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The role of post-translational 
modifications in parvovirus life 
cycle
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Parvoviruses are a group of single-stranded DNA viruses that lack an envelope and 
are widely distributed in both vertebrates and invertebrates. When they infect a 
host cell, parvoviruses take over the cell’s translational machinery to support the 
viral genome replication and proteins synthesis, following which viral proteins 
undergo various post-translational modifications (PTMs). Parvovirus non-structural 
(NS) and capsid proteins are modified by PTMs, including phosphorylation, 
ubiquitination, SUMOylation, and glycosylation. Phosphorylation of parvovirus 
mainly occurs on NS and capsid proteins, modulating the functions and activities 
of the NS protein and the assembly of the capsid protein. Ubiquitination and 
SUMOylation of parvoviral capsid proteins mainly affect intracellular trafficking 
during viral infection. Glycosylation of parvoviral capsid proteins is involved in 
the regulation of virion stability and infectivity. In this review, we summarize the 
PTMs of parvovirus proteins and discuss their impact on the viral life cycle, which 
will help in understanding viral replication and pathogenesis.
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1 Introduction

Parvoviruses are a group of non-enveloped, single-stranded DNA viruses characterized 
by an icosahedral capsid measuring 18–26 nm in diameter. They exhibit a broad host range, 
infecting both vertebrates and invertebrates (1). Taxonomically, the family Parvoviridae is 
divided into three subfamilies: Parvovirinae, Densovirinae, and Hamaparvovirinae, as well as 
the genus Metalloincertoparvovirus (2). The viral genome, which is approximately 5 kb in 
length, contains left and right open reading frames (ORFs) that encode viral nonstructural 
(NS) proteins [called Rep proteins in adeno-associated virus (AAV) and goose parvovirus 
(GPV)] and capsid proteins, respectively (3). The ORFs are flanked by 5′ and 3′ terminal 
hairpin structures, which are essential for the regulation of viral gene expression (4). However, 
owing to the restricted coding capacity of the parvovirus genome, parvoviruses heavily depend 
on host factors and cellular machinery to perform the viral replication process after invading 
host cells.

In parvoviruses, the capsid is responsible for the adsorption of receptors and enters cells 
via the clathrin-dependent endocytic pathway (5). Under the navigation of nuclear localization 
signals, the capsid is transported to the nucleus through the endosomal pathway to release the 
viral genome (6–8). Without a viral DNA polymerase, parvoviruses rely solely on DNA 
replication machinery within the nucleus (9). With the aid of host factors (10, 11), parvoviral 
precursor mRNA is transcribed to generate matured mRNA transcripts that encode NS and 
capsid proteins in the cytoplasm, where they undergo post-translational modifications (PTMs).

PTMs are crucial biochemical processes in eukaryotic cells, wherein specific enzymes catalyze 
the formation of covalent bonds on one or more amino acid residues of target proteins. Common 
PTMs, including acylation, glycosylation, methylation, phosphorylation, ubiquitination, and 
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SUMOylation, play a pivotal role in regulating protein conformation, 
stability, activity, subcellular localization, and interactions with other 
proteins (12, 13). As intracellular parasites, viruses are modified by 
various PTMs during the viral infection process, which are involved in 
viral replication, assembly, release, and immune evasion. For instance, 
phosphorylation of VP8 in bovine herpesvirus 1 promotes viral DNA 
encapsidation in cells (14); glycosylation of the SARS-CoV-2 S protein 
shields its epitopes and enhances viral immune evasion (15). Similar to 
other viruses, PTMs also play an important role in the parvovirus life 
cycle. In this review, based on recent advances in PTM research on 
parvoviruses, we summarize the current knowledge of the PTMs of 
parvoviral proteins, including NS and capsid proteins. We also discuss 
the impact of PTMs on the parvoviral life cycle, which may help us better 
understand parvoviral replication and pathogenesis mechanisms.

2 Phosphorylation

2.1 NS protein

The large NS protein (NS1) of parvovirus is a multifunctional 
protein that possesses endonuclease, helicase, ATPase, and 
transcription-activating activities. These enzymatic activities are vital 
for initiating viral genome replication (16, 17) and regulating viral 
gene expression with the aid of host factors, which include the 
transcription factor Sp1/Sp3 and the TATA-binding protein (18, 19). 
However, its activities are heavily regulated by phosphorylation.

Phosphorylation of the parvoviral NS1 protein was first described 
in porcine parvovirus (PPV) in 1985 (20). Subsequent studies 
demonstrated that the Rep proteins of AAV, as well as the NS proteins 
of MVM and canine parvovirus (CPV), are also modified by 
phosphorylation (21–23). Biochemical activity analysis of MVM NS1 
revealed that phosphorylation increased its viral helicase, ATPase, and 
nickase activities (24), while dephosphorylation led to a dramatic 
reduction in these enzymatic activities, suggesting that the replication 
functions of MVM NS1 are regulated by phosphorylation. Further 
analysis of phosphorylation site localization revealed that the helicase 
domain of MVM NS1 was phosphorylated, and the T363, T394, T403, 
T435, and S473 were identified as phosphorylation sites (25). The 
rat-origin protein kinase C λ was found to target T435 and S473 of 
MVM NS1 to phosphorylate it, resulting in the activation of its 
helicase function for initiating viral DNA unwinding and replication 
(26). In addition, PKC η could accelerate the phosphorylation of 
MVM NS1, which is necessary for the production of viral double-
stranded concatemeric DNA intermediates during the early stage of 
virus replication (27).

The cytotoxicity of MVM NS1 is also regulated through 
phosphorylation. The parvovirus NS1 protein is the major effector that 
induces cytotoxicity in host cells (28–30). The C-terminus of MVM NS1 
is identified as a major regulator of NS1 cytotoxicity (31). Further 
mutation analysis indicated that phosphorylation at the T585 site located 
at the C-terminus of MVM NS1 showed higher toxicity to A9 cells (28). 
In addition, the phosphorylation sites T598 and T601, located at the 
C-terminus of CPV NS1, were found to determine CPV pathogenicity 
(23). Phosphorylated MVM NS1 may exert its cytotoxic by controlling 
host gene expression and binding host proteins. Specifically, it can induce 
cytotoxicity by significantly activating thyroid hormone signaling 
pathways in FREJ4 cells (32), promoting oncogene expression in FR3T3 
rat cells (33), and altering the synthesis of intracellular phosphorylated 

proteins (29). At the protein level, it also can interact with endogenous 
casein kinase II (CKII) to alter CKII’s activity, resulting in morphological 
and physiological alterations in host cells (34) and even cell lysis.

2.2 Capsid protein

Phosphorylation of viral structural proteins plays a crucial role at 
various stages of the viral life cycle, including recognition between 
intracellular host proteins and viruses, transport of viral proteins, capsid 
assembly, and genome packaging. For example, phosphorylation of the 
influenza virus nucleoprotein is vital for the assembly of 
ribonucleoprotein complexes (35). Phosphorylation of the core protein 
of hepatitis B virus is essential for the nuclear import of viral RNA and 
the stability of viral capsid proteins (36). Current research has found that 
the structural proteins of parvoviruses also undergo phosphorylation, 
which primarily regulates the assembly of capsid proteins.

In parvoviruses, the structural proteins include two or three 
capsid proteins (VP1-2 or VP1-3). Phosphorylation of parvoviral 
capsid proteins has been identified in MVM, PPV, and AAV (20, 
37–39). MVM VP1 and VP2 are phosphorylated at serine and 
threonine residues located at the N-terminus in NB324K cells (37). 
The VP2 N-terminal sequence has been identified as the major 
phosphorylation domain harboring four phosphorylated residues 
including S2, S6, S10, and S16. Mutation analysis revealed that the 
major phosphorylation site S2 significantly affects the viral plaque-
forming ability and plaque size, suggesting that it may primarily 
influence the viral budding or release process (37). Further research 
has indicated that the phosphorylated N-terminus of VP2 acts as a 
nuclear export signal, promoting the nuclear export of progeny viral 
particles during the replication process (40). In addition, 
phosphorylated residues on the viral particle surface are also required 
for this process (41). The progeny particles exported into the 
cytoplasm are further modulated through sequential processing in 
the endoplasmic reticulum and Golgi apparatus, where full infectivity 
of the viral particles is conferred (42).

Similar to nuclear export, the nuclear import of MVM capsid 
proteins also requires phosphorylation by the Raf-1 kinase in the 
cytoplasm (43, 44). The capsid proteins phosphorylated by the Raf-1 
kinase enhance nuclear import and can be  transported into the 
nucleus for completing progeny particle assembly (43). However, 
parental AAV capsids with tyrosine phosphorylation in the cytoplasm 
exhibit inefficient nuclear import ability (39), suggesting that this 
modification may trigger host defense mechanisms.

The NS1 proteins of parvoviruses share relatively high sequence 
homology across different genera, especially within the helicase 
domain, and perform similar functions in viral genome replication. 
Protein sequence alignment based on the helicase domain of MVM, 
CPV, PPV, parvovirus B19, AAV, human bocavirus (HBoV), and GPV 
(Figure 1A) showed that the phosphorylation sites of T394, T403, and 
S473 on MVM NS1 are conserved among these parvoviruses, 
suggesting that phosphorylation plays a critical role in the helicase 
activity of parvovirus NS1 and viral genome replication. Notably, the 
ser in the second site of VP2 is conserved among MVM, CPV, PPV, 
and HBoV (Figure 1B), meanwhile the tyr in the second site of GPV 
and B19 VP2 may serve as a potential phosphorylation site, indicating 
that phosphorylation also governs the nuclear import and export 
dynamics of viral progeny proteins, facilitating viral maturation 
and release.
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3 Ubiquitination and SUMOylation

Ubiquitination of parvoviral capsid proteins was first identified in 
AAV type 2 (AAV2) in 2000 (45). Using liquid chromatography and 
mass spectrometry analysis, some conserved ubiquitination sites on the 
AAV capsid surface were found in AAV4, AAV5, AAV9, and AAVrh10 
(38, 46). These findings suggest that ubiquitination of viral capsid 
proteins may affect the parvoviral life cycle. In AAV2-infected cells, the 
viral intracellular trafficking is enhanced by treating cells with 
proteasome inhibitor MG132 (46, 47). Furthermore, mutation of 
ubiquitination sites in the AAV2 capsid protein, such as K490, K544, 
K549, and K55, significantly promoted the transduction efficiency of 
AAV2 both in vitro and in vivo (48–50). In addition, inhibition of the 
EGFR-PTK signaling pathway mediating ubiquitination of the AAV2 
capsid protein also increased the trafficking efficiency of AAV2 (51). In 
contrast, the ubiquitin–proteasome pathway is required for the 
replication of MVM and CPV. Inhibiting the ubiquitin–proteasome 
pathway using MG132  in MVM- and CPV-infected cell abolished 
MVM and CPV replication (52), which is similar to what has been 
observed with human immunodeficiency virus and Rous sarcoma 
virus (53, 54). In addition to parvoviral capsid proteins, MVM NS2 and 
AAV Rep proteins also undergo ubiquitination modification and 
subsequent proteasomal degradation (55–57). However, the specific 
mechanism between the degradation of NS2 or Rep proteins via the 
proteasomal degradation pathway and viral replication remains to 
be elucidated.

In addition to ubiquitination, both the Rep and capsid proteins of 
AAV2 undergo SUMOylation (38, 58). SUMOylation of AAV2 Rep78 
has been demonstrated to regulate its stability and extend its half-life 
(58). Similar to ubiquitination, SUMOylation of AAV capsid proteins has 
been shown to influence the efficiency of intracellular transduction (38). 

Inhibition of the SUMOylation pathway in AAV2-infected cells resulted 
in increased transduction efficiency within the cells (59). Furthermore, 
a systematic screening method using an siRNA library was employed to 
identify host factors regulating viral replication. This screening revealed 
that multiple host factors involved in the SUMOylation signaling 
pathway regulate AAV infection (60). Further knockdown of the 
SUMOylation components Ubc9 and Sae2 significantly enhanced AAV2 
transduction. Mechanistic studies have revealed that AAV infection 
activates the intracellular SUMOylation machinery, which subsequently 
restricts AAV transduction efficiency (61).

As a delivery vehicle for gene therapy, the AAV vector cannot 
encode viral proteins to antagonize host restriction factors inherent to 
cellular defense mechanisms, since the AAV vector maintains a 
simplified structure composed solely of an exogenous therapeutic 
genome packaged within capsid proteins. Therefore, further 
optimization of the vector’s ubiquitination and SUMOylation target 
sites could improve delivery efficiency.

4 Glycosylation

Glycosylation is one of the most crucial post-translational 
modifications and regulates enveloped virus infection by mediating 
receptor binding, facilitating protein folding and trafficking, and 
participating in immune evasion (62, 63). However, there is very little 
information on parvoviral protein glycosylation. To date, glycosylation 
has been detected only in the capsid proteins of AAV2, AAV3, AAV5, 
AAV7, AAV8, AAV9, and AAVrh10using liquid chromatography and 
mass spectrometry analysis (38, 64, 65). Specifically, residue N499 of 
the AAV8 capsid protein and residue N253, N518, S537, and N551 of 
the AAV2 capsid protein have been identified as N-linked glycosylation 

FIGURE 1

Schematic diagram showing the localization of potential phosphorylation sites in parvoviral NS1 helicase domain and the N-terminus of VP2. 
Alignment of the parvoviral helicase domain of the NS1 sequence (A) and the N-terminus of the VP2 sequence (B) The numbers on the left and right 
represent amino acid positions. The conserved residues in the helicase domain of parvovirus NS1 are highlighted with red lines. The identified 
phosphorylation sites in the MVM NS1 helicase domain and N-terminus of VP2 are indicated by the inverted red triangle. The potential phosphorylation 
sites are indicated in green font. The GenBank accession numbers for the NS1 or Rep and VP2 proteins of parvoviruses are as follows: the GenBank 
accession number for AAV2 Rep78 and VP2, CPV NS1 and VP2, HBoV NS1 and VP2, GPV Rep1 and VP2, PPV NS1 and VP2, and B19 NS1 and VP2 are 
DQ180605, DQ180605, KP710213, KC996729, AY684872 and AB030673, respectively; the GenBank accession number for MVM NS1 and VP2 are 
NP_041242 and J02275, respectively.
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sites (38, 64). In addition, both N- and O-linked glycosylation sites 
have been detected in the AAV9 capsid protein (65). Mutation analysis 
revealed that the AAV2 capsid protein with the N253Q mutation 
resulted in a considerable reduction in vector yield compared to AAV2 
wild-type vectors, suggesting that glycosylation of the capsid is critical 
for virion assembly and stability (64). On the other hand, a number of 
potential glycosylation sites in the capsid protein of GPV, Muscovy 
duck parvovirus, and Aleutian mink disease virus have been predicted 
based on bioinformatic analyses of the capsid protein sequences (66, 
67). These studies suggest that capsid protein glycosylation may be a 
conserved feature among all parvoviruses. However, the molecular 
mechanism by which parvoviral capsid glycosylation modulates viral 
tissue tropism, intracellular trafficking, infectivity, and immunogenicity 
remains to be further studied.

To date, glycosylation of NS proteins in parvovirus has not been 
reported. Whether the NS proteins of parvovirus possess glycosylation 
sites and whether these modifications affect NS proteins’ function and 
activity are yet to be uncovered.

5 Discussion

As an intracellular parasite, parvovirus relies heavily on a variety of 
cellular mechanisms to accomplish its life cycle. During parvoviral 
infection, parvovirus proteins undergo phosphorylation, ubiquitination, 
SUMOylation, and glycosylation (Table 1). Glycosylation has been 
detected in parvovirus capsid proteins and may regulate virion stability, 
receptor binding, immunogenicity, and other functions. Meanwhile, 
phosphorylation not only regulates the NS1 protein’s function activity 
and cytotoxicity but also promotes the assembly and maturation of 
progeny virions. Ubiquitination and SUMOylation restrict parvovirus 
infection, resulting in inefficient intracellular trafficking of viral capsids 
within cells. Nevertheless, how other PTMs—including, but not limited 
to, lipidation and methylation—modulate parvoviral replication 
dynamics remains to be fully characterized. Parvoviruses are promising 
vectors for gene therapy and oncolytic virotherapy. Further studies on 
parvoviral PTMs will contribute to the development of novel 
bioengineered gene therapy vectors and novel inhibitors.

To counteract viral infection, host cells deploy a broad spectrum 
of antiviral defenses, including interferon-induced antiviral factors and 

cell-intrinsic restriction factors, which directly target viral proteins or 
genomes. However, type I  interferon signaling fails to effectively 
suppress infections by autonomous parvoviruses and AAV2 in both 
normal human and cancer cells (68). Cell-intrinsic restriction factors 
likely play an important role in the host’s defense against parvoviruses. 
Systematic screening of these antiviral factors, coupled with 
mechanistic studies of their viral targets, will provide a solid foundation 
for the development of gene therapy vectors with improved safety 
and efficacy.

Author contributions

PL: Writing  – original draft, Writing  – review & editing. LY: 
Investigation, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This research was supported 
by the Regional First-Class Discipline of Ecology in Guizhou 
Province (XKTJ [2020]22), Dongfeng Lake and Liuchong River Basin of 
Observation and Research Station of Guizhou Province (grant no. 
QKHPTYWZ [2025]002), and the Science and Technology Project of 
Bijie city of open competition mechanism to select the best candidates 
(grant no. BKHZDZX [2023]1).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

TABLE 1 Effects of PTMs of parvoviral proteins on the virus.

Modification Related protein Impacts on the virus Reference

Phosphorylation

PPV NS1 Unknown 20

MVM NS1 Regulates the NS protein’s enzymatic activity, cytotoxicity, and attachment to viral DNA 22, 24, 25, 31

AAV Rep Promotes viral DNA synthesis 23

MVM VP1 and VP2 Facilitates viral maturation and release 37, 40, 41, 43, 44

AAV capsid proteins Inhibits the intracellular trafficking process 38, 39

Ubiquitination

AAV capsid proteins Inhibits the intracellular trafficking process 38, 45–47

MVM NS2 Degrades viral NS2 55

AAV Reps Degrades viral Rep proteins 56, 57

SUMOylation
AAV2 Rep78 Regulates the Rep78 protein’s stability and half-life 58

AAV2 capsid proteins Inhibits the intracellular trafficking process 38, 59

Glycosylation AAV capsid proteins May regulate virion stability and infectivity. 38, 64, 65

AAV Reps represent the viral proteins Rep78, Rep52, and Rep40.
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