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E�ector protein functions of Type III secretion system (T3SS) encoded by

Salmonella pathogenicity islands 2 (SPI-2) have not been fully characterized in

Salmonella enterica serovar Choleraesuis. This study characterized 21 e�ectors

of SPI-2 T3SS of S. Choleraesuis in terms of macrophage survival and virulence

in mice via construction of various gene mutant strains. Eight e�ector genes

including sseF, sseJ, sifB, sseK, sifA, sopD2, steC, and steD contributed to

bacterial survival in macrophage cell line RAW264.7; whereas only sopD2 also

promoted bacterial virulence in mice like other three e�ector genes sseL, steA,

and spiC. The mutant strain, 1sopD2, 1sseL, 1steA, or 1spiC, led to higher

mouse survival compared to the wild-type strain post-oral infection, while

their bacterial loads in spleen and liver were not reduced except the 1spiC

that was undetectable in mouse tissues. Then, the triple-gene mutant strain

1sseL1sopD21steAwas constructed and found to be virulence attenuated with

a compromised colonization ability. Finally, immunization of this mutant orally

induced robust serum IgG responses and provided 40% protection against lethal

S. Choleraesuis challenge. Our study highlights the critical role of four SPI-2 T3SS

e�ectors in S. Choleraesuis pathogenesis.
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1 Introduction

Salmonella enterica serovar Choleraesuis (S. Choleraesuis) is a zoonotic pathogen

causing swine paratyphoid, characterized by enterocolitis and septicemia, which imposes

substantial economic burdens on global swine husbandry (1, 2). Although S. Choleraesuis

is adapted to pigs, it is also a major cause of life-threatening septicemia, particularly
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in children and immunocompromised individuals in East Asia

and Europe (3, 4). Human infections frequently arise from direct

contact with infected swine or ingestion of contaminated pork-

derived products (1, 5). Due to the excessive use of antibiotics and

environmental diversity, the emergence of multidrug-resistant S.

Choleraesuis strains has become increasingly prevalent (6–8).

Vaccination represents the most cost-effective prophylactic

strategy for disease control, effectively reducing antibiotic use

and retarding the emergence of antibiotic resistance (9). The live

vaccine strain C500 obtained by chemical mutagenesis has been

used in China for more than 40 years to prevent paratyphoid

fever in piglets (10). However, it still has non-negligible side effects

related to residual toxicity, leading to adverse reactions in animals

after vaccination and the genetic background of the vaccine is still

unclear (11). Notably, there is no available vaccine for human use

to date. Therefore, it is urgent and necessary to devise an innovative

and efficacious vaccine against this important pathogen.

Understanding the mechanisms underlying bacterial

pathogenesis is essential for the development of live attenuated

vaccines. The Salmonella pathogenicity islands 2 (SPI-2) type III

secretion system (T3SS) has been found to be essential for bacterial

virulence of S. Typhimurium (12). This system promotes bacterial

replication within membrane-bound Salmonella-containing

vesicles (SCV) in host macrophages via production of various

effector proteins (13). Loss of some effector genes sseF, sseG, and

sseM that maintain bacterial nutrient acquisition within vesicles

significantly reduces the replication ability of S. Typhimurium

in host cells (14, 15). Effectors SpvB and SteC manipulate the

actin cytoskeleton, affecting bacterial replication and subsequently

impacting bacterial virulence (16, 17). Mutations in SPI-2 T3SS

effectors can attenuate virulence, positioning them as promising

candidates for live attenuated vaccines (18).

Despite their recognized importance, the specific roles of

individual SPI-2 T3SS effectors in S. Choleraesuis virulence

remain poorly characterized. This study aims to characterize

SPI-2 T3SS effectors of S. Choleraesuis via construction of

various single effector gene deletion strains. The mutant strains

were systematically evaluated for their intracellular survival in

macrophages, growth curves and swimming, and virulence in

mice. Then, a triple mutant strain (1sseL1sopD21steA) was

constructed based on virulence effectors and its protection efficacy

was finally evaluated.

2 Materials and methods

2.1 Bacterial strains and growth conditions

A complete list of all bacterial strains and plasmids utilized

in the experiments is provided in Supplementary Tables S1, S2.

Salmonella Choleraesuis CVCC2139 was referred to as the

wild-type (WT) strain for genetic manipulation to construct

the indicated mutants. The Escherichia coli (E. coli) SM10

λ pir strain (19) served as the host for transferring suicide

plasmids. All bacterial strains were cultured in Luria Bertani (LB)

broth or agar at 37◦C containing the appropriate antibiotics:

25µg/mL chloramphenicol, 100µg/mL ampicillin, and 50µg/mL

2,6-diaminopimelic acid. For counterselecting mutant constructs

via the sacB gene system, NaCl-free LB agar supplemented with

12.5% (w/v) sucrose was used.

2.2 Construction of the S. Choleraesuis

mutant and complemented strains

Twenty-two S. Choleraesuis mutants were generated via

allelic exchange, employing the suicide plasmid pRE112 as

previously detailed (20). The primer sequences designed for

gene deletion or complementation in S. Choleraesuis strains

are detailed in Supplementary Table S3. To generate the 1sseJ

mutant, upstream and downstream homologous arms were PCR-

amplified using primer pairs DsseJ-1F/1R and DsseJ-2F/2R,

respectively. These PCR products were joined by overlap PCR

and subsequently cloned and inserted into the suicide vector

pRE112 (21) through seamless cloning generating plasmid pRE112-

1sseJ, which carries a deletion of the entire sseJ gene. The

pRE112-1sseJ plasmid was subsequently introduced into the WT

strain via conjugation. This process involved chloramphenicol-

mediated positive selection and sacB-mediated sucrose sensitivity

screening for the generation of the markerless mutant strain

1sseJ. Furthermore, to complement sseJ gene in the 1sseJ, the

coding sequence of sseJ were amplified with the primer sseJ-

F/R. Then, the PCR product was inserted into the plasmid

of pCZb1 (20) via a Seamless Cloning Kit (Sangon Biotech,

Shanghai, China), generating plasmid pCZb1-sseJ. Following, the

recombinant plasmid was transformed into the mutant strain1sseJ

to construct the complemented strain named C-1sseJ. The same

method was applied to constructions of other gene mutants and

complemented strains.

2.3 Detection of growth curves of S.
Choleraesuis strains

The S. Choleraesuis WT and mutant strains were inoculated in

5mL of LB broth at 37◦C with shaking at 180 rpm/min overnight.

The following day, cultures of each strain were normalized to an

OD600 of 0.05 and then cultured in LB broth at 37◦C with shaking

at 180 rpm/min. The OD600 of each culture was measured every 2 h

for 12 h.

2.4 Swimming assay

The swimming motility phenotypes of wild-type (WT) and

mutant bacterial strains were evaluated using a previously

described protocol (22). Cultures of each strain were grown

in LB broth to an optical density (OD600) of 0.6–0.8. Bacteria

were harvested by centrifugation, washed twice with PBS, and

resuspended in the same buffer. Subsequently, 3 µL of the

bacterial suspension was applied as droplets to LB agar plates

containing 0.25% agar. After incubation at 37◦C for 6 h, the

diameter of the bacterial migration zone was measured to assess

swimming motility.
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2.5 Adhesion, invasion and intracellular
survival of S. Choleraesuis in macrophages

RAW264.7 macrophages were plated at a density of 5 × 105

cells per well in 24-well plates containing DMEM (Gibco, NY,

USA) supplemented with 10% FBS (Tian Hang, Hangzhou, China)

and 1% penicillin-streptomycin. S. Choleraesuis WT or mutant

strains were added at a multiplicity of infection (MOI) of 100.

Following a 30-min incubation in a 5% CO2 at 37◦C incubator

to facilitate bacterial adhesion, cell monolayers were washed thrice

with PBS to remove non-adherent bacterial cells. The adherent

bacteria were then released by lysing the cells with 0.2% Triton

X-100, and their numbers were enumerated via serial dilution and

colony counting.

For the invasion assay, after the 30-min adhesion step, fresh

DMEM was added and cells were incubated for an additional

90min at 37◦C under 5% CO2. After incubation, the supernatant

was discarded, cells were washed twice with PBS and lysed using

0.2% Triton X-100 to enumerate intracellular bacteria.

For intracellular survival analysis, following the invasion step,

DMEM supplemented with 10 ng/mL gentamicin was used to

eliminate extracellular bacteria. T = 0 h was defined as the initial

time point following invasion. At designated time points (T = 0 h

and 24 h), serial dilutions of the resulting cell lysates were then

plated onto MacConkey agar (Coolaber, Beijing, China) plates for

bacterial enumeration and incubated at 37◦C for 24 h to count

colony-forming units (CFUs).

2.6 Colonization and virulence of
S. Choleraesuis mutant strains in mice

Female Kunming mice (6 weeks old) were procured from

Dashuo Experimental Animal Ltd. (Chengdu, China) and

underwent a 1-week acclimation period before experimental

procedures. Bacterial colonization and virulence phenotypes were

evaluated using methodologies reported in prior studies (20, 22).

Ten mice were orally inoculated with PBS or approximately

1 × 108 CFU of S. Choleraesuis WT strain or each mutant strain.

Then, spleens and livers were collected from 5 mice at 6 days

post-infection. The samples were weighed, ground in PBS, and

the bacterial suspensions were serially diluted and spread onto

MacConkey agar (Coolaber, Beijing, China) to enumerate viable

CFUs, which were expressed as log10 CFU/g. The remaining

5 mice in each group were observed for survival for 1 month

after infection.

2.7 Measurement of 50% Lethal dose
(LD50) of the 1sseL1sopD21steA strain

The LD50 of the 1sseL1sopD21steA was determined as

previously described (23). 10-fold serial dilutions of the CFU

of the 1sseL1sopD21steA strain were orally inoculated into

groups of Kunming mice (n = 5/per dose). Animals were

monitored daily for 30 days post-infection to assess survival

rates. The median lethal dose (LD50) was determined using

the Reed-Muench method. To ensure humane endpoints,

mice exhibiting severe distress—characterized by labored

breathing, tremors, unresponsiveness to tactile stimuli, or inability

to access food/water—were humanely euthanized via CO2

inhalation. Deceased animals were immediately subjected to

sterilization, sealed in biohazard bags, and transferred to the

Sichuan Agricultural University Laboratory Animal Center for

compliant biosafety disposal.

2.8 Immunization and challenge

Female Kunming mice (6–8 weeks old) were randomly divided

into three groups (n= 20/group). The experimental group received

an oral gavage of 1 × 109 CFU 1sseL1sopD21steA in 200 µL

PBS, while the control group received an equal volume of PBS

alone. A booster immunization was administered on day 14 using

the same protocol. Serum samples were collected via retro-orbital

bleeding on days 7 and 21 from six randomly selected mice

per group. On day 42, all mice were orally challenged with 10-

fold LD50 of S. Choleraesuis CVCC2139. Five mice per group

were euthanized on day 6 post-challenge, and samples from the

spleen and liver were collected for measurement of bacterial loads.

Survival of the remaining mice was monitored and recorded daily

for 30 days.

2.9 Enzyme-linked immunosorbent assay
(ELISA)

Antibody titers against inactivated S. Choleraesuis antigens

were quantified using an indirect ELISA protocol as previously

described (24). In brief, 100 µL of 109 CFU/ml of the heat-

killed S. Choleraesuis antigens was added to wells of a 96-well

ELISA plate coated with antigen with overnight incubation at

4◦C. The next day, the plates were washed three times with

PBST followed by blocking with 5% BSA (BD, San Diego, CA)

in PBS at 37◦C for 2 h. Following antigen coating and blocking,

the plate was washed three times with PBST. Serum samples,

diluted 1:200 in blocking buffer (5% BSA in PBS), were added

to each well (100 µL/well) and incubated at 37◦C for 1 h in a

humidified chamber. The plate was then washed five times with

PBST to remove unbound antibodies. Subsequently, 100 µL of

HRP-conjugated goat anti-mouse IgG (Abclonal, Wuhan, China),

diluted 1:5,000 in antibody diluent, was added to each well and

incubated at 37◦C for 1 h. After five additional PBST washes,

the plate was ready for substrate development. 100 µL of TMB

substrate solution (Macgene, Shanghai, China) was added, and

the plates were incubated in the dark at 25◦C for 10min. After

adding 50 µL of 2M H2SO4 to stop the reaction, absorbance was

measured at 450 nm using a Bio-Rad microplate reader (Bio-Rad,

California, USA).
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2.10 Ethics statement

All animal procedures were conducted in strict adherence

to the Guide for the Care and Use of Laboratory Animals

published by China’s Ministry of Science and Technology. The

study protocol was approved by the Animal Ethics Committee

of Sichuan Agricultural University and the Sichuan Laboratory

Animal Management Committee (permit number: SYXK2019-

187), ensuring compliance with national and institutional

welfare guidelines.

2.11 Statistical analysis

Data are presented as the mean± standard deviation (SD) and

analyzed using one-way analysis of variance (ANOVA) followed

by Tukey’s post-hoc multiple-comparison test with GraphPad

Prism software (GraphPad Software, California, USA). Statistical

significance was defined as P < 0.05. All in vitro experiments were

independently repeated three times to ensure reproducibility.

3 Results

3.1 Roles of SPI-2 T3SS e�ectors of
S. Choleraesuis in bacterial adhesion to,
invasion into and survival within
macrophages

Twenty-one effector genes (sseJ, sseG, slrP, sseF, gtgE, gogB,

sspH, gtgA, sifA, sifB, sseK, steA, steC, sseL, sopD2, spiC, sseI,

pipB, pipB2, sopD, steD) were screened and each of them was

deleted from the WT S. Choleraesuis strain CVCC2139. The ssaV

mutant strain (1ssaV) was also constructed as a positive control

as the SsaV is a structural component forming the inner ring of

the SPI-2 T3SS injectosome that is involved in effector protein

translocation (25). Then, the mutant strains were compared to the

WT strain in terms of the ability of bacteria to adhere to, invade and

survive within RAW264.7macrophages. Deletion of the SPI-2 T3SS

effector genes neither affected bacterial adhesion to nor changed

bacterial invasion into macrophages (Figures 1A, B). Nevertheless,

bacterial replication in the mutant strain 1ssaV, 1sseF, 1sseJ,

FIGURE 1

Roles of SPI-2 T3SS e�ectors of S. Choleraesuis in bacterial adhesion to (A), invasion into (B) and survival (C) within macrophages. (A and B)

RAW264.7 cells were infected with WT or mutant strains (MOI = 100) for 30min at 37◦C. After PBS washing, adherent bacteria were quantified by

direct lysis and CFU counting. The adhesion rate = (Nadherent/Ninitial × 100%). For invasion, cells were further incubated for 1 h to invade, then lysed by

adding 0.2% triton X-100 then lysed for CFU counts. The invasion rate = (Ninvasive/Nadherent × 100%). C. For intracellular survival, invaded cells by the

S. Choleraesuis were further cultured for 24h. Then cells were lysed and bacterial counts were measured. Intracellular bacteria were quantified as

replication index (Nsurvival/Nadherent × 100%). Asterisks above the error bars indicate significant di�erences compared with the WT group. *P < 0.05;

**P < 0.01; ***P < 0.001.
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1sifB, 1sseK, 1sifA, 1sopD2, 1steC, or 1steD was significantly

decreased compared to that in the WT strain, while loss of either

of the other 13 genes had on adverse effects (Figure 1C). Gene

complementation in trans in the mutant strains fully or partially

restored the WT phenotypes (Figure 1C). This finding indicated

that effector genes including sseF, sseJ, sifB, sseK, sifA, sopD2, steC,

and steD promoted bacterial survival in macrophages.

3.2 Roles of SPI-2 T3SS e�ectors of S.
Choleraesuis in bacterial growth and
swimming

The 21 S. Choleraesuis mutant strains were subjected to

detection of growth curves and swimming. Compared to the WT

strain, the growth rates of the1gtgA,1steA,1spiC,1sopD2,1slrP,

1pipB2,1sopD, and1steD strains were significantly reduced in LB

broth at 37◦C (Figure 2A). In contrast, the remaining 14 mutants

exhibited similar growth rates to the WT strain (Figures 2B, C).

This finding suggested that the effector genes gtgA, steA, spiC,

sopD2, slrP, pipB2, sopD, and steD promotes the in vitro growth

of S. Choleraesuis. Also, swimming of the 1sseJ, 1slrP, 1sifB, and

1sopD2 mutants were significantly enhanced compared to that of

the WT strain, whereas the 1pipB2 and 1sspH strains exhibited

reduced motility (Figure 2D). Complementation of sseJ, slrP, sifB,

sopD2, pipB2and sspH in corresponding mutants restored WT

swimming phenotype. Therefore, the effector genes sseJ, slrP, sifB,

and sopD2 restrain the swimming ability of S. Choleraesuis, whereas

sspH and pipB2 positively influence motility.

3.3 Roles of SPI-2 T3SS e�ectors of S.
Choleraesuis in bacterial virulence in mice

To determine roles of the SPI-2 T3SS effector in virulence

of S. Choleraesuis, mice were orally administered with 1 × 108

CFU of the WT strain or each of the mutant strains. The survival

of mice was monitored for 1 month. The WT strain led to 40%

of survival post-infection, while the five strains including 1spiC,

1ssaV, 1sseL, 1sopD2, and 1steA caused no death (Table 1).

Also, 1gtgA, 1gtgE, 1sseF, 1sifA, and 1sspH resulted in increased

FIGURE 2

Detection of growth curves and swimming of S. Choleraesuis strains. (A–C) Growth curves of S. Choleraesuis WT and mutant strains were analyzed

by measuring OD600 every 2h for 12h. (D) Swimming assay. The WT strain, 22 mutant strains and complemented strains were cultured in LB to

OD600 = 0.6–0.8, harvested and suspended in PBS. Three microliters of bacterial suspension were spotted onto the center of a soft agar plate. Then,

colony diameters were measured after 6 h of incubation at 37◦C. An asterisk above the error bar shows a significant di�erence from the WT group.

*P < 0.05; **P < 0.01.
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survival (80%), by contrast, all mice succumbed to the 1steD

infection. The remaining strains caused a 40% or 60% survival

(Table 1). Thus, SPI-2 T3SS effector genes sseL, sopD2, and spiC, and

the gene ssaV contributed remarkably to S. Choleraesuis virulence

in mice, functioning as virulence genes. To further detect the

roles of the five virulence genes in bacterial colonization, mice

were inoculated with 108 CFU of the WT or mutant strains, then

bacterial loads in liver and spleen were measured 6 days post-

infection. No bacteria were recovered from the 1spiC and 1ssaV

groups. However, the bacterial loads of 1sseL, 1sopD2, and 1steA

in liver and spleen tissues were comparable to those of the wild-

type strain (Figures 3A, B). This finding suggests that the spiC and

ssaV contribute to the colonization of S. Choleraesuis in the liver

and spleen of mice, while sseL, sopD2, and steA are not involved in

bacterial colonization.

3.4 Virulence and colonization of the triple
mutant strain 1sseL1sopD21steA of
S. Choleraesuis mutants in mice

Although the two genes spiC and ssaV play a significant role in

bacterial virulence, their mutant strains lost colonization ability in

mice, hinting their poor immunogenicity. To develop a suitable live

attenuated strain, the other three virulence genes sseL, sopD2, and

steA were deleted from the WT strain simultaneously, generating

a triple mutant 1sseL1sopD21steA. This strain colonized of the

spleen and liver at a significantly lower level than the WT strain

post oral infection (Figure 4). Also, the LD50 of the triple mutant

was>1.65× 1010 CFU, demonstrating at least a 150-fold reduction

in virulence compared with that of the wild-type strain with the

LD50 of 1.08× 108 CFU (Table 2).

3.5 Protection e�cacy of the triple mutant
strain 1sseL1sopD21steA

To evaluate the vaccine potential of the attenuated strain

1sseL1sopD21steA, mice were orally administered with 109

CFU of the vaccine strain twice with an interval of 14 days

and then were challenged orally with a lethal dose of the

S. Choleraesuis WT strain 28 days post-second immunization.

Immunization with the 1sseL1sopD21steA induced significantly

higher serum IgG responses to whole bacterial antigens than with

the PBS group on Day 7 and 21 post-immunization (Figure 5A).

Following the challenge, the bacterial loads in the spleen and

liver of the 1sseL1sopD21steA group were significantly lower

than those in the PBS group (Figures 5B, C). Furthermore,

all the mice in the PBS control group died, whereas 40% of

the mice in the immunized group survived (Figure 5D). Thus,

immunization with the1sseL1sopD21steA strain induced a robust

antibody response, significantly reduced the tissue loads of the

challenge strain, and provided 40% protection efficacy against lethal

S. Choleraesuis infection.

TABLE 1 Survival rates of mice infected with S. Choleraesuis strains.

Strains Challenge dose (CFU) Survival Survival
rate

WT 108 2/5 40%

1spiC 5/5 100%

1sseL 5/5 100%

1sopD2 5/5 100%

1steA 5/5 100%

1ssaV 5/5 100%

1slrP 3/5 60%

1gogB 3/5 60%

1sseJ 2/5 40%

1sopD 3/5 60%

1sseI 2/5 40%

1gtgA 4/5 80%

1gtgE 4/5 80%

1sseG 2/5 40%

1sseF 4/5 80%

1sifA 4/5 80%

1sifB 3/5 60%

1sseK 3/5 60%

1pipB 2/5 40%

1steC 3/5 60%

1pipB2 2/5 40%

1steD 0/5 0%

1sspH 4/5 80%

PBS 5/5 100%

4 Discussion

Our comprehensive analysis of SPI-2 T3SS effectors in

S. Choleraesuis reveals multifaceted roles of individual effectors

in intracellular survival, systemic virulence, motility, and growth,

offering mechanistic insights into how this pathogen adapts to host

defenses and establishes infection.

None of detected SPI-2 T3SS effectors was involved in

the adhesion and invasion process of S. Choleraesuis to the

macrophage RAW264.7, which is in line with previous studies

on S. Typhimurium (26–29). We also observed notable effects

of effectors on bacterial motility and growth. Several mutants

exhibited reduced growth rates or altered swimming motility,

indicating that SPI-2 effectors also influence global physiological

fitness. Such effects may be mediated via metabolic reprogramming

or indirect transcriptional regulation. For instance, pipB2 has been

shown to alter host cytoskeletal tension and organelle dynamics,

which may feed back to bacterial stress signaling (30). Reduced

motility may compromise their ability to penetrate mucus layers or

disseminate systemically, further contributing to attenuation (31).
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RE 3

ction of bacterial loads in mice after infection with S. Choleraesuis strains. Kunming mice (n = 5/group) were inoculated with S. Choleraesuis WT

FIGU

Dete

strain and mutant strains orally, respectively. Then, the bacterial loads in spleens (A) and livers (B) were measured and calculated as log10 CFU/g. An

asterisk above the error bar indicates a significant di�erence from the WT group. ***P < 0.001.

FIGURE 4

Colonization of the triple mutant strain 1sseL1sopD21steA of S. Choleraesuis in mice. Mice were inoculated with S. Choleraesuis WT strain or the

1sseL1sopD21steA orally. Bacterial loads in spleen (A) and liver (B) tissues were quantified as log10 CFU/g. The asterisk above the error bar indicates

a significant di�erence compared with the WT group. ***P < 0.001.

TABLE 2 The LD50 of the S. Choleraesuis strains.

Strains Challenge dose (CFU) and death LD50
(CFU)

106 107 108 109 1010

WT 0/5 2/5 3/5 5/5 5/5 1.08× 108

1sseL1sopD2

1steA

0/5 0/5 0/5 0/5 1/5 >1.65× 1010

PBS 0/5

The spiCmutant strain of S. Enteritidis exhibits stronger swimming

ability (32); whereas deletion of the spiC of S. Choleraesuis did

not affect swimming. These contradictions suggested that some

effector molecules exhibit functional heterogeneity across different

Salmonella serovars.

Eight effector genes sseF, sseJ, sifB, sseK, sifA, sopD2, steC,

and steD significantly enhanced the survival of S. Choleraesuis

in macrophages, which highlights the core function of SPI-2

T3SS effector in maintaining intracellular survival and is largely

consistent with previous studies. Most of these effectors are

known to modulate SCV maturation, membrane dynamics, or

host trafficking pathways, helping bacteria to evade lysosomal

degradation and acquire nutrients. For instance, sifA stabilizes

the SCV membrane and recruits kinesin-1 via SKIP (33), while

sseF and sseG facilitate microenvironment construction (34).

The involvement of sopD2 and steD suggests a multi-effector

strategy to subvert host immunity: sopD2 interferes with Rab

GTPase-mediated trafficking (35), while steD downregulates

MHC II surface expression through host ubiquitination

machinery (36). However, SteC of S. Typhimurium barely

affects bacterial proliferation in macrophages (37). Interestingly,

steA and pipB2, although previously implicated in vacuole

positioning and actin remodeling (30, 38), had minimal impact

on intracellular survival in S. Choleraesuis, hinting at possible

functional redundancy or compensation by other effectors in

this serovar.

All the effectors associated with intracellular survival except

for sseJ and steD contribute to the virulence of S. Choleraesuis in

mice, while three virulence determinants (spiC, sseL, and steA) were

not related to bacterial intracellular survival. A previous study also

found that protein SseL was shown to enhance the virulence of S.

Pullorum by suppressing host NF-κB signaling but not affect the

intracellular bacterial survival (39). These findings indicated a lack

of strong correlation between intracellular replicative capacity and

systemic virulence.
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FIGURE 5

Antibody responses and protection e�cacy induced by the triple mutant strain 1sseL1sopD21steA. Mice were immunized orally with the attenuated

strain 1sseL1sopD21steA twice and then challenged with the S. Choleraesuis WT strain 28 days post-second immunization. Indirect ELISA was used

to detect serum IgG levels against whole bacterial antigens 7 days and 21 days post-immunization (A). Bacterial loads in the spleen (B) and liver (C)

were measured 6 days post-challenge. (D) Survival rates of mice were monitored over a 30-day period after challenge. Asterisks above the error bars

indicate significant di�erences compared with the PBS group. **P < 0.01; ***P < 0.001.

Construction of live attenuated bacterial vaccines should

balance the virulence and immunogenicity (40). However,

we found that the 1spiC of S. Choleraesuis as well as the

1ssaV was avirulent and colonized mouse liver or spleen

at levels below the threshold of detection. Too-low bacterial

loads in tissues imply low immunogenicity (41). Therefore,

the two strains were not considered as vaccine candidates

in our study. Compared to the currently licensed live

attenuated vaccine strain C500 in China, which was derived

through chemical mutagenesis and has been used for over

four decades, the 1sseL1sopD21steA strain developed in

this study presents both advantages and limitations. C500

has demonstrated high protection efficacy in piglets but

suffers from residual virulence and has an undefined genetic

background, which raise biosafety concerns and hinder its

broader application, particularly in immunocompromised hosts

(10). In contrast, the triple mutant strain constructed here is

genetically defined and rationally attenuated by deletion of

three characterized virulence genes, thereby reducing the risk

of reversion and enhancing safety. However, immunization

with 1sseL1sopD21steA conferred only moderate protection

(40%) against lethal challenge in mice, which is lower than

the reported protection level of C500 or other strains such

as the 1spiC mutant of S. Pullorum that offered more than

90% protection (18). This limited efficacy may be attributed

to its moderate tissue colonization and immunogenicity.

Therefore, further optimization is required, such as incorporating

additional immunostimulatory mutations or adjuvant

delivery strategies, to enhance both antigen persistence and

immune protection.
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