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Introduction:Hepatic masses are a common occurrence in veterinary medicine,

with treatment options largely dependent on the nature and location of the

mass. The gold standard treatment involves surgical removal of the mass, often

followed by chemotherapy if necessary. However, in cases where mass removal

is not feasible, chemotherapy becomes the primary treatment option. Accurate

lesion segmentation is crucial in such scenarios to ensure precise treatment

planning.

Methods: This study aimed to develop and evaluate a deep learning-based

algorithm for the automatic segmentation of hepatic masses in dogs. To achieve

this, 200 canine CT cases with hepatic masses were collected from two clinics

and the Antech Imaging Solutions database. Experienced veterinarians manually

segmented the lesions to provide ground truth data. 25/200 CTs were excluded

because they did not met the inclusion criteria. Finally, the algorithm was built

using the nnUNet v2 framework and trained on 130 cases with a 5-fold training

scheme. It was subsequently tested on 45 cases.

Results: The algorithm demonstrated high accuracy, achieving an average Dice

score of 0.86 and an Average Symmetric Surface Distance (ASSD) of 2.70 mm.

Conclusions: This represents the first report of a deep learning-based algorithm

for the automatic segmentation of hepatic masses in dogs using CT imaging,

highlighting its potential utility in clinical practice for improved treatment

planning.

KEYWORDS

liver mass, computed tomography, artificial intelligence, segmentation, dice score,

Hausdro� distance

1 Introduction

Hepatic neoplasm is a major health concern in veterinary medicine, and the prevalence
of hepatic lesions in neoplasm-affected patients is high (1). The reported incidence of
primary hepatic neoplasms ranges from 0.6% to 2.6%. However, most hepatic neoplasms
are secondary, with up to 36% of dogs with non-hepatic tumors showing hepatic
involvement (1). Surgery is the preferred treatment for primary hepatic neoplasms.
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However, in some cases, it may not be possible due to factors such as
comorbidities, tumor location, and invasion of vascular structures.
Recently, stereotactic body radiation therapy has been suggested as
an alternative treatment for certain patients with primary hepatic
neoplasms (2).

In human medicine, segmenting both the “normal” liver and
the hepatic mass is a standard practice, especially in cases where
liver resection is the chosen treatment approach. This practice
provides essential information about the residual liver volume,
which is crucial for surgical planning and postoperative outcomes.
Residual liver volume is a key factor in predicting liver function
post-surgery, as the liver must retain enough volume and healthy
tissue to sustain metabolic demands following resection. Studies
have shown that inadequate residual liver volume is associated
with higher risks of postoperative liver failure, hence the emphasis
on precise volume measurements of both the healthy liver and
the mass (3). In veterinary medicine, however, similar standards
for assessing residual liver volume post-resection are not well
established. Although automatic liver volume estimation methods
have been developed for dogs with normal hepatic function (4),
these methods primarily focus on assessing the total liver volume
in cases of normal liver anatomy. They have not been adapted for
segmenting and estimating liver volumes in cases where hepatic
masses are present, which would be necessary for determining
residual volume following a resection. The lack of standardized
guidelines and validated protocols for residual volume assessment
in veterinary species limits the application of these techniques in
clinical veterinary practice.

Broadly speaking, the applications of artificial intelligence (AI)
in veterinary diagnostic imaging can be categorized into three areas:
lesion detection, lesion classification, and lesion segmentation (5).
The most widely investigated application is, by far, lesion detection,
especially on thoracic radiographs (5–9), and orthopedics (10, 11).
AI algorithms have been applied for the purpose of classifying
lesions across various domains. Notably, they have been utilized
in assessing the quality of thoracic radiographic images (12,
13), as well as in forecasting the malignancy of meningiomas
(14–16). Semantic segmentation algorithms for automatic lesion
segmentation have been developed for the automatic segmentation
of retropharyngeal lymph nodes (17), of head and neck tumors (18)
and normal kidneys (19).

Lesion segmentation (LS) is a fundamental, yet time-
consuming, task in oncological clinical practice since treatment
planning is strictly related to dimension and location (18).
Furthermore, LS is paramount for assessing the response to
treatment in longitudinal imaging studies. Nowadays, LS is
often performed manually by well-trained personnel using
dedicated software. Manual LS is usually very accurate, but
is, as previously mentioned, time-consuming and operator-
dependent, and, therefore, AI-based segmentation methods are
often preferred over manual LS (3). As far as the authors are
aware, no widely available AI-driven software exists for the
automatic segmentation of CT or MR images. However, in human
medicine, several pieces of software have received FDA clearance
(https://www.fda.gov/medical-devices/software-medical-device-
samd/artificial-intelligence-and-machine-learning-aiml-enabled-
medical-devices). This study aims to develop and test an AI-based

algorithm for automatically segmenting liver masses from canine
CT studies.

2 Materials and methods

2.1 Data collection

The primary goal of this data collection was to build a
comprehensive dataset of CT studies featuring hepatic masses in
dogs. This dataset would be utilized to train, test, and validate
an automatic segmentation algorithm. To enhance the algorithm’s
generalizability and reduce the risk of selection bias, we aimed to
include data from the widest possible range of CT scanners. To
gather the data set, we retrospectively searched the databases of
the University of Padua, the Pedrani Clinic, and Antech Imaging
Services for CT studies conducted in dogs with liver masses
or nodules between January 2019 and December 2023. Ethical
approval was waived due to the retrospective nature of the study.
Informed consent for personal data processing was obtained from
the owners. All experiments were performed in accordance with
relevant guidelines and regulations. Keywords, such as “Hepatic
Mass,” “Liver Mass,” “Liver nodule,” and “HCC,” were employed
to retrieve relevant studies. To date, there is no widely accepted
distinction between nodules and masses. Therefore, both terms
were used in the search. Due to the broad nature of these search
terms, the initial results included many unrelated cases, which
were then manually filtered based on CT reports to identify the
relevant studies. The selected cases were saved in Digital Imaging
and Communications in Medicine (DICOM) format in a separate
folder, ensuring that both the CT scans and associated reports
were fully anonymized. Only delayed-phase CT scans were used for
lesion segmentation. As stated above, due to the lack of a widely
accepted distinction between nodules and masses, we included all
CT scans with up to two focal liver lesions in the initial phase CT
scans showing disseminated liver disease were excluded.

2.2 Ground truth determination

To train segmentation algorithms, it is essential to create
segmentation masks, that are binary volumes that capture the
spatial information of the lesion within the selected volume. To
generate these masks, we used the free software 3D Slicer (20).
The selected volumes were imported into 3D Slicer and visually
inspected to ensure the absence of significant imaging artifacts and
to assess image quality.

The contouring process began with manual delineation of the
lesions on a subset of images. Gaps were then filled using pre-
installed automatic filling tools. However, because lesions often
have irregular shapes, the automatic tools frequently fail to produce
accurate contours, necessitating manual adjustments. These steps
are crucial since the lesions usually span multiple CT slices.
Manually contouring every slice, particularly in cases of large
lesions that can extend across hundreds of contiguous slices, would
be extremely time-consuming. Finally, the original volume and the
segmentation mask were saved in different files.
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In the current study, we opted not to segment the normal liver
due to the absence of specific veterinary guidelines on residual
liver volume assessment. Without established thresholds or criteria
for “safe” residual liver volume in dogs, segmenting only the mass
provides sufficient information for diagnostic purposes without the
added complexity of delineating normal hepatic tissue.

2.3 Model architecture

In this study, we employed the nnUNet v2 framework,
widely regarded as a state-of-the-art solution for medical image
segmentation tasks (21). This framework offers a robust baseline
and supports extensive experimentation due to its customizable
architecture. The nnUNet v2 model is built on the U-Net
architecture, featuring an encoder-decoder structure with both
short and long skip connections (22). The encoder extracts image
features by progressively downsampling the input, while the
decoder generates the output segmentation mask by upsampling
from the latent feature space. For this study, we used the Residual
Encoder (ResEnc) variant (23) of nnUNet v2 in size L. This variant
integrates residual connections within the encoder to mitigate the
vanishing gradient problem during training, allowing for the use of
deeper networks. Residual connections also enhance information
flow across layers, contributing to more efficient learning.

As optimal configurations for nnUNet are currently
undetermined, we trained four distinct configurations to evaluate
performance.

1. 2Dmodel: This model worked by processing individual slices of
the volumetric CT scans, treating each 2D slice independently.
This approach is computationally efficient and is particularly
useful when the inter-slice context is less critical for the
segmentation task.

2. 3D low-resolution model: This model used downsampled 3D
volumes, allowing it to capture spatial context across multiple
slices. This configuration balances the use of 3D context while
reducing memory requirements during training.

3. 3D full-resolution model: This model operated on high-
resolution 3D data, preserving the full detail of the original scan.
It leverages detailed spatial relationships in the volume, though
it is more computationally demanding.

4. 3D cascade model: This approach combined both the 3D low-
resolution and 3D full-resolution models. It first used the 3D
low-resolution model to generate a rough segmentation, then
refined it using the 3D full-resolution model.

2.3.1 Training configuration
The model was trained from scratch on the dataset using a 5-

fold cross-validation approach. The data was split into training and
validation sets in the 80/20 ratio for each of the folds. A separate
set of 45 cases was reserved for testing, allowing us to evaluate the
generalization capability of the trained model. The training and
evaluation pipeline is visible in Figure 1.

For each fold, we trained a separate model with the specified
configuration. This means that for each model in Table 1, five
individual models were trained, one for each fold. During inference,
all five models were used, combining their predictions by summing
the logits (the model’s output values before applying the sigmoid
function) and then averaging the sum by dividing it by 5, the
number of folds.

The training parameters, including learning rates and batch
sizes, were automatically adapted based on the characteristics of
the data. Details of the training setup are provided in Table 1. The

TABLE 1 Preprocessing configuration for each of the models.

Model Spacing Patch size Batch size

2D 0.586, 0.586 512, 512 35

3D low-resolution 1.583, 0.811, 0.811 128, 256, 224 2

3D full-resolution 1.250, 0.586, 0.586 112, 224, 224 2

3D cascading 3D Low-Res→ 3D Full-Res

FIGURE 1

Pipeline visualization. A separate test set of 45 cases was split from the annotated data. All the training files influenced the model configuration. The

training was done on 5 folds of the training data. Four di�erent models were trained, and finally the test data was used for evaluation.
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input data consisted of CT images of liver lesions. These images
were preprocessed by resampling to a common voxel spacing of 1
mm and then normalized.

2.3.2 Loss function and optimization
We used a Soft Dice Coefficient combined with Cross-Entropy

loss as the objective function during training. For optimization, the
Stochastic Gradient Descent (SGD) optimizer was employed, with
an initial learning rate of 1 × 10−2, weight decay of 3 × 10−5, and
Nesterov momentum of 0.99. A polynomial learning rate decay
schedule was used to adjust the learning rate over the course of
training.

The model was trained using a 5-fold cross-validation
approach. The training data was split into training and validation
sets with the 80/20 proportion for each of the folds. Additional X
cases were used as a test set to evaluate the generalization capability
of the model.

All training was done on 12 CPU cores configured with 15 Gb
of memory for each. For GPU, an Nvidia A100-SXM4-40GB model
was utilized with 400 W of power draw with CUDA version 12.1.

2.4 Evaluation metrics

Evaluating automatic segmentation methods involves using
some metrics that might be unfamiliar to some readers. Indeed,
a pixel-wise comparison of the correspondence between the
ground truth for the segmentation performed by the experts
and the segmentation predicted by the algorithm has to be
performed. To this end, three fundamental metrics are used:
the Dice similarity coefficient (DSC), Aggregated Dice Similarity
Coefficient (DSCAgg), and the Average Symmetric Surface
Distance (ASSD).

The DSC is calculated using the following formula:

DSC =
2(A ∩ B)

(|A| + |B|)
(1)

Basically, the Dice similarity coefficient is a measure used to
calculate how similar two sets or groups are—the ground truth for
the segmentation performed by the experts and the segmentation
predicted by the algorithm.

In addition to the DSC, the Aggregated Dice Similarity
Coefficient (DSCAgg) is also considered in this analysis. Unlike the
traditional DSC, which calculates the Dice score for each individual
case and then takes the mean, DSCAgg accumulates all True
Positives (TP), False Negatives (FN), and False Positives (FP) across
all cases before calculating the Dice score. This approachminimizes
the disproportionate influence that smaller lesions can have on the
average Dice score in the traditional calculation, where they may
excessively impact the overall result.

The DSCAgg is computed as follows:

DSCAgg =
2× TP

2× TP + FN + FP
(2)

This aggregated approach offers a more balanced assessment of
segmentation accuracy across cases of varying lesion sizes.

The Average Symmetric Surface Distance (ASSD) is calculated
using the formula:

ASSD =
1

|A| + |B|

(

∑

a∈A

inf
b∈B

d(a, b)+
∑

b∈B

inf
a∈A

d(b, a)

)

(3)

The Average Symmetric Surface Distance is a measure of the
average distance between the surfaces of two shapes, A and B. It
calculates the mean of the minimal distances from each point on
the surface of one shape to the nearest point on the surface of the
other shape, considering both directions (fromA to B and fromB to
A). This metric provides a balanced average rather than capturing
the maximum distance, making it useful for assessing the overall
similarity between two shapes.

3 Results

3.1 Dataset

The initial database query retrieved an excessively large number
of studies (over 10,000), primarily due to the lack of specificity
in the keywords used. From the retrieved studies, 200 CT studies
with focal liver lesions were selected for training and testing the
algorithm. Since there is no widely accepted size threshold to
differentiate between a mass and a nodule (e.g., a 1 cm lesion may
be considered small in a Great Dane but large in a Toy Poodle), we
opted to include all CT studies with maximum two hepatic focal
lesions, regardless of size. A total of 25 out of 200 CT scans were
excluded after manual inspection revealed the presence of more
than two lesions, leading to their exclusion. The average size of the
lesions used in the study was 75.35 × 63.64 × 66.94 mm. Out of
the 175 available scans, 130 were randomly chosen to be part of the
training set, with the remaining 45 allocated to the test set.

The CT studies used in this work were acquired using
a multitude of CT scanners, and, as a result, the acquisition
parameters had quite a large variability both in terms of slice
thickness and of radiological parameters. CTs were acquired with
the following CT scanners (GE MEDICAL SYSTEMS Brivo CT385
Series, GE MEDICAL SYSTEMS LightSpeed Plus, GE MEDICAL
SYSTEMS LightSpeed Pro 32, GEMEDICAL SYSTEMS LightSpeed
Ultra, GE MEDICAL SYSTEMS LightSpeed VCT, GE MEDICAL
SYSTEMS LightSpeed 16, GE MEDICAL SYSTEMS Revolution
ACT, International Medical Solutions, Neurologica CereTom,
SIEMENS Emotion 16, SIEMENS Spirit, TOSHIBA Aquilion,
TOSHIBA Aquilion Lightning).

The manual segmentation process took between 10 and 40 min
per case, though the exact time was not systematically recorded.
The duration varied based on the size and CT characteristics of
the lesions. In cases where the lesion was clearly distinguishable
from the normal liver parenchyma, automatic filling tools were
able to reliably complete the segmentation between the manually
outlined slices. However, when the contrast between the lesion and
the surrounding liver tissue was less distinct, the automatic tools
were less effective, requiring the operator to spend additional time
refining and adjusting the automatically segmented regions.
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TABLE 2 Model performance comparison for liver lesion segmentation.

Model Dice DSC
(Agg)

ASSD
[mm]

Training
time [h]

2D 0.68 0.80 6.16 28

3D low-resolution 0.85 0.93 2.77 33

3D full-resolution 0.82 0.92 3.54 42

3D cascade 0.86 0.93 2.70 115

Best results have been presented in bold, with the second-best in italic.

3.2 Model performance

Model performance was calculated only on the 45-case test
set. The performance of each model is summarized in Table 2,
showcasing key metrics for Dice score, aggregated DSC, ASSD,
and training time. The 3D high-resolution cascade model achieved
the highest overall Dice score (0.86) and lowest ASSD (2.70 mm),
demonstrating superior segmentation quality, though it required a
significantly longer training time of 115 h. The 3D low-resolution
model ranked as the second-best performer, achieving a Dice score
of 0.85 and an ASSD of 2.77 mm, closely matching the cascade
model while maintaining a shorter training time of 33 h. While
the 3D full-resolution model operates at a higher resolution, the 3D
low-resolutionmodel benefits from a larger receptive field, enabling
it to capture broader spatial context, which appears advantageous
in lesion segmentation. It’s important to highlight that, despite the
variance in average performance, the statistical analysis presented
in Figure 2 did not reveal any significant differences among the
3D models. In this context, the 3D Low-Res model might be the
optimal choice for practical clinical applications, especially when
time is a limiting factor.

In contrast, the 2D model exhibited the lowest Dice score
(0.68) and the highest ASSD (6.16 mm), reflecting its limitations
in capturing 3D spatial context necessary for accurate lesion
delineation. The 2D nnU-Net analyzes each individual image
slice separately, without considering the anatomical structures
present in adjacent slices. In veterinary imaging, where the contrast
between soft tissues is often poor, this break in spatial continuity
probably hindered the model’s precision in delineating structures.
This is further supported by the statistical significance analysis
presented in Figure 2, where a Wilcoxon signed-rank test reveals
that the performance of this model is significantly distinct from that
of the 3D models.

The model’s ability to avoid delivering false positives was
assessed using 72 cases without obvious liver masses. The 2D
and 3D Low-Resolution models incorrectly identified liver masses
in only 2 instances (2.78%), while the 3D Full-Resolution model
resulted in 3 inaccurate predictions (4.17%). The 3D Cascading
model yielded 4 false positives among the 72 cases (5.56%).

Figure 3 provides a scatter plot illustrating the relationship
between Dice score and lesion size for the 3D cascade model.
Notably, Dice scores improve with increasing lesion sizes according
to a positive regression coefficient—indicating that segmentation
quality may vary based on lesion characteristics. Figure 4 presents
a plot comparing the spread of Dice and ASSD scores across all
models, highlighting that the 3D cascade and 3D low-resolution

FIGURE 2

Statistical significance among all compared models was assessed.

Di�erences from the 3D models were not statistically significant,

whereas the 2D model exhibited significantly inferior performance.

FIGURE 3

Scatter plot illustrating the relationship between Dice scores and

ground truth lesion size for the 3D high resolution cascade model in

the test set (45 cases), showing a clear positive correlation between

lesion size and segmentation accuracy.

models show less variability, while the 2D model displays a wider
range, particularly in ASSD values.

Finally, Figure 5 offers a qualitative visualization,
demonstrating examples of the best and worst segmentation
outcomes from the 3D cascade model using 3D Slicer. This
visual inspection underscores the high fidelity of the model’s
best-case predictions and highlights areas for improvement in
challenging cases. Together, these figures emphasize the impact of
model architecture on segmentation performance, particularly for
complex lesion structures.

4 Discussion

This is the first study to describe the development of a deep
learning-based tool for automatic segmentation of liver masses
in veterinary medicine. The algorithms developed demonstrated
robust performance, achieving an overall Dice score of 0.86
and an aggregated Dice of 0.93 (with the Dice score ranging
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FIGURE 4

Box and swarm plots merged to display the performance metrics of models, with each dot representing a single observation.

from 0 to 1) in the test set. Such performance is especially
noteworthy given the diverse range of scanners and settings used
to acquire the scans for training and developing the models.
Indeed, all previous studies on segmentation tools in veterinary
medicine are monocentric retrospective studies (18, 24), meaning
that the generalization ability of the developed networks has not
yet been extensively tested. It should be noted that while the
model’s accuracy has been confirmed with this particular test
set composed of 45 cases, its “real-world” accuracy is yet to
be determined.

Segmentation is used primarily in oncological settings
to assess the overall dimensions of a mass and to precisely
delineate the contours of the lesion, especially in cases where
non-invasive treatments such as radiofrequency ablation are
considered (3). Currently, there are several segmentation
methods available and no one approach fits all clinical needs
(25). Manual segmentation is becoming less common in human
medicine as powerful automatic or semi-automatic segmentation
tools are increasingly accessible (26). The workflow proposed
in this study is fully automated, but once implemented in a
convenient tool with the possibility of correcting the automatically
proposed segmentations, a semi-automated method can
be implemented.

In the current study, we opted not to segment the normal liver
due to the absence of specific veterinary guidelines on residual
liver volume assessment. Without established thresholds or criteria
for “safe” residual liver volume in dogs, segmenting only the mass
provides sufficient information for diagnostic purposes without the
added complexity of delineating normal hepatic tissue. However,
the development of standardized guidelines in veterinary medicine
for post-resection liver volume assessment could significantly
enhance surgical planning and postoperative care in the future.

AI-based automatic segmentation of CT images is still seldom
explored in veterinary medicine, limiting direct comparisons
between our results and existing veterinary literature. However, the
human medical literature on automatic segmentation of hepatic
masses is more comprehensive. A recent review by Wesdorp et al.
(27) on AI-based liver segmentation methods reports Dice scores
(DS) ranging from 0.569 (28) to 0.940 (29) across various human
studies. Most studies in human medicine utilize the LiTS17 (Liver
Tumor Segmentation Challenge 2017) dataset, which consists of
201 segmented CTs (131 for training and 70 for testing) (25). In this

regard, our dataset is comparable in size, and the results obtained
align with those of top-performing algorithms in human medicine.

In the last few years some papers describing the potential
use of U-Net and its different versions for segmentation tasks in
veterinary diagnostic imaging were published. Groendahl et al.
(24) trained a UNet in dogs with spontaneous head-and-neck
cancer that, after pre-training on human cases and fine-tuning
on 36 canine CT studies, reached median Dice scores around
0.56 and patient-level values up to 0.89 for gross-tumor-volume
delineation. The same architecture was also applied to much
smaller structures: Schmid et al. (17) used a 2-D U-Net to segment
medial retropharyngeal lymph nodes using only 40 canine heads as
training and test set; despite the limited data, the network obtained
a median intersection-over-union of 0.39. Ji et al. (19) combined
U-Net with transformer blocks and trained it on 182,974 CT slices
from 211 dogs, achieving a Dice coefficient of 0.92 ± 0.05 for renal
parenchyma and enabling fast kidney-volume reference curves
useful in clinical nephrology. Finally, Park et al. (30) developed a
UNet for the automatic calculation of adrenal gland volume from
CT images achieving a Dice score of 0.885 ± 0.075 and therefore
allowing fast and precise estimation of adrenal volume.

One notable limitation identified in this study is the
relationship between the accuracy of the model and the size of the
lesion. As illustrated in Figure 3, there is a clear and statistically
significant correlation between lesion size and the Dice similarity
coefficient, suggesting that the performance of the segmentation
of the model varies with the dimensions of the lesion. Specifically,
larger lesions tend to yield higher Dice scores, indicating more
accurate segmentation, while smaller lesions exhibit lower scores.
From a clinical standpoint, this correlation may present both
challenges and advantages. On the one hand, accurately segmenting
smaller lesions remains a critical but demanding task, potentially
requiring more sophisticated modeling techniques to achieve
higher precision. On the other hand, themodel’s enhanced accuracy
with larger lesions can be advantageous, as segmenting extensive
lesions is typically more time-consuming and labor-intensive for
clinicians. By automating the segmentation of larger lesions with
greater accuracy, the model can significantly reduce the manual
workload and expedite the diagnostic process. Moreover, these
findings are consistent with observations in human studies. For
instance, Li et al. (31) reported similar trends, although their
study did not explicitly quantify the correlation between lesion size
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FIGURE 5

3D visualization, illustrating a comparison between the model’s most accurate and least accurate segmentations. (a) 3D rendering of the optimal

prediction, (b) 3D rendering of the poorest prediction, (c) 2D slice from the optimal prediction, (d) 2D slice from the poorest prediction.

and segmentation accuracy. This alignment with existing research
underscores the validity of our results and highlights the model’s
potential applicability in clinical settings. However, the absence
of reported correlations in human studies also points to an area
for future research, where further investigation could elucidate the
underlyingmechanisms driving the relationship between lesion size
and segmentation performance.

5 Conclusion

In the present study, we propose a fully automatic segmentation
method for hepatic focal lesions in canine CT images. The
best-performing model (3D high resolution cascade model)
demonstrated a high level of accuracy, with a Dice Similarity
Coefficient (DSC) of 0.86 and an Average Symmetric Surface
Distance (ASSD) of 2.7 mm. These metrics indicate strong model
performance, as the DSC of 0.86 reflects excellent overlap between
the predicted and actual lesion boundaries, and the ASSD of
2.7 mm suggests minimal surface deviation, aligning well with
clinical expectations. Notably, these results are comparable to the
state-of-the-art segmentation models currently in use in human
medicine, where automated liver lesion segmentation has achieved
high precision.

However, while these initial results are promising, further
improvements could be achieved by expanding the training dataset.
Increasing the dataset size would likely enhance the model’s
robustness and generalizability across various lesion presentations,

ultimately improving accuracy. A larger dataset could also capture
a broader range of hepatic lesion morphologies, sizes, and contrast
characteristics, which would allow the model to perform well even
in cases with less typical lesion appearances. This expansion could
be particularly valuable in addressing any potential model biases
introduced by a limited sample size, thereby enhancing the model’s
clinical utility across diverse cases.
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