dezhou donkey are more fertile and
produce more milk than smaller breeds (e.g., Cullen donkeys) (164).
Surveys conducted in Northern China indicate that formalized farm
activities, especially with national/provincial institutions, are associated
with improved ART adoption and reproductive success (153). The
survey shows that about 73 percent of the surveyed farms are using
artificial insemination, indicating the rising use of ART. Such results
support the importance of breed selection, genetic advancement, and
farm standardization in optimizing fertility. Donkeys are increasingly
being used in protecting endangered equids. ARTs have advanced in
horses, but adaptation to donkeys and wild equids is continuing (12).
Donkeys can be used as fertility models as well as surrogates in
conservation programs, particularly due to their reproductive strength
and availability (165). Nevertheless, the molecular variability of gamete
behavior and endocrine response requires specific studies. The donkey
ARTs should be aligned with the principles of conservation biology in
order to save genetic diversity in Equus (159).

Research gaps and future directions

Although there has been an improvement, there are still
considerable gaps in our knowledge of donkey reproductive
physiology and molecular control. The principal areas in need of
focus are:

o Creation of hormonal and metabolic reference values in donkeys

« Pharmacological validation of this species

« Explanation of molecular mechanisms of seasonal modulation
of fertility

« Improving ART procedures such as ICSI and embryo transfer

« Reproductive studies of donkey, horse, and mule to compare to
find out some unique limitations and possibilities

To resolve these problems, interdisciplinary cooperation, the use

of sophisticated molecular technologies, and the dedication to the
species-specific research framework will be needed.

Conclusion

The multifactorial nature of the reproductive inefficiency in
donkeys has its basis in the underrecognized physiological
peculiarity and the lack of specific molecular studies. This review
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offers convincing details of photoperiod-induced seasonal fertility,
metabolic endocrine imbalances, and anatomical differences that
determine reproductive fitness. New opportunities are available with
recent advances in ARTs, endocrinology, and histological profiling
as ways to improve fertility and conservation results. It is now
necessary to strategically invest in donkey-specific research and
comparative reproductive biology to deliver these insights into
productive breeding innovations and long-term species
sustainability. In addition, the combination of management practices
with molecular insights can increase reproductive efficiency,
improve animal welfare, and increase the productivity of the donkey
populations. Such integration of scientific basic research and applied
animal husbandry will be essential to overcoming the limitations
imposed by seasonal infertility and maximizing reproductive
performance in this important but often neglected species. So, to
boost farm production efficiency of seasonal breeders like donkeys,
upgrading reproductive efficiency by adopting cutting-edge animal
biotechnological tools and breeding technologies is the future of

donkey farming.
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