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The preservation of testicular tissue and male germ cells represents a cutting-
edge technique for safeguarding fertility, especially when sperm collection is 
not possible, such as in prepubertal animals, those that die unexpectedly or 
that receive gonadotoxic therapies after cancer detection, and in adult males 
suffering from some pathology related to azoospermia. Current methods under 
investigation include the optimization of cryopreservation protocols, as well as 
the development of culture platforms to enable in vitro spermatogenesis (IVS). 
Although these approaches are still in the research and development phase, they 
have shown promising potential for male fertility preservation. Cryopreservation is 
a common method for long-term in vitro storage of tissue and cells, which enables 
the maintenance of reproductive capacity across different animal species and 
contributes to the creation of gene banks for endangered species. Spermatogenic 
cells from cryopreserved testicular tissue can be cultured in vitro and resume 
their functions after thawing, contributing to the preservation of fertility and 
genetic resources in both small and large animals. The main challenges of IVS 
include providing a suitable microenvironment that mimics the testicular niche 
to support the survival and development of all the cell types, as well as to achieve 
complete differentiation toward spermatozoa. Therefore, there is a great interest in 
developing methods to study IVS, both for basic research and clinical application. 
Given the importance of this topic, this review aims to provide an overview of 
recent advancements in the cryopreservation and culture of both testicular tissue 
and cells for preserving male fertility in large and small domestic animals.
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1 Introduction

Over the past few decades, significant advancements have been made in both 
cryopreservation and in vitro culture strategies aimed at preserving testicular tissues and 
maintaining the viability and functionality of spermatogonial stem cells (SSCs) across various 
animal species (1–3). This progress holds great promise for long-term fertility preservation 
and genetic conservation, particularly in prepubertal individuals or valuable breeding animals 
unable to produce mature sperm (1). However, the direct application of these technologies 
across different animal species remains challenging, often requiring protocol adjustments and 
further refinement (1). Therefore, this review aims to summarize and critically assess current 
cryopreservation and culture strategies for testicular tissues and cells across different animal 
models, discussing the methodologies, challenges, and progress in maintaining cellular 
integrity and promoting spermatogenic potential. By exploring these advancements in both 
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small and large animals, this review highlights the current state of the 
art and outlines opportunities for further refinement and application. 
The manuscript is structured in two main sections: the first part 
provides an overview of cryopreservation techniques for testicular 
tissues and cells, including their principles, applications, and devices 
used; the second part focuses on in vitro culture systems, discussing 
their design, outcomes, and potential to support 
spermatogenic progression.

2 Cryopreservation strategies for 
testicular tissues and cells

Methods and protocols for storing male germplasms have been 
developed over the years to preserve fertility, promote the spread of 
specific genotypes and protect biodiversity in endangered breeds or 
species (4). Semen freezing is a widely recognized method for genome 
conservation and is commonly applied in infertility laboratories (5) 
but this method cannot be  used for juvenile and pre-pubertal 
individuals whose gonads have not started producing spermatozoa. 
When semen preservation is not feasible, cryopreservation of 
testicular tissue fragments or testicular cell suspensions, containing 
early/immature germ cells, may potentially expand the range of 
biotechnological applications for germplasm and fertility preservation 
(6). These strategies have been applied in several animal models 
(7–15) and, even if the protocols are still experimental, they are very 
promising for application in assisted reproductive technologies 
(ARTs) (4). Testicular tissue cryopreservation enables the preservation 
of SSCs while maintaining critical cell–cell interactions and structural 
integrity, thus facilitating the restoration of gametogenesis through 
transplantation or IVS (16). This approach has been investigated in 
numerous studies focusing on the collection and preservation of 
testicular tissue from both sexually immature individuals (12, 17, 18) 
and adult animals (8, 19). However, testicular tissue is composed of 
various cell types, including germ cells, Sertoli cells, and Leydig cells, 
which work together to support gamete production and hormone 
secretion (20). Due to its complexity and cellular heterogeneity, 
testicular tissue cryopreservation is more challenging than preserving 
SSCs alone, as it requires maintaining intercellular interactions and 

ensuring post-thaw viability to restore spermatogenesis in vitro (6). 
Spermatogonial stem cells are responsible for the continuous 
production of spermatozoa through self-renewal and differentiation 
(21). Their cryopreservation, although technically demanding and 
still experimental, has been explored as an alternative strategy to 
tissue preservation, offering more control over cryopreservation 
parameters due to the cellular homogeneity (22). However, despite 
the development of different protocols in several animal species 
including goat (23), cattle (24) and horses (5), there are still no 
documented live birth resulting from cryopreserved SSCs in large 
animals (6).

The two most widely used cryopreservation methods are slow 
freezing and vitrification. Few reports used a modified technique 
called rapid freezing (Table 1) (5, 25, 26).

Slow freezing, controlled using programmable freezers, involves 
the use of low concentrations of permeable cryoprotectants (CPAs) 
and gradual cooling (27). This approach allows for progressive cell 
dehydration and minimizes intracellular ice formation before storage 
in liquid nitrogen (1). However, it also carries a significant risk of 
freeze-induced injury and it is a time-consuming and costly process, 
as it requires expensive equipment (28).

Rapid freezing, or vapor fast freezing (VFF), involves sequential 
treatment with higher concentrations of CPAs, followed by exposure 
to liquid nitrogen vapors before immersion into liquid nitrogen (6, 28, 
29). One of the main challenges of this technique is the risk of 
cryoinjury caused by intracellular ice formation, which can 
compromise cell viability (26).

Vitrification involves the transformation of water or water-based 
solutions into an amorphous, glass-like vitreous state without the 
formation of ice crystals (30). This method is generally faster than 
slow freezing and significantly reduces the formation of both 
intracellular and extracellular ice by utilizing high concentrations of 
CPAs and ultra-rapid cooling rates (28). To counteract CPAs toxicity, 
a preliminary equilibration with lower CPA levels is typically 
performed before exposing cells to the final vitrification solution (6).

One of the key advantages of vitrification is the minimal risk of 
freezing injury, resulting in a higher cell survival rate. However, this 
technique requires a high level of technical expertise (31). Moreover, 
despite its cost-effectiveness, the high CPAs concentrations necessary 

TABLE 1 Cryopreservation strategies for testicular tissues and cells.

Method Cooling rate CPAs used Advantages Disadvantages Example of 
application 
(species)

Slow freezing
Controlled slow rate 

(~ − 1°C/min)

Low concentration (e.g., 

DMSO, glycerol, 

ethylene glycol)

Low CPA toxicity; minimal 

technical training needed; 

low contamination risk 

(closed system)

Risk of ice crystal formation; 

requires expensive equipment; 

time-consuming

Canine (63), Feline (62), 

Ovine (7), Porcine (9), 

Bovine (14)

Rapid freezing
Intermediate (vapor-

phase cooling)

Moderate to high 

concentration (e.g., 

DMSO, glycerol, 

ethylene glycol)

Faster than slow freezing; 

reduced equipment 

requirements

Risk of intracellular ice 

formation; less standardized 

protocols

Equine (5), Feline (55)

Vitrification
Ultra-rapid (direct 

plunge into LN₂)

High concentration 

(e.g., DMSO, glycerol, 

ethylene glycol)

Fast procedure; avoids ice 

formation; low cost

High CPA toxicity; technically 

demanding; risk of 

contamination (open systems)

Canine (17), Feline (12), 

Ovine (77), Porcine (48), 

Bovine (66)

CPA, cryoprotectant; DMSO, dimethyl sulfoxide; LN₂, liquid nitrogen.
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for vitrification may compromise the morphological and functional 
integrity of cells (32).

Given the complexity of preserving testicular tissue and cells, 
further optimization of processing and storage methods remains 
essential to improve cryopreservation outcomes (1, 30, 33).

2.1 Sample preparation

To provide optimal cryoprotection, CPAs must effectively diffuse 
in and out of the tissue to minimize cryoinjury. Therefore, the size of 
testicular tissue samples should be  carefully considered (34). 
Particularly for vitrification, sample size plays a pivotal role in 
determining the likelihood of successful solidification of the aqueous 
environment of tissue and cells into a non-crystalline, glass-like state. 
Additionally, sample size has a role in the prevention of devitrification, 
which occurs during warming and is characterized by the formation 
of ice crystals (35).

Testicular tissue sizes ranging from 0.3 to 1.5 mm3 are commonly 
used in cryopreservation across various animal species (36–39). 
Among testicular cells, SSCs are a rare subset of germ cells, 
representing only 0.2–0.3% of the germ cell population in bovine 
species (40). However, the proportion of SSCs in the testes of other 
livestock species, such as sheep, goats, pigs, and buffalo, remains 
undocumented (21). In the tissue, this heterogeneous cell population 
varies in function, size, water content, and membrane permeability, 
and the scarcity of SSCs further complicates the development of an 
efficient cryopreservation protocol (1).

The stem cells are typically isolated from testicular tissue through 
enzymatic digestion or mechanical isolation. Enzymatic digestion, 
using enzymes such as collagenase IV, trypsin, DNase I, and 
hyaluronidase, is commonly employed to dissociate testicular cells. 
Since no single enzyme is sufficient to isolate SSCs effectively, multi-
step or sequential enzymatic digestion protocols are often used (41). 
The mechanical isolation method involves the removal of the tunica 
albuginea and visible connective tissues, followed by mechanical 
dissociation of seminiferous tubules using scissors and forceps, with 
subsequent filtration of the cells (42).

While enzymatic digestion generally yields higher numbers of 
SSCs compared to mechanical dissociation (43), both these 
methods may negatively affect the viability and functionality of 
germ cells, as well as alter their biophysical properties, leading to 
increased cellular sensitivity to freezing processes. Moreover, the 
disruption of cell-to-cell interactions may negatively affect cell 
proliferation and differentiation (44). In contrast, preserving 
testicular tissue maintains the in situ structure and cellular 
relationships, including the spatial arrangement of somatic cells and 

germ cells, which are essential for studying spermatogenesis and 
testicular function (43).

2.2 Cryopreservation carriers

The device used for supporting the cryopreservation of samples 
can be an additional factor influencing the outcome of the process. 
While freezing of testicular tissue and cells is generally performed in 
cryovials or straws (45), studies on vitrification carefully select the 
appropriate vessel for the procedure, although plastic straws are also 
used in conventional vitrification due to their practicality, low cost, 
and space optimization within cryogenic cylinders (46). Vitrification 
methods can be  classified as either “open vitrification” or “closed 
vitrification.” Open devices allow direct contact of the sample with 
liquid nitrogen for faster heat transfer (6). However, this direct contact 
introduces the risk of pathogen transmission to the sample during 
cooling and increases the potential for cross-contamination within the 
container (1). In contrast, closed systems prevent direct contact 
between the sample and the cooling solution during freezing or 
storage, thus addressing the contamination issue. A limitation of 
closed systems is that they result in slower cooling rates, requiring 
higher concentrations of CPAs to prevent ice crystal formation. This, 
in turn, increases the potential cytotoxicity of the CPAs, making the 
protocols more hazardous for cells (47). A summary of the main types 
of carriers used in cryopreservation, along with their characteristics, 
is provided in Table 2.

A simple and rapid vitrification method for testicular tissue has 
been reported in the ovine model using a novel device called E. Vit 
(FertileSafe, Ness Ziona, Israel), which enables all cryopreservation 
procedures to be performed within a straw. The device consists of a 
0.3 mL straw with a 50 μm pore polycarbonate grid at one end, 
facilitating ultrarapid vitrification of tissues and cells with minimal 
volume. This design allows for the expulsion of excess CPAs while 
preventing sample loss (38). Using this device, ovine pre-pubertal 
testicular tissue (1 mm3) maintained plasma membrane integrity at 
66.00% immediately after warming and 59.67% after 2 h of in vitro 
culture (IVC). However, extended culture up to 24 h post-warming 
led to a significant decrease in membrane integrity to 31.00%, and a 
stress response was observed (38).

Carrier-free systems, such as Solid Surface Vitrification (SSV), 
offer an alternative approach. Introduced in 2010, SSV is a 
containerless vitrification method that enables open vitrification of 
tissues and cells (36). The procedure involves immersing testicular 
tissue samples in a vitrification solution before placing them on a 
sterile aluminum boat floating on liquid nitrogen, then transferring 
them into precooled vials and submerging them in cryogenic storage 

TABLE 2 Cryopreservation carriers for testicular tissues and cells.

System type Examples of cryo-
containers

Contamination risk Technical complexity Usage areas

Open SSV, NIV, Cryotop High

Moderate to high: requires 

precise handling and rapid 

timing

Testicular tissue (9, 19, 58) 

and cells (77)

Closed
Plastic straws, Cryotubes/

Cryovials, E. Vit device
Low

Low to moderate: easier to 

handle

Testicular tissue (38, 46, 

52) and cells (24, 74)

SSV, solid surface vitrification; NIV, needle immersed vitrification.
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(36). This method has proven to be an efficient method for vitrifying 
testicular biopsies in porcine models (36, 48, 49) and prepubertal 
domestic cats (12).

2.3 Warming rates

Whether freezing is allowed (as in conventional cryopreservation) 
or prevented (as in vitrification), the CPAs that have penetrated the 
internal compartments of a multicellular system must diffuse back 
through several membranes within the tissue during warming, with 
each membrane acting as a barrier (34).

Intracellular ice formation is considered the primary cause of cell 
damage induced by cryopreservation, even during the thawing 
process, when recrystallization may occur. Recrystallization refers to 
the growth of ice crystals, starting from small ice nuclei, into fully-
fledged intra- and/or extracellular ice crystals, which increase in size 
as the temperature rises. During this process, cells must return to their 
original isotonic conditions, and uncontrolled water influx into the 
cells can generate osmotic stress and cellular swelling, leading to 
damage to the plasma membrane and subsequent cell lysis (27). To 
minimize osmotic shock, it is important to use a set of media with 
gradual decrease of the osmotic pressure (35).

Therefore, tissue and cell survival after freezing relies on effective 
thawing and CPAs removal to preserve integrity and minimize 
damage (50).

However, research addressing these issues has been limited. 
Tissues and cells are typically removed from storage by rapid warming 
followed by gradual removal of CPAs. The temperature during 
warming can significantly impact the outcome. For instance, thawing 
adult bovine tissue at 37°C and 97–100°C has been shown to result in 
better cell viability and spermatogonial cell survival compared to 
thawing at 4°C (51). Additionally, Lima et al. (52) demonstrated that 
warming at 50°C for 5 s can effectively ensure the reanimation and 
survival of vitrified testicular tissues from prepubertal domestic cats, 
but additional research is required to better understand the impact of 
warming protocols on avoiding devitrification and ice recrystallization 
and ensuring the optimal revival of tissue and cells (52).

3 Cryopreservation of testicular tissue 
and SSCs

3.1 Small animals

Relevant advancements in testicular tissue cryopreservation have 
been reported in small animal species, particularly cats and dogs, 
although at varying levels of experimental validation. The most 
significant achievement in this context was reported in the domestic 
cat, where spermatozoa retrieved from frozen–thawed testicular tissue 
were used for intracytoplasmic sperm injection (ICSI), resulting in the 
birth of live kittens after embryo transfer (53). Although this strategy 
did not involve grafting or IVS, it provided clear proof of functional 
sperm recovery leading to viable offspring. In contrast, earlier attempts 
involving xenografting of cryopreserved cat testicular tissue into 
immunodeficient mice did not yield successful preservation of germ 
cells (54), highlighting the challenges of this approach for restoring 
spermatogenesis in this species.

Comparative evaluations of cryopreservation techniques have 
further refined experimental protocols. In cats, rapid freezing  - 
typically preceded by a pre-equilibration phase at 4–5°C  - has 
consistently shown better preservation of sperm plasma membrane 
integrity and seminiferous epithelium compared to slow freezing (26, 
55), while vitrification has emerged as a promising alternative, with 
several studies reporting good structural maintenance and reduced 
interstitial damage, indicating that ultra-rapid cooling may represent 
a valid alternative to conventional protocols (12, 19, 46, 56, 57). In 
dogs, needle-immersed vitrification (NIV) has been introduced to 
facilitate handling of small tissue fragments. Using NIV, higher 
preservation of undifferentiated germ cells was observed compared to 
slow freezing (58). However, findings in gray wolves (Canis lupus), a 
species closely related to domestic dogs, indicate species-specific 
variability, as slow freezing proved more effective than NIV (11).

The choice of CPAs also plays a critical role and appears to 
be species-specific. The combination of dimethyl sulfoxide (DMSO) 
and glycerol proved to be  the most effective in the cat, ensuring 
superior preservation of the seminiferous epithelium and greater 
proliferative potential in both freezing and vitrification protocols (12, 
37, 52, 56, 57). These compounds consistently maintained tubular 
architecture and cellular viability better than alternatives like ethylene 
glycol, which was associated with increased cytotoxicity and 
morphological disruption in several feline studies (46, 56). Conversely, 
in canine testicular tissue, favorable results were reported using 
DMSO in combination with EG in both pre- (17) and post- pubertal 
(58, 59) specimens, with preserved nuclear and tissue architecture 
despite some mild alterations like basement membrane detachment.

In cats, where more studies are available, tissue fragment size and 
warming rates have also been investigated. Larger tissue fragments 
(0.5 cm3) cryopreserved with glycerol showed better morphological 
features, although subsequent assessments of apoptosis and DNA 
integrity did not reveal significant differences between fragment sizes 
(37, 60). In prepubertal animals, exposure to 50°C for 5 s consistently 
resulted in better preservation of seminiferous tubule structure and 
enhanced somatic and germ cell viability compared to standard 
warming at 37°C (52) or higher temperatures such as 60°C (57). These 
results indicate the importance of integrating morphological and 
molecular assessments in protocol optimization and underscore the 
importance of fine-tuning warming conditions to maximize recovery 
after vitrification.

Cryopreservation of testicular cell suspensions, although still 
limited to unsorted populations, has shown promising results in both 
cats and dogs. In felines, slow freezing with 7.5% DMSO yielded the 
highest recovery rates (61), and one study reported that cell 
suspensions may better preserve sperm membrane integrity than 
tissue fragments (62). In canines, while SSC-specific cryopreservation 
protocols have not yet been developed, testicular cell suspensions have 
demonstrated the ability to colonize recipient testes after 
xenotransplantation into immunodeficient mice. However, no 
differentiation has been observed, likely due to the evolutionary 
distance between donor and recipient species (63, 64).

3.2 Large animals

In large animals, the efficacy of cryopreservation techniques for 
testicular tissue has shown species-specific trends.
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In ovine species, slow freezing has proven more effective than 
vitrification in preserving immature testicular tissue integrity and 
functionality. These findings are supported by both in  vivo data, 
demonstrating that slow freezing maintains seminiferous tubule 
architecture and spermatogenic activity after xenografting (7), and 
in vitro findings, which confirm better preservation of morphological 
features, extracellular matrix components, and gene expression 
profiles following cryopreservation by slow freezing, especially with 
5 mm3 tissue fragments (18).

In porcine species, both slow freezing and vitrification have yielded 
comparable outcomes in terms of germ cell survival and DNA integrity, 
with several studies reporting no significant differences between the 
two methods (9, 36, 58). Notably, Kaneko et al. (48) demonstrated that 
vitrified immature testicular tissue retained functional germ cells, as 
evidenced by the birth of live piglets following xenografting.

In cattle, slow freezing is the most widely adopted method and has 
consistently provided reliable preservation of tissue structure and cell 
viability. Zhao et al. (65), for instance, reported that slow-frozen calf 
testicular tissues retained structural integrity and functional potential 
after xenotransplantation, with preserved seminiferous cords, 
angiogenesis, and increased expression of germline and somatic 
markers. However, a recent comparative study showed that vitrification, 
although associated with lower attachment of seminiferous tubules to 
the basement membrane, preserved germ and Sertoli cells, maintained 
membrane integrity, and reduced apoptosis—supporting germ cell 
viability and colony formation in short-term in vitro culture (66).

Among the various CPAs, DMSO remains the most effective for 
preserving testicular tissue structure and germ cell functionality across 
species. In ovine and equine models, DMSO-based slow freezing 
protocols have led to superior outcomes, including better seminiferous 
tubule integrity, reduced basement membrane disruption, and preserved 
germ cell viability and SSC marker expression (7, 67). When directly 
compared to other CPAs such as ethylene glycol, propylene glycol and 
glycerol, DMSO has also shown greater efficacy in porcine (48) and 
bovine (51) models. Notably, DMSO performance remained consistent 
regardless of animal tissue age (immature vs. adult) and cryopreservation 
strategy (slow freezing vs. vitrification), often outperforming alternative 
CPAs in preserving both cellular integrity and molecular functionality 
(36, 68–71). Additionally, recent studies suggest that DMSO may 
support DNA repair mechanisms post-thaw (71).

Cryopreservation outcomes have been further improved by 
supplementing DMSO-based media with protective additives. 
Knockout serum replacement (KSR), for example, has proven to be a 
valid alternative to fetal bovine serum (FBS), ensuring consistent 
cryoprotection and gonocyte recovery in both immature and adult 
bovine tissues (8, 39). Trehalose has also emerged as a particularly 
effective additive, showing consistent benefits across species. Its 
inclusion in cryopreservation protocols has been associated with 
improved antioxidant activity, enhanced cell viability and reduced 
apoptosis, supporting both the structural integrity and functional 
capacity of SSC-containing germ cells (8, 72, 73). Notably, trehalose-
based vitrification strategies have also yielded promising results in the 
porcine model. In particular, the inclusion of trehalose in the 
vitrification medium was associated with preserved tissue viability 
after warming and, remarkably, enabled the generation of viable 
offspring from sperm retrieved from xenografted tissue, highlighting 
the long-term potential of trehalose in supporting germline 
functionality following cryopreservation (48).

The post-thaw recovery and transplantation efficiency have been 
reported to be higher when cryopreserving testicular tissue compared 
to isolated cells in both bovine and porcine species (15, 24). 
Nevertheless, the cryopreservation of isolated SSCs remains a promising 
strategy. In large animal species, slow freezing remains the most widely 
used technique for SSC cryopreservation, providing consistent results 
in terms of post-thaw viability and proliferative capacity. Studies 
conducted in sheep (74), cattle (14), pigs (75) and horses (5) have 
demonstrated that SSC-enriched suspensions preserved via slow 
freezing maintain cellular integrity and are capable of surviving and 
proliferating after thawing. Supporting this, Oatley et al. (76) showed 
that bovine SSCs cryopreserved using a simple slow freezing protocol 
retained their functional potential, as evidenced by their colonization 
of recipient mouse seminiferous tubules following transplantation.

Although vitrification is still underexplored in this context, 
promising results have been reported by Patra et al. (77) who showed 
that vitrified goat SSCs retained post-warming viability and colony-
forming capacity, despite signs of oxidative stress and partial 
mitochondrial dysfunction. These findings suggest that vitrification 
may offer a viable alternative to slow freezing, though further 
refinement is needed to improve its consistency and efficacy.

As in testicular tissue, the choice and combination of CPAs plays 
a central role in SSC cryopreservation outcomes. Dimethyl sulfoxide 
remains the most widely used CPA across species, often combined 
with non-permeating agents such as sucrose or trehalose to enhance 
membrane protection during freezing and enhance post thaw 
outcomes. Consistent with findings in tissue cryopreservation, 
trehalose has been shown to enhance the viability, recovery, and 
proliferative capacity of SSCs in ovine (78), porcine (15), and bovine 
(24) models, with cryopreserved cells also demonstrating colony-
forming potential after xenotransplantation. Similarly, sucrose has 
proven effective as an osmotic buffer and membrane stabilizer, with 
improved survival and proliferation of SSCs observed in sheep (79), 
cattle (14) and pigs (75) when added to DMSO-based media.

Beyond sugars, other strategies have aimed to mitigate oxidative 
damage associated with cryopreservation. In goats, the addition of 
melatonin (10−6 M) to the freezing medium improved mitochondrial 
function, antioxidant capacity, and overall cell viability while reducing 
apoptosis and autophagic activity (80). In cattle, a synergistic effect 
between DMSO and propanediol was also reported, leading to higher 
post-thaw viability and membrane integrity than either CPA alone 
(81). The robustness of DMSO-based protocols is also confirmed in 
equine species, where cryopreserved SSCs retained viability, metabolic 
activity, and expression of key stem cell markers (5).

Altogether, these findings highlight the need for species-specific 
and application-oriented protocols that consider the structural 
complexity of testicular tissue and the inherent sensitivity of SSCs, 
thereby supporting the development of effective fertility 
cryopreservation strategies both in small and large animals.

4 Recreation of spermatogenesis 
in vitro

Although cryopreservation is an effective strategy for fertility 
preservation, its combination with transplantation or in vitro culture 
techniques is essential to develop mature germ cells and obtain 
progeny. The culture of testicular cells, fresh or preserved, is aimed at 
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achieving these results in  vitro, without the use of experimental 
animals. In addition, recreating spermatogenesis in vitro in animal 
species holds significant importance for understanding reproductive 
biology, preserving endangered species, and advancing 
biotechnological applications such as ARTs and genetic conservation.

However, faithfully recreating the entire process in vitro remains 
a challenge. The main obstacles include the possibility to provide a 
suitable microenvironment that mimics the testicular niche to support 
the survival and development of all the cell types, as well as to achieve 
complete and functional spermatogenesis. In domestic species, several 
IVS approaches have been explored for propagation and differentiation 
of spermatogonia in vitro into mature sperm. These include the culture 
of testicular tissue explants, isolation and culture of SSCs and 
generation of three-dimensional (3D) culture platforms. Among 

these, the culture of SSCs using 3D culture models, such as organoids 
and decellularized tissue, is garnering increasing interest.

In this section, we will summarize the strategies developed for 
culturing testicular tissue and cells with the goal of recreating IVS in 
large and small animals (Table  3). Due to the limited literature 
available for both, the section is organized by techniques rather than 
by species, discussing the results across species when relevant.

4.1 Testicular tissue explants

Testicular tissue fragments can be readily isolated from both 
immature and mature animals, both large and small, and cultured 

TABLE 3 In vitro spermatogenesis approaches across species.

Culture system/ 
Method

Species Culture 
duration

Main outcomes Functional results References

Testicular fragments 

cultured using air liquid 

interface on 0.45 μm pore 

membranes

Cattle 2 weeks Low maintenance of 

seminiferous tubules and 

increase in germ cell 

nuclei

SSC proliferation without 

meiosis and differentiation

(82)

Testicular fragment 

cultured using air liquid 

interface (3D) using 

agarose gel blocks or 

encapsulated (2D) into 

agarose gel

Sheep 48 h Moderate morphological 

alterations of seminiferous 

tubules

Structural protection of the 

tissue and SSC preservation

(83)

Testis organ culture using 

air liquid interface using 

agarose gel blocks

Cat 6 weeks Low alteration of tissue 

morphology and low 

preservation of 

spermatogonia

Maintenance of tissue 

morphology; no germ cell 

development and 

differentiation

(84)

In vitro culture of SSCs Goat, Pig, Buffalo, 

Cattle

From 2 weeks to 

2 months depending on 

the species

SSC self- renewal and 

propagation

SSC propagation without 

differentiation

(41, 89–91, 94)

SSC in vitro culture and 

transplantation

Dog 2 weeks SSC self-renewal, 

propagation and 

differentiation

Full spermatogenesis, 

resulting in epididymal 

sperm

(102)

Testicular organoids Cattle 21 days Organoids containing 

Leydig, Sertoli, and 

peritubular myoid cells

Steroidogenic activity, but 

no spermatogenesis in vitro 

due to the absence of 

spermatogonia

(107)

Testicular organoids Cattle 28 days Organoids containing 

Sertoli cells and gonocytes

Establishment of gonocyte 

organoid and their 

progression toward SSCs

(108)

Organoids cultured on 

testis-derived 

decellularized scaffold

Pig 45 days Development of organoids 

containing Sertoli cells, 

Leydig and germ cells 

assembled

Establishment of organoids 

characterized by 

seminiferous tubules-like 

structures, but no germ cell 

maturation achieved

(115)

Organoids cultured on 

testis-derived 

decellularized scaffold

Ram 30 days Development of organoids 

containing neonatal 

testicular cells

Steroidogenic activity and 

differentiation of 

spermatogonia in post 

meiotic cells

(116)

SSCs, spermatogonial stem cells.
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under controlled conditions to preserve cellular viability, 
proliferation, and differentiation. This in  vitro culture aims to 
replicate the testicular microenvironment, which is essential for 
supporting spermatogenesis. In vivo, germ cells, Sertoli cells, 
peritubular cells, interstitial cells, and particularly Leydig cells must 
maintain normal morphology to synthesize autocrine and paracrine 
factors vital for spermatogenesis. Therefore, it is crucial that in vitro 
cultures preserve the testicular structure to maintain paracrine 
signaling, which is essential for germ cell proliferation and 
differentiation. Various culture systems for testicular tissue 
fragments from different species have been reported to enhance the 
stabilization of these fragments. An early study in cattle 
demonstrated the survival and proliferation of bovine SSCs during 
a two-week explant culture, where tissue fragments were cultured 
on the top of 0.45-mm pore membranes to create an air liquid 
interface culture system (82). Morphological analysis revealed 
maintenance of seminiferous tubular structure and a significant 
increase in germ cell nuclei per tubule compared to fresh tissue 
(82). However, no meiotic cells were observed, indicating 
spermatogonial proliferation without further differentiation (82). 
Despite these promising results, careful monitoring of the culture 
medium volume in each well is crucial when using transwell insert 
membranes. The medium level should be sufficient to contact the 
bottom of the insert without submerging the tissue. Hypoxia also 
limits the efficiency of organ culture. Recently, in sheep, culturing 
testicular fragments in agarose gel resulted in less cell loss and 
basement membrane disruption, suggesting structural protection 
of the tissue (83). This 3D system, however, may impede medium 
perfusion due to the rigidity of the agarose gel, which can affect 
both tissue architecture and function.

In domestic cats, testis organ culture does not progress as 
observed in other mammals. While some spermatogonia, 
potentially including SSCs, are maintained over extended periods, 
there is no advancement in germ cell development (84). This issue 
pertains not only to the initiation of spermatogenesis but also to its 
progression; even tissues containing more developed germ cells at 
the outset show no further differentiation. The complexity of 
spermatogenesis initiation and regulation in domestic cats appears 
to be greater than in other mammal species such as bull, buffalo, 
ram, goat, boar, wild boar, dog and rabbit (85). In particular, the 
overall rate of spermatogenesis in cats is lower compared to several 
other mammals, as indicated by a lower meiotic index (84). 
Additionally, abnormalities in the seminiferous epithelium are 
commonly observed in cats (84).

Most of these studies have been based on short-term culture time 
which is a limit if it is considered that spermatogenesis takes place in 
about 3 months in many species. Recently, it was demonstrated that 
small intact testicular tissue fragments cultured in knockout serum 
replacement could be effectively maintained in vitro for up to 4 weeks 
of culture (86). Testicular tissue integrity was dependent on fragment 
size and preparation method, where the smallest size and intact 
preparation method were advantageous.

Taken together, these findings indicate that for this type of culture 
platform culture time can be affected by several factors including tissue 
fragment size, preparation method, media supplements, matrix and 
serum sources (86). It is therefore important to consider all these 
factors to establish a long-term in  vitro maintenance of the 
testicular tissue.

4.2 Culture and differentiation of 
spermatogonia in vitro

In vitro culture of spermatogonia, particularly SSCs, is essential 
for self-renewal, differentiation, and manipulation of testicular germ 
cells. Various culture systems and medium compositions have been 
developed to enhance SSC viability and proliferation (87, 88). 
However, long-term SSC cultures exceeding 2 months have not been 
established yet for domestic animals, with current efforts limited to 
short-term cultures in species such as goat (41), pig (89), buffalo (90) 
and cattle (91). To date, complete ex vivo spermatogenesis has been 
achieved in the murine models (92, 93), while, in domestic species, 
propagation of spermatogonia without effective meiotic division has 
only been reported.

Regarding media composition, two types, stempro-34 and DMEM 
supplemented with Fetal Bovine Serum (DMEM-FBS), have been 
utilized for SSC culture in domestic animals. Colony formation has 
been observed in SSCs culture of goats and pigs using DMEM-FBS 
medium, with these colonies containing PGP9.5-positive cells, a 
marker of undifferentiated spermatogonia, including SSCs (89, 94). 
Similarly, colonies formed in SSC cultures of piglets and calves using 
serum free stempro-34 medium contained Dolichos biflorus agglutinin 
(DBA)-positive cells (95, 96). In previous studies, spherical cell 
colonies (SDC) have been observed in porcine testicular cell culture 
containing PGP9.5-positive cells with stem and germ cell 
characteristics (97). Additionally, growth factors are essential to form 
the SDC in SSC cultures. In pig SSC cultures, epidermal growth factor 
(EGF) and fibroblast growth factor (FGF) positively influenced the 
number and size of SSC-like colonies, and their addition to primary 
cell cultures of neonatal pig testes influenced NANOG, PLZF, OCT4, 
and GATA4 transcript level (95). Furthermore, FGF2 has been shown 
to mediate mouse SSC self-renewal via up- regulation of Etv5 and 
Bcl6b through MAP2K1 activation (98). These findings suggest that 
SSC colonies can be formed in both stempro-34 and DMEM-FBS 
media and that FGF plays a significant role in SSC cultures. More 
recently, in dogs, colonies were observed in both media at day 7, and 
the addition of FGF significantly affected colony formation from 
two-month-old beagle’s testes (99). These results indicate that 
stempro-34 and DMEM-FBS media, supplemented with glial cell line-
derived neurotrophic factor (GDNF) and FGF are well suited for 
deriving SDCs from neonatal beagle testes.

The use of DMEM-FBS and stempro-34 has not been the only 
approach used to culture spermatogonia. In cattle, spermatogonia 
were successfully cultured from cryopreserved testicular tissues using 
2i medium (100). The obtained culture system resulted in enhanced 
proliferation, survival, anti- differentiation and apoptosis. These 
effects might be  due to the attenuation of Suv39h1/2-mediated 
H3K9me3 level by 2i stimulation through MEK and GSK 
pathways (100).

In both small and large animals, advances have been made in SSC 
culture, demonstrating the potential of these cells to restore and 
produce germ cells in vitro (101). In dogs, SSCs were able to progress 
in vivo toward more differentiated testicular cell stages, including 
spermatocytes, spermatids, and sperm, following transplantation 
(102). Moreover, the in vitro generation of embryonic germ cell-like 
cells has also been reported in canines (101, 103). The canine model, 
in particular, offers promising opportunities to discover new signaling 
molecules, transcription factors, and mechanisms involved in 
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self-renewal and differentiation processes critical for germ 
cell development.

On the other hand, in cats, Powell and colleagues (104) 
successfully isolated SSCs; however, no culture protocols have been 
developed so far. In the same study, they reported that markers 
commonly used for SSC identification in other species may be less 
reliable for isolating cat SSCs, whereas pluripotent markers, 
particularly SSEA-4, may provide more enriched SSC populations. 
SSCs are low in number in the testis, and the smallest subpopulation 
of spermatogonial cells identified was SSEA-4þ positive, expressing 
NANOG, POU5F1, and SOX2 (104).

Although several protocols to isolate and culture spermatogonia 
and SSCs have been developed in few domestic species, it is important 
to note that these culture systems consisted of multiple cell types. 
These included not only spermatogonia but also testicular somatic 
cells, such as Sertoli cells, suggesting that testicular cells rely on cell-
to-cell interactions for establishing a reliable culture system that could 
restore spermatogenesis in vitro.

Last but not least, SSCs from domestic animals have been 
transplanted into the seminiferous tubules of germ cell-depleted 
infertile mice, although few of these experiments were able to restore 
spermatogenesis (63, 105, 106).

Overall results indicate that successful xenotransplantation is 
possible between SSCs and mice and demonstrate that this is a viable 
model that offers new insights for the treatment of infertility and 
understanding the mechanisms of spermatogenesis in domestic 
animals. However, improvement of the methodologies is necessary in 
future for completely restoring spermatogenesis in vitro.

4.3 Generation of 3D testicular culture 
models

Three-dimensional culture models have gained prominence in 
research due to their architectural and functional resemblance to 
native microenvironments. In domestic species, the generation of 
testicular organoids has become a valuable tool for studying testicular 
function and development. Notably, testicular organoids have been 
successfully established from testicular tissues, where cells were 
harvested using a two-step enzymatic digestion process. These 
organoids, characterized by an encapsulated shape, contained testis-
specific cell types such as germ cells, Sertoli cells, Leydig cells, and 
peritubular myoid cells.

In large animals, testicular organoids have been generated by 
isolating testicular cells from bovine testes and culturing them in 
ultra-low attachment plates with Matrigel (107). These organoids 
contained Leydig, Sertoli, and peritubular myoid cells, displaying 
specific localization and changes in number. The developed bovine 
testicular organoids exhibited steroidogenic activity, characterized by 
the production of testosterone into the culture media. However, these 
organoids lacked spermatogonia, limiting the ability to recreate 
spermatogenesis mechanisms in vitro.

Recently, Tang and colleagues (108) successfully established an 
in vitro 3D neonatal testicular organoid culture system containing 
bovine gonocytes that were cultured for a period of 28 days. 
Supplementation with GDNF, FGF2, and LIF helped maintain a high 
proportion of proliferating cells while promoting the transformation 
of gonocytes into SSCs (108). Additionally, FSH and testosterone were 

found to be beneficial for maintaining the viability and proliferation 
of cells in organoids (108). However, these testicular organoids did not 
exhibit critical testicular compartmentalization, and spermatogenesis 
was not studied.

Another significant advancement in the field of 3D culture 
platforms for domestic species is the development of testicular 
extracellular matrix (ECM)-derived scaffolds through tissue 
decellularization (109). This approach offers promising avenues for 
exploring cell-matrix interactions during spermatogenesis. By 
effectively removing cells and debris while preserving the native ECM 
composition, 3D structure, and biological activity, these scaffolds 
create a supportive environment for repopulation with SSCs and 
somatic cells (110). Tailored decellularization protocol using physical, 
chemical, or biological agents can be  optimized for the unique 
characteristics of domestic animal tissues, thereby advancing 
applications such as artificial testis generation, fertility restoration, and 
drug screening in both large and small animals.

Vermeulen and colleagues were the first to apply and compare 
several decellularization protocols for prepubertal porcine testicular 
fragments (111). Following their work, decellularized testes have been 
obtained in cattle (112, 113) and sheep (114). The derived ECM can 
be used as 3D scaffolds or lyophilized.

Lyophilization of the decellularized testis allow for the preparation 
of a hydrogel. Recently, using this approach, porcine testicular 
organoids have been generated by encapsulating testicular cell 
suspensions (115). These organoids were maintained for 45 days in 
culture and consisted of tubule-like structures surrounded by 
interstitial cells; however, germ cell maturation was not achieved.

In another study, testis-derived scaffolds were fabricated from ram 
testicular tissue (116). These biological scaffolds were seeded with 
neonatal mouse testicular cells and supported the formation of 
organoids that, despite lacking the typical testicular architecture, were 
able to produce hormones and formed post-meiotic cells (116).

These findings indicate that the generation of 3D culture platform 
to recreate spermatogenesis in vitro is complex and involves well-
orchestrated interactions among hormones, growth factors, cytokines, 
and ECM-derived biochemical and biomechanical cues and presents 
significant challenges. Additionally, the lack of knowledge regarding 
the niche microenvironment, nutritional requirements, and the 
regulatory mechanisms driving self-renewal, proliferation, and 
differentiation in domestic species has hindered progress in this field. 
Therefore, it is desirable to develop reliable 3D in vitro models that 
faithfully mimic the architecture and physiological microenvironment 
of native testicular tissue, bridging the gap between in vivo complexity 
and the oversimplified conventional two-dimensional in vitro cultures.

5 Future directions and conclusions

Despite significant progress has been made in the cryopreservation 
and culture of testicular tissue and cells, several challenges remain 
before these techniques can be  translated into reliable veterinary 
applications. The optimization of cryopreservation protocols requires 
further refinement to ensure consistent preservation of tissue 
architecture, cell viability, and functionality across different species 
and developmental stages. Comparative studies investigating 
cryoprotectant combinations, fragment size, and warming strategies 
will be crucial for establishing standardized and effective methods. 
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Concurrently, advancements in testicular tissue and SSCs culture 
systems must evolve toward more physiologically relevant platforms 
capable of supporting complete spermatogenesis. The implementation 
of biomimetic platforms such as testicular organoids, 3D scaffolds and 
ECM-derived hydrogels represents a promising direction for 
recreating the native testicular microenvironment. However, the lack 
of species-specific knowledge on somatic-germ cell interactions, 
hormonal regulation, and niche dynamics continues to hinder the full 
maturation of germ cells in culture. The integration of cryopreservation 
and long-term in vitro culture approaches, supported by molecular, 
epigenetic, and functional analyses, will be  essential to assess the 
safety, efficiency, and reproducibility of these systems. Ultimately, the 
convergence of optimized cryopreservation and culture protocols 
could enable the development of species-specific fertility preservation 
strategies applicable to both domestic and wild animals, with 
implications for breeding management, biodiversity conservation, and 
ARTs in veterinary medicine.
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