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Introduction: Shiga toxin-producing Escherichia coli (STEC) is a zoonotic 
pathogen responsible for severe human infections, with cattle recognized as the 
principal animal reservoir for human infection. Adhesion is a critical step in STEC 
colonization, facilitating persistence and transmission. While human-associated 
adhesion mechanisms have been extensively studied, those driving colonization 
in cattle remain less understood. In this study, we characterized the adhesiome 
of STEC strains isolated from Chilean cattle and compared them with a global 
collection to identify host-specific adhesion patterns and genetic adaptations.
Methods: A total of 948 fecal samples from Chilean cattle were screened, 
yielding 71 confirmed STEC isolates, which were analyzed alongside 546 
publicly available genomes to compare host-specific adhesion patterns. The 
adhesiome was examined based on gene presence/absence patterns, followed 
by a genome-wide association study (GWAS) and variant effect analysis to 
identify host-specific adhesion genes and their functional implications.
Results: Adhesin gene analysis revealed distinct adhesion strategies between 
hosts. Several genes, including ehaA, stgABC, yadLMN, and iha, were significantly 
associated with cattle, while eae, cah, ypjA, and paa were more frequent in human-
associated STEC. Functional enrichment analysis revealed differences in biological 
processes, including protein folding and fimbrial usher porin activity in cattle, and 
response to methylglyoxal in humans. GWAS identified yeeJ, espP, and fimC as 
strongly associated with cattle strains, whereas clpV, ybgQ, and sab were linked to 
human isolates. Variant analysis showed higher genetic diversity in human isolates, 
with yadK, espP, and ybgP exhibiting the highest variant densities. However, the 
functional effects of adhesin mutations were largely conserved across hosts, 
suggesting selective constraints on adhesion mechanisms.
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Discussion: Our findings provide new insights into STEC host adaptation and 
highlight potential targets to reduce zoonotic transmission and improve pre-
harvest food safety strategies. Future research should focus on functional 
validation of host-specific adhesin variants and their potential as preventive 
strategies.
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1 Introduction

Shiga toxin-producing Escherichia coli (STEC) are a group of 
emerging zoonotic pathogens responsible for significant public health 
and economic burdens worldwide (1). These bacteria produce Shiga 
toxins (Stx), potent cytotoxins that can cause severe human diseases, 
including hemorrhagic colitis and hemolytic-uremic syndrome 
(HUS), especially in young children (2). STEC is primarily transmitted 
to humans through consumption of contaminated food, particularly 
beef (3).

Adult cattle are recognized as the primary reservoir of STEC, with 
reported prevalence rates in Latin America ranging from 14 to 90% 
(4, 5). Their widespread presence increases the risk of environmental 
contamination and zoonotic transmission, underscoring the need for 
effective livestock-based control strategies. Beyond human health 
concerns, STEC infections impose substantial economic costs related 
to healthcare, productivity loss, and outbreak management. In the 
United States alone, healthcare costs associated with STEC infections 
were estimated to exceed USD 311 million in 2018 (6).

STEC utilizes diverse adhesins—including surface-associated and 
secreted proteins—to colonize host tissues (7). A key adhesion 
determinant is the locus of enterocyte effacement (LEE), which 
encodes intimin (eae) and type III secretion system (T3SS) proteins, 
promoting intimate attachment to enterocytes and microvilli 
effacement (8). LEE-positive strains, such as O157:H7 and several 
non-O157 serotypes (e.g., O111:NM, O26:H11, O103:H2), are 
strongly associated with outbreaks and severe human disease (9). 
However, the emergence of LEE-negative STEC strains utilizing 
alternative adhesins, encoded in pathogenicity islands like the locus 
of adhesion and autoaggregation (LAA) and the locus of proteolysis 
activity (LPA), highlights additional colonization strategies (10, 11). 
Collectively, these adhesion determinants constitute the adhesiome, 
defined as the complete set of fimbrial and non-fimbrial adhesin genes 
that facilitate bacterial colonization of host tissues (12).

While human-associated adhesion mechanisms have been 
extensively characterized, those facilitating bovine colonization remain 
poorly understood. Since cattle serve as the main reservoir for human 
infection, elucidating these mechanisms is critical for designing targeted 
pre-harvest interventions. Newborn calves are typically colonized by 
STEC shortly after birth, acquiring the pathogen from maternal 
microbiota and the surrounding environment (13, 14). Once ingested, 
STEC can survive, persist, and colonize the gastrointestinal tract, 
particularly targeting the recto-anal junction (RAJ) as its primary site 
of colonization (15, 16). It has been shown that proteins encoded by the 
LEE play a critical role in STEC adherence to RAJ’s stratified squamous 
epithelium (RSE) cells, including intimin (17, 18). However, other 
adhesins are involved in the colonization and persistence of 
LEE-positive STEC in cattle, such as EhaA (19), and H7 flagella (20), 
among others. Moreover, Kudva et  al. (21) registered a similar 

LEE-positive adhesion pattern of LEE-negative STEC strains to RAJ 
cells, concluding that adhesins other than intimin are involved in this 
phenotype. Adhesion of STEC to bovine gut by specific virulence 
factors is of paramount importance since it allows its persistence and 
the successful transmission to other hosts (22). Therefore, understanding 
STEC colonization is the key step to controlling the infection.

The genetic diversity of STEC, including variations within the 
adhesiome, poses a major challenge for prevention strategies, such as 
vaccine development. The complexity of STEC adhesion mechanisms 
across hosts underscores the need for genomic surveillance to 
characterize circulating strains and their colonization traits (23, 24). 
This study aims to characterize the adhesiome of STEC strains isolated 
from cattle in Chile and compare them with global strains to identify 
host-specific adhesion patterns. Understanding these colonization 
mechanisms is fundamental for designing effective intervention 
strategies to mitigate STEC transmission at the livestock level. By 
elucidating key adhesins involved in bovine persistence, this research 
contributes to the development of targeted mitigation strategies, 
contributing to One Health-based strategies to mitigate transmission 
risks at the human-animal interface.

2 Materials and methods

2.1 Sample collection for STEC isolation

A total of 948 fecal samples were collected between June 2023 and 
March 2024 from abattoirs and farms located across seven regions, 
representing the majority of Chile’s cattle population (25). The 
sampled animals included both juveniles and adults, with most being 
of mixed breed. Approximately 20 g of fecal material per animal was 
aseptically collected directly from the rectum by trained veterinarians 
and transported under refrigerated conditions in sterile flasks until 
laboratory processing. All sampling procedures were approved by the 
Institutional Committee of Care and Use of Animals, Universidad de 
Chile (Protocol No. 23658—VET—UCH).

2.2 Sample processing and STEC 
identification

Samples were processed following protocols from previous studies 
(26, 27). Briefly, 5 g of each fecal sample were enriched in 9 mL of 
tryptone soy broth (Becton Dickinson and Co., United States) and 
incubated overnight at 42 °C. A 25 μL aliquot of the enrichment 
culture was then plated onto MacConkey agar (Becton Dickinson and 
Co., United States) and incubated at 37 °C for 18–24 h.

Bacterial growth from confluent areas was resuspended in 500 μL 
of sterile nuclease-free water, subjected to heat treatment at 100 °C for 
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15 min, and centrifuged at 26,480 × g for 5 min. DNA concentration 
and purity (A260/A280 ratio) were determined using a NANO-400 
micro-spectrophotometer (Hangzhou Allsheng Instruments Co., 
China). Samples with optimal purity (1.8–2.0) were stored at −20 °C 
for subsequent analyses.

The presence of stx1 and stx2 genes was confirmed by multiplex 
PCR (28) in a LifeECO® thermal cycler (Hangzhou Bioer Technology 
Co., China). The STEC97 strain [stx1-positive, eae-positive, stx2-
positive (29)] was used as a positive control, while E. coli ATCC 25922 
served as the negative control. Up to 30 colonies per positive sample 
were individually plated on MacConkey agar (Becton Dickinson and 
Co., United  States) and CHROMagar™ STEC (CHROMagar 
Microbiology, France) (30, 31). After 24 h of incubation, colonies were 
screened by multiplex PCR to confirm the presence of stx1 and/or stx2 
genes. PCR-confirmed colonies were then tested for the uspA gene, 
encoding the universal stress protein A, to verify E. coli species 
identity (32). A single confirmed isolate per sample was stored at −80 
°C for further analysis.

2.3 Whole genome sequencing of STEC 
strains

Genomic DNA from all STEC strains was extracted using the 
Wizard Genomic DNA Purification Kit (Promega, United States), 
following the manufacturer’s instructions. DNA concentration was 
measured using fluorometry with the Qubit® dsDNA BR Assay kit 
(Life Technologies, United States), and DNA quality was assessed with 
an Epoch microplate spectrophotometer (Biotek Instruments, 
United States). A total of 1 ng of DNA was used for library preparation 
using the Nextera XT DNA Library Prep Kit (Illumina, United States), 
following the manufacturer’s protocol. The average fragment size of 
libraries was determined by capillary electrophoresis using the High 
Sensitivity NGS Fragment Analysis Kit (Advanced Analytical 
Technologies, United  States). Libraries were quantified using the 
KAPA Library Quantification Kit (Kapa Biosystems, United States) on 
a Rotor-Gene Q platform (Qiagen, Germany). Whole-genome 
sequencing (WGS) was performed on a NovaSeq X Plus platform 
(Illumina, United States) with a 150-cycle paired-end reagent kit at 
Haplox Company, Hong Kong.

Additionally, two STEC strains isolated from clinical human stool 
samples, corresponding to serotypes O157:H7 and O26:H11 and 
provided by the Instituto de Salud Pública de Chile, were included in 
the analysis for comparison purposes. These strains were processed 
for WGS as described above. All genome sequences were deposited in 
GenBank under BioProject number PRJNA656305.

2.4 Publicly available sequence data

To enhance the comparative analysis, 568 publicly available E. coli 
genome sequences were retrieved from GenBank’s Sequence Read 
Archive (SRA)1 on December 15, 2024. Genomes were selected based 

1  www.ncbi.nlm.nih.gov/genbank/

on diverse geographical origins, host species, and serotypes to broadly 
represent the global diversity of STEC strains.

All genomes were screened for the presence of stx subtypes by 
mapping reads against reference sequences using BWA (33). After 
filtering, a final dataset comprising 546 confirmed STEC genomes was 
obtained for downstream analysis. Metadata, including host origin, 
country of isolation, and year, were retrieved using the eSearch tool 
from the EMBOSS suite (34).

2.5 Epidemiological typing and 
phylogenomic analysis

All FASTQ Illumina reads were assembled de novo using SPAdes 
(v.3.15.2) with default parameters (35). Genome assembly quality was 
evaluated using CheckM2 (36), which estimates genome completeness 
and contamination based on machine learning models trained with 
lineage-specific marker sets available in the DIAMOND2 database.

The program was not run using a specific model; a cosine 
similarity calculation was performed to determine the appropriate 
completeness model for each isolate. The program predicts protein 
sequences to annotate all the genomes with DIAMOND. Finally, in all 
cases the Neural network contamination model was used.3 This quality 
control step was critical to ensure the reliability of assemblies, 
particularly for genomes retrieved from the SRA. Only genomes with 
a completeness score greater than 99.6%, as estimated by CheckM2, 
were included in the analysis.

Prediction of stx subtypes was performed on ABRicate (v.0.8.13).4 
Sequence types (STs) of all STEC strains were predicted by Achtman’s 
multilocus sequence typing (MLST) scheme using the GitHub 
platform.5 The housekeeping genes used included adk, fumC, gyrB, 
icd, mdh, purA, and recA. Additionally, SerotypeFinder 2.06 was used 
to determine serotype (37).

2.6 Adhesiome analysis

Adhesin gene analysis was conducted using AdhesiomeR,7 an 
R-based tool that executes BLASTn searches against a curated database 
of 427 adhesin genes identified across diverse E. coli strains. Adhesin 
sequences were classified according to sequence identity thresholds: 
highly similar (>95%), moderately similar (75–95%), and unrelated 
(<75%) (12). In order to enhance confidence in adhesin identification, 
a strict mode with gene-specific bit score threshold was applied. 
Comparative analyses were based on presence/absence matrices 
(1 = present; 0 = absent) and clustering profiles to detect host-specific 
adhesin signatures between human- and cattle-associated STEC 
isolates. Differences in the detection rates of adhesin genes between 
cattle- and human-associated isolates were analyzed using a Z-test for 
two proportions. The analysis was performed in Microsoft Excel 

2  https://github.com/bbuchfink/diamond

3  https://github.com/chklovski/CheckM2/blob/main/README.md

4  https://github.com/tseemann/abricate

5  https://github.com/tseemann/mlst

6  https://cge.food.dtu.dk/services/SerotypeFinder/

7  https://github.com/ksidorczuk/adhesiomeR.git
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(Microsoft Office 365, version 16.100.2), with statistical significance 
set at p < 0.05.

To further explore genetic variability, we performed genome-wide 
association analysis (GWAS) using two complementary approaches. 
First, we used the complete genome of E. coli K-12 (ASM584v2) as the 
reference, which contains the majority of core adhesin genes and 
allowed variant calling and functional annotation at the whole-
genome level. Second, recognizing that several adhesin genes were 
absent from the K-12 genome, we conducted an additional GWAS 
focused on the adhesiome. For this, we extracted all 427 adhesin gene 
sequences identified in our adhesiome analysis—including those 
shared between human- and cattle-associated strains—to ensure a 
more comprehensive assessment. These sequences were retrieved 
from AdhesiomeR8 and used as templates for further analysis. The 
complete genome sequences of STEC strains isolated from stool 
samples (n = 158 from cattle and n = 205 from humans) were mapped 
to the E. coli K-12 genome and to the adhesiome sequences using 
BWA (38). After sorting using BamTools (39), the PCR duplicates were 
removed using Sambamba (40). Single nucleotide polymorphisms 
(SNPs) and short insertions/deletions (indels) were identified using 
FreeBayes and jointly using all the samples in the analysis (41).

2.7 Genome-wide association analysis

GWAS was conducted based on SNPs and indels identified from 
variant call format (VCF) files generated by FreeBayes. Quality control 
of variants was performed using VCFtools, applying a minimum 
quality threshold (MinQ) of 30 and a mean depth filter of 100× (42). 
A logistic regression model was fitted to the data, using host species 
(cattle = 1, human = 0) as the binary outcome, following the approach 
described by Pérez-Enciso et al. (43).

We used Pyseer (44) to discover variants significantly associated 
with the cattle host, being humans deemed as controls in the standard 
association analysis. To account for potential confounding by 
population structure, we conducted a principal component analysis 
(PCA) on variant call format (VCF) files using PLINK [-pca command 
(45)]. The model included the first five principal components as fixed 
effects, as eigenvalues showed no substantial drop beyond this 
threshold. The pairwise distance matrix was generated using Mash 
(46). Following the Benjamini and Hochberg correction, the p-values 
were adjusted for multiple comparisons using the false discovery rate 
(FDR) method, implemented through the p.adjust function in R (FDR 
≤0.05). Model coefficients were also presented as odds ratios (OR), 
with values greater than one indicating an association of the alternative 
allele with the cattle host.

Annotation and functional impact prediction of host-associated 
variants were performed using snpEff (47). For GWAS analyses 
based on the E. coli K-12 genome, the pre-compiled E. coli str. K-12 
substr. MG1655 database provided by SnpEff was employed. For the 
adhesiome sequences that belonged to different bacterial strains, 
we constructed a custom SNPeff database. The adhesiome sequences 
were annotated using AUGUSTUS (48), with the E. coli K-12 
database selected as the reference strain to guide the annotation 

8  https://adhesiomer.quadram.ac.uk/app/adhesiomeR

(obtained as a GFF file format). This annotation file was then 
converted to GTF format using AGAT to develop the snpEff custom 
database of the adhesiome. Predicted coding sequences (CDS) and 
protein sequences of the identified genes were obtained using the 
script getAnnoFasta.pl (available at https://github.com/nextgenusfs/
augustus.git). All these files were used to compile the 
snpEff database.

3 Results

3.1 STEC identification in Chilean cattle

Of the 948 fecal samples collected from cattle, 71 (7.5%) were 
confirmed as STEC-positive, harboring stx1 and/or stx2 genes along 
with the uspA marker. Among these, 70.4% harbored stx2, 26.8% 
carried both stx1 and stx2, and only 2.8% were positive for stx1 alone. 
The geographical distribution of STEC varied across Chile, with 
regional differences in detection rates (Figure 1).

3.2 Epidemiological typing and 
phylogenomic analysis

For comparative purposes, 546 publicly available STEC genomes 
were retrieved from NCBI, encompassing isolates from humans 
(50.0%), food (23.8%), and cattle (19.4%). These genomes spanned a 
broad temporal range (1978–2021) and were predominantly collected 
from Germany (43.8%), Chile (16.1%), and France (13.2%).

Among the 619 genomes analyzed (71 Chilean isolates plus 546 
public genomes), we identified 29 distinct stx subtypes profiles, with 
stx2a (20.0%) and stx1a (18.9%) being the most prevalent. Serotype 
analysis indicated O157:H7 (10.8%), O26:H11 (7.1%), and O130:H11 
(6.0%) as the most frequently detected. MLST classification identified 
141 STs, with ST11 (13.4%) and ST297 (8.7%) being the most 
common. Complete metadata is provided in Supplementary Table 1. 
Figures 2, 3 depict the distribution of serotypes and STs according to 
geographical origin and host.

Among the 71 STEC strains isolated in this study, eight stx 
subtypes profiles were identified, with stx2d (38.0%), stx2c (26.8%), 
and stx1a + stx2a (12.7%) being the most prevalent. Among the 12 
predicted serotypes, O130:H11 (42.3%), O185:H7 (21.1%), and 
O113:H21 (8.5%) were the most common. Likewise, the most 
frequently detected STs were ST297 (49.3%), ST2387 (20.5%), and 
ST223 (9.6%).

Due to the high diversity in serotypes, stx profiles, and STs, 
we examined the genomic structure of STEC isolates from food, cattle, 
and humans (n = 572) to assess whether genomic similarity clusters 
corresponded to host origin or geographic region. Based on STs, 
we generated MinHash sketches of draft whole-genome assemblies 
using k-mers of length 31 and a sketch size of 100,000 in Sourmash. 
This analysis revealed substantial genomic variability between groups, 
potentially enhancing STEC adaptability to diverse environments and 
supporting a wide range of virulence strategies (Figure 4). In parallel, 
genetically homogeneous clades were observed within specific STEC 
STs, suggesting associations with ecological factors or adaptive niches, 
further supported by the multidimensional scaling analysis 
(Supplementary Figure 1).
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3.3 Adhesiome analysis

3.3.1 Analysis of the pangenome of the 
adhesiome in host related strains

To characterize the adhesiome of STEC genomes from cattle and 
human origins, we used the AdhesiomeR tool to identify adhesin 
clusters, which defined fimbrial and non-fimbrial adhesins function. 
The distribution of adhesin-related gene clusters among STEC 

genomes is presented in Figure  5. Adhesin clusters (Figure  5A) 
revealed a predominance of the A-A cluster among cattle-associated 
strains (88.5%), while human-associated strains exhibited greater 
diversity, with A-G as the most prevalent cluster (44.2%). Fimbrial 
clusters (Figure  5B) were predominantly represented by the F-C 
cluster in cattle (83.9%), whereas human-associated strains showed a 
broader distribution, with F-C and F-F being the most frequent (24.4 
and 18.6%, respectively). Similarly, among non-fimbrial clusters 

FIGURE 1

Geographical distribution of STEC strains isolated from cattle feces across Chilean regions, based on official administrative divisions. For each region, 
the number of fecal samples collected (N) and the number of STEC-positive isolates recovered (I) are indicated.

FIGURE 2

Distribution of major STEC serotypes across continents (A) and by host species (B, cattle; C, humans). Selected continents represent 96.7% of analyzed 
genomes. LD, low discrimination between predicted serotypes.
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(Figure 5C), N-B predominated in cattle strains (67.8%), while human 
strains were more diverse, with higher proportions of N-A and N-D 
clusters (17.4 and 14%, respectively).

These findings suggest that cattle-associated STEC strains exhibit 
a more conserved adhesin profile, whereas human-associated strains 
display greater diversity, possibly reflecting adaptation to host-specific 
selective pressures and the diversity of the strains analyzed.

Next, we compared the genes identified in the adhesin clusters 
according to their host (Figure 6). This analysis revealed a combination 
of conserved core adhesins and host-associated adhesion profiles. 
Many adhesin genes, particularly those encoded within the fim, csg, 
and ecp operons, were highly conserved across cattle- and human-
associated strains (>87% prevalence), indicating that certain adhesion 
mechanisms are fundamental for bacterial colonization, irrespective 
of the host species.

Nevertheless, differences were observed for specific adhesins. For 
example, ehaA was more prevalent in cattle (97.6%) compared to 
humans (74.2%). Similarly, stgA, stgB, and stgC were more common in 
cattle-associated strains, suggesting a greater reliance on alternative 
fimbrial adhesins for colonization. Additionally, the yadM, yadL, yadN, 
and iha genes were detected more frequently in cattle strains, supporting 
their potential role in host-specific adaptation. Conversely, STEC strains 
from humans showed a higher frequency of eae, cah, ypjA, and paa, all 
of which have been implicated in epithelial attachment and virulence.

Using the gene presence/absence data from the adhesiome, 
we conducted a Z-test for differences in proportions to identify host-
specific functional enrichments (Supplementary Table  2). Several 
biological processes related to pilus biology, including pilus formation 
(GO:0009289), pilus assembly (GO:0009297), and pilus organization 
(GO:0043711), as well as cell adhesion involved in single-species 

FIGURE 3

Distribution of the most frequent STEC sequence types (STs) across countries (A) and host species (B, cattle; C, humans). Selected countries represent 
96.7% of analyzed genomes.

FIGURE 4

Genome similarity among STEC isolates based on whole-genome sequences. (A) Pairwise genome similarity (Jaccard similarity index, JSI) among 572 
isolates from cattle, humans, and food. (B) Genetic diversity of the subset of isolates included in the adhesiome analysis, restricted to human and cattle 
stool samples. Colored tracks indicate stx type (a), eae presence (b), serotype (c), host (d), and adhesiome cluster (e). In both panels, darker colors 
represent higher similarity (JSI close to 1).
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biofilm formation (GO:0043709), were significantly enriched in both 
cattle- and human-associated strains.

In cattle, processes such as protein folding (GO:0006457) and 
fimbrial usher porin activity (GO:0015473) were significantly 
enriched. In contrast, response to methylglyoxal (GO:0051595) was 
significantly enriched in humans (Supplementary Table  3). These 
findings support the hypothesis that STEC strains exhibit host-specific 
adhesion strategies, with cattle-associated strains relying more on 
fimbrial and curli-mediated mechanisms, while human-associated 
strains may have evolved broader stress response capabilities to persist 
within the human gastrointestinal environment.

3.3.2 Genome wide association analysis using 
Escherichia coli K-12

The GWAS using the E. coli K-12 reference genome is presented 
in Figure 7A. Gene enrichment analysis revealed that cattle-associated 

genes were significantly linked to trehalose transport (GO:0015771) 
and protein-phosphocysteine-trehalose phosphotransferase system 
transporter activity (GO:0090589), involving the bglF and ascF genes. 
A complete list of enriched genes and associated pathways is provided 
in Supplementary Table 4.

Significant variants were predominantly associated with adhesin 
genes. Genes such as yadK, ybgP, yfcS, flu, and ybgQ exhibited association 
signals surpassing the significance thresholds at the whole-genome level. 
ORs derived from regression coefficients indicated stronger associations 
of yadK and ybgP with cattle isolates, while flu, yfcS, and ybgQ were more 
closely linked to human-associated strains (Figure 7B).

3.3.3 Genome wide association analysis using the 
adhesiome

We performed an association analysis using the complete 
adhesiome, acknowledging that not all adhesin genes are represented 

FIGURE 5

Frequency of adhesin (A), fimbrial (B), and non-fimbrial (C) clusters among STEC genomes from humans (Hu) and cattle (Ca). Bars represent the 
number of genomes identified in each cluster. Different letter combinations denote distinct clusters, following the AdhesiomeR nomenclature.

FIGURE 6

Heatmap of genes present in STEC genomes from cattle and human sources. A: cattle; B: human, numbers indicate the percent prevalence of 
individual genes.
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in the E. coli K-12 reference genome. This analysis yielded similar 
results to the whole-genome association, with significant signals for 
genes shared between K-12 and the STEC adhesiome (yadK, ybgP, 
ybgQ, flu, and yfcS).

Additionally, other adhesin genes absent from the core K-12 
genome showed specific associations with the cattle host. Variants in 
yeeJ, espP, and fimC exhibited the strongest statistical associations 
(lowest p-values) and the highest OR for the cattle host (Figure 8), 
suggesting roles in cattle-specific colonization and adaptation under 
host-driven selective pressures.

Conversely, although significant, clpV, ybgQ, and sab displayed 
ORs below one, indicating stronger associations with the human host. 
These genes exhibited low variant density, possibly reflecting 
conserved functions in host interaction or membrane integrity.

Overall, these results underscore distinct adaptation strategies 
shaped by selective pressures, promoting STEC colonization in cattle 
and highlighting adhesins as potential targets for intervention strategies.

3.3.4 Prediction of variant effects using the whole 
genome data and the adhesiome sequences

We used snpEff to predict the effects of variants identified in the 
GWAS analysis, utilizing the pre-compiled E. coli K-12 genome 
database. For the adhesiome sequences, a custom snpEff database was 
generated by annotating adhesin genes extracted from the adhesiome 

sequence data. Out of 433 adhesin sequences analyzed, 285 genes were 
successfully annotated.

The number of variants per gene was significantly higher in 
isolates from humans compared to cattle (4,780 vs. 3,507), suggesting 
a greater overall genetic diversity among human-associated STEC 
strains. However, the functional impact of these mutations was similar 
across hosts (Supplementary Table 6).

Notably, mutations with moderate-to-high predicted impacts 
were particularly enriched near loci associated with significant GWAS 
signals both in the K-12 genome and adhesiome sequences, suggesting 
potential adaptive selection for alternative alleles favoring host-
specific colonization (Table  1). For example, an indel in ybgQ at 
position 749,777 (K-12 reference) introduced a frameshift mutation 
with a high predicted impact on protein function.

In cattle-associated strains, alternative alleles with moderate-to-
high predicted impacts were often observed at near-fixation 
frequencies, particularly in yadK, espP, and ybgP. Conversely, some 
genes, such as ybgP, exhibited moderate-to-high impact variants with 
low reference allele frequencies in cattle, challenging detection in 
GWAS analyses.

Variants occurring at intermediate frequencies and exhibiting high 
linkage disequilibrium with moderate-to-high impact mutations were 
more likely to reach significance. See Table 1 for detailed information on 
variants located within 100 bp of significant GWAS signals.

FIGURE 7

Genome-wide association analysis (GWAS) of human- and cattle-associated STEC strains using the E. coli K-12 genome as reference. (A) Manhattan 
plot showing the -log10(p) values from the association analysis. Significant variants in the adhesiome (e.g., yadK, ybgP, ybgQ, flu, yfcS) are indicated by 
large red dots. (B) Odds ratios (OR) derived from regression coefficients, with OR > 1 indicating association with cattle strains and OR < 1 indicating 
association with human strains. The dashed line at OR = 1 marks the neutral threshold. Together, these results highlight adhesiome genes significantly 
associated with host specificity.
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4 Discussion

Commensal bovine-adapted E. coli strains are considered the 
evolutionary precursors of diarrheagenic pathotypes, including STEC 
(49), with cattle-associated STEC potentially acting as a bridge to 
human infection (49, 50). Upon transmission, STEC must adapt to 
new environments and host-specific factors such as diet, hygiene, and 
antimicrobial exposure, all of which may shape genomic evolution 
(51). Therefore, identifying molecular markers that differentiate cattle- 
and human-associated STEC strains is essential for understanding 
transmission dynamics and designing targeted preventive strategies 
aimed at reducing bacterial carriage in livestock.

4.1 STEC diversity

In this study, 71 STEC strains (7.5%) were identified among the 
collected stool samples. This detection rate is lower than in previous 
reports (27, 52, 53) and may reflect several factors, including improved 
farm biosecurity, differences in feeding practices, and environmental 
conditions. Seasonal and geographical variation in STEC prevalence 
has been widely documented, with higher recovery rates during spring 

and summer (54–56). Ambient temperature, rainfall, and vector 
abundance have been suggested as drivers of these seasonal trends, 
since warmer conditions may favor STEC persistence outside the host 
and increase exposure opportunities. Feeding practices can also 
influence bacterial shedding; animals fed forage typically shed fewer 
STEC than grain-fed cattle (22, 57). In our study, most samples were 
collected during winter and early spring, a period characterized by 
lower temperatures and high rainfall, which may reduce environmental 
persistence and transmission. Moreover, in the regions analyzed, most 
animals were pasture-fed. Together, these factors may at least in part 
explain the relatively low prevalence observed. Future longitudinal 
studies will be required to further elucidate these factors. Importantly, 
despite this lower detection rate, the strains recovered are consistent 
with those reported in previous studies (26, 27, 58) and are 
representative of the STEC populations currently circulating in 
Chilean cattle.

Among the isolates recovered, the majority carried stx2 subtypes, 
which are strongly associated with severe human disease (59). From a 
global perspective, stx2 was also the predominant subtype among all 
analyzed STEC genomes, reinforcing concerns about the threat posed 
by circulating STEC strains, as Stx2 exhibits both greater cytotoxic 
activity and higher affinity for host ribosomes (60).

FIGURE 8

Circular representation of adhesin-associated variants in STEC genomes from cattle and human. The outermost layer shows the density of variants 
across adhesin genes with at least one variant significantly associated with the host, with higher color intensity indicating greater variant frequency. The 
middle and inner layers display the odds ratios (OR) and statistical significance (−log10(p)) from the GWAS, respectively, with red dots highlighting 
significant variants associated with cattle strains. All significant genes are listed in Supplementary Table 5.
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TABLE 1  Description of the effect of variants significantly associated with the host phenotype in the GWAS analysis of the E. coli K-12 strain or when considering the adhesiome sequences, and respectively with 
their allele frequencies.

Gene Position −log10(value) Reference allele 
freq. in cattle

Reference allele 
freq. in humans

Effect of the 
variant

Type of change Moderate or high in regions 
near the actual significant 
variant (100 bp)

Origin

espP 88 5.8 0.13 0.84 Moderate intergenic_region Yes Adhesiome

espP 849 6.9 0.12 0.86 Low synonymous_variant Yes Adhesiome

espP 924 6.1 0.12 0.83 Low synonymous_variant Yes Adhesiome

espP 938 6.1 0.12 0.83 Moderate missense_variant Yes Adhesiome

espP 948 6.1 0.12 0.83 Moderate missense_variant Yes Adhesiome

espP 963 5.5 0.04 0.51 Low synonymous_variant Yes Adhesiome

espP 1,625 5.9 0.18 0.92 Moderate missense_variant Yes Adhesiome

espP 2,512 5.6 0.19 0.92 Moderate missense_variant Yes Adhesiome

espP 2,920 5.2 0.37 0.74 Moderate missense_variant Yes Adhesiome

espP 2,945 5.2 0.40 0.89 Moderate missense_variant Yes Adhesiome

fimC 459 5.5 0.79 0.99 Low synonymous_variant Yes Adhesiome

flu 1,950 5.2 0.71 0.96 Moderate missense_variant Yes Adhesiome

flu 1,983 5.3 0.71 0.98 Low synonymous_variant Yes Adhesiome

yadK 462 17.0 NA 0.98 Moderate intergenic_region Yes Adhesiome

ybgP 99 7.8 0.03 0.82 Low synonymous_variant Yes Adhesiome

ybgP 105 7.6 0.03 0.82 Low synonymous_variant Yes Adhesiome

ybgP 111 9.4 0.05 NA Low synonymous_variant Yes Adhesiome

ybgP 117 6.9 0.08 NA Low synonymous_variant Yes Adhesiome

yeeJ 1,827 5.4 0.61 0.84 Low synonymous_variant Yes Adhesiome

yeeJ 2,919 5.8 0.70 0.96 Low synonymous_variant Yes Adhesiome

flu 2,072,135 5.1 0.67 0.22 Low synonymous_variant Yes K-12

yadK 151,138 12.3 0.01 0.96 Low synonymous_variant Yes K-12

ybgP 749,591 15.0 0.01 0.88 Low synonymous_variant Yes K-12

ybgP 749,597 16.1 0.01 0.88 Low synonymous_variant Yes K-12

ybgQ 749,777 15.8 0.15 0.61 High frameshift_variant Yes K-12

yfcS 2,451,806 7.3 0.88 0.90 Low synonymous_variant Yes K-12
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In Chile, the predominant STEC serotypes identified were 
O130:H11 (ST297), O185:H7 (ST2387), and O113:H21 (ST223), 
consistent with previous reports (26, 58), suggesting the persistence of 
specific strains within cattle reservoirs. In contrast, global data showed 
a higher prevalence of O157:H7 (ST11) and O26:H11 (ST21), along 
with O130:H11 (ST297). Our results underscore the considerable 
genomic variability in STs and serotypes among circulating 
STEC strains.

Notably, O130:H11 (ST297) predominated among cattle isolates, 
whereas O157:H7 (ST11) was more common among human isolates, 
consistent with global patterns (26, 61–64). O157:H7, which carries the 
LEE pathogenicity island and is strongly associated with the stx2 gene, 
is the serotype most frequently linked to severe human disease (59, 65). 
Conversely, O130:H11, a LEE-negative serotype, has been implicated in 
sporadic outbreaks (66–68). Despite lacking the LEE locus, O130:H11 
strains harbor virulence factors such as ehxA, saa, sab, lpfA, and iha, 
which may contribute to severe human disease (62, 69, 70).

Although seropathotype classification (based on ST or serotype) 
has historically been employed to assess the association of STEC 
strains with HUS and human outbreaks (71), its reliability is limited 
by the high genetic plasticity of STEC. The distribution of diverse 
serotypes across regions and hosts complicates epidemiological 
surveillance and strain tracking (72). Given these challenges, 
prioritizing molecular markers related to virulence and host 
adaptation over traditional serotyping could improve monitoring 
protocols and control strategies. This strategy would strengthen 
epidemiological surveillance, veterinary health measures, and public 
health interventions, ultimately enabling more effective and targeted 
control of STEC.

The high genomic variability of STEC facilitates its adaptation to 
diverse hosts through mechanisms such as recombination and 
horizontal gene transfer, impacting both virulence and transmission 
dynamics (49, 73, 74). However, despite this genetic plasticity, the 
existence of genetically homogeneous clades within specific STs 
suggests that certain STEC lineages have undergone niche 
specialization, likely driven by host- or environment-specific selective 
pressures. For example, at the bovine RAJ, selective pressures such as 
predation by bacterivorous protozoa may have favored strains 
encoding Stx and LEE genes, which inhibit protozoal grazing and 
promote persistence (50).

4.2 Adhesiome analyses

The evolutionary strategies of STEC may account for the greater 
adhesin diversity observed in human-associated strains compared to 
cattle-associated strains (49). Our analysis, combined with the 
AdhesiomeR cluster classification, confirmed that ehaA, ehaG, stgA-C, 
yadL-N, and iha were significantly more prevalent in cattle strains. 
EhaA, an autotransporter protein, facilitates rapid cell aggregation, 
biofilm formation, and adhesion to bovine RAJ epithelial cells when 
overexpressed in E. coli K-12 (19). Similarly, EhaG enhances 
autoaggregation, biofilm formation, and binding to collagens I–V, 
laminin, fibronectin, and fibrinogen (75). Although Stg adhesins have 
been implicated in adhesion to human and avian epithelial cells (76), 
their specific role in STEC gut colonization remains unclear. The Yad 
fimbrial autotransporter family modulates gene expression and 
virulence in STEC O157:H7 (77), potentially contributing to RAJ 

colonization (78). Additionally, Iha, a dual-function adhesin and 
siderophore receptor, is widely distributed among LEE-positive and 
LEE-negative STEC strains, and is often carried on mobile genetic 
elements, facilitating horizontal dissemination (11, 79, 80). Collectively, 
these findings suggest that cattle-adapted STEC strains rely on a 
relatively conserved adhesin repertoire optimized for stable 
colonization, biofilm formation, extracellular matrix adhesion, and 
iron acquisition.

In contrast, human-associated STEC strains exhibited greater 
diversity in adhesins, including fimbrial and non-fimbrial types, 
suggesting a more flexible colonization strategy adapted to 
heterogeneous environments. These strains showed a significantly 
higher representation of eae, cah, ypjA, and paa genes. Eae is a key 
virulence factor in LEE-positive STEC, leading to attaching and 
effacing lesions (81). Similarly, cah (calcium-binding antigen 43 
homologous) is predominantly found in LEE-positive strains (82), 
promoting autoaggregation, biofilm formation, and persistence in 
STEC O157:H7 (81, 83). YpjA (homologue of EhaD) has been shown 
to enhance biofilm formation in STEC O157:H7, reinforcing its 
contribution to intestinal colonization (19). Meanwhile, paa (porcine 
attaching and effacing-associated protein) has been associated with 
eae-positive strains from both animals and human origins, suggesting 
a synergistic role with intimin-mediated adhesion (49, 84). These 
findings indicate that human-associated STEC strains rely on a 
broader adhesin repertoire than cattle strains, which may reflect 
adaptation to a more variable intestinal environment and stronger 
immune pressures.

Differences in adhesin gene abundance between cattle- and 
human-associated STEC strains align with distinct functional 
enrichments revealed by gene ontology analysis, supporting the 
notion of host-specific adaptation strategies. In cattle-associated 
strains, enriched biological processes point to strong selection for 
biofilm formation and attachment mechanisms, particularly involving 
fimbrial and non-fimbrial adhesins (85), autotransporter adhesins 
such as EhaA (86), chaperone-usher adhesins like Yad (87), and the 
adhesin-siderophore Iha (79). Conversely, human-associated strains 
exhibit significant enrichment in methylglyoxal detoxification, a 
response to a toxic glycolysis byproduct (88), potentially indicating a 
metabolic shift toward glyoxylate cycle activation. This finding 
suggests a potential metabolic shift toward glyoxylate cycle activation, 
favoring carbon conservation and survival under nutrient-limited 
conditions, typical of the human intestine (89). Moreover, 
methylglyoxal detoxification mechanisms also contribute to the 
neutralization of reactive oxygen species (ROS), enhancing bacterial 
survival against host immune defenses (90). Altogether, these 
observations indicate that adaptation to oxidative and metabolic stress 
represents a key selective force shaping the genomic and functional 
landscape of human-associated STEC strains.

4.3 GWAS

GWAS represent powerful tools for identifying genetic variants 
associated with bacterial adaptations, including adhesion, by linking 
genotype to phenotype while accounting for confounding factors such 
as population structure (91). Applying GWAS to pathogenic bacteria 
improves our understanding of virulence mechanisms and host-
pathogen interactions; however, relatively few studies have explored the 
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population structure and adaptation of STEC using this approach. 
Some investigations have focused on associating genomic features with 
pathogenic properties in STEC. For instance, Matussek et  al. (92) 
analyzed 238 STEC genomes from patients with and without HUS to 
identify genetic predictors of disease severity. Their integrative 
approach, combining serotyping, stx subtyping, virulence profiling, 
phylogenomics, and a pangenome-wide association study (PWAS), 
showed that O157:H7 clade 8 strains and stx2a or stx2a + stx2c subtypes 
were strongly associated with HUS, while stx1a was more frequent in 
non-HUS cases. Virulence genes related to adherence (eae, tir, paa), 
toxins (toxB, astA), and type III secretion system proteins were enriched 
in HUS isolates, and hundreds of accessory genes were linked to severe 
disease, including adhesins (yfcP, yehD, elfG, sfmA) and regulators, 
although many encoded hypothetical proteins. The authors concluded 
that severe human disease results from the interplay between canonical 
virulence determinants, accessory genetic elements, and host–pathogen 
interactions. Similarly, Peroutka-Bigus et al. (93) compared genomic 
and phenotypic features of three human outbreak-associated and one 
cattle-derived STEC O157:H7 isolates to assess host adaptation. Despite 
differences in virulence gene expression, adherence, and Stx production 
among outbreak isolates, no significant differences were detected in 
cattle colonization or shedding compared with the cattle-associated 
strain. This highlights that genomic and phenotypic variation in STEC 
O157:H7 does not necessarily correspond to host-specific adaptation, 
emphasizing that host specificity cannot be inferred solely from genetic 
or phenotypic traits. More recently, Espadinha et al. (94) performed a 
PWAS of 531 STEC isolates, identifying associations between the 
development of HUS and the presence of stx2a, stx1a + stx2a, or 
stx1a + stx2c, as well as the co-occurrence of genes such as ygiW (stress-
induced protein) with group_5720 (transcriptional regulation) and 
pfkA (6-phosphofructokinase-1) with fieF (Zn2+/Fe2+/Cd2+ efflux 
transporter), among other epidemiological factors. In the same context, 
Marques Da Silva et al. (95) explored the genomic determinants of 
cattle colonization by comparing the genomes of STEC O22:H8 and 
O157:H7 strains. They identified 28 virulence-associated genes unique 
to O22:H8, primarily involved in adherence (e.g., cfaA, cfaB, cfaC, 
cfaD/cfaE, sisA, lesP, hes, pagC, tpsA, and tpsB), autotransporters (ag43), 
and invasion (tia). These findings highlight the complexity of adhesin 
gene distribution and function in STEC, reinforcing the need for 
further research to elucidate the genetic basis of host-
specific colonization.

Beyond the host-specific differences between cattle- and human-
associated STEC strains, our GWAS comparing these isolates with the 
non-pathogenic E. coli K-12 genome provides additional evidence for 
host-driven selection, highlighting potential adaptive traits that 
distinguish STEC from commensal E. coli strains. This analysis 
revealed significant enrichment of trehalose transport and protein-
phosphocysteine-trehalose phosphotransferase system activities, 
associated with the bglF and ascF genes. It is well established that 
E. coli can use trehalose as an alternative carbon source and synthesize 
it intracellularly to counteract osmotic stress by stabilizing membrane 
integrity (96). The BglF and AscF proteins, key components of the 
phosphotransferase system, mediate the transport and 
phosphorylation of β-glucosides, including trehalose, thus regulating 
its metabolism and contributing to the bacterial stress response (97). 
These metabolic adaptations may enhance the resilience of STEC 
strains to osmotic and environmental stresses encountered in the 
bovine gastrointestinal environment.

Our GWAS comparing the adhesiome of cattle- and human-
associated STEC with E. coli K-12 revealed distinct host-specific 
adhesion strategies. In cattle strains, yadK and ybgP were significantly 
associated. YadK, a chaperone-usher adhesin, enhances acid stress 
resistance, biofilm formation, and epithelial attachment, promoting 
persistence in the bovine gastrointestinal tract (98, 99). YbgP facilitates 
adhesion to epithelial and abiotic surfaces, promoting environmental 
persistence (87, 100). In contrast, human-associated strains exhibited 
significant enrichment of ybgQ, yfcS, and flu. ybgQ encodes the usher 
protein necessary for YbgP fimbriae assembly, suggesting a role in 
epithelial colonization (101). YfcS enhances biofilm formation and 
bacterial aggregation (87, 100), while flu (also known as agn43), an 
autotransporter adhesin, promotes microcolony formation, biofilm 
stability, and immune evasion in both LEE-positive and LEE-negative 
STEC strains (11, 102). These findings suggest that cattle-associated 
STEC strains prioritize adhesion mechanisms suited for long-term gut 
colonization, whereas human-associated strains exhibit a broader 
adhesin repertoire, likely reflecting selective pressures favoring host 
invasion, immune evasion, and adaptation to the intestinal niche.

Notable differences emerged when analyzing the complete 
adhesiome of cattle- and human-associated STEC strains compared 
to the analysis based solely on the E. coli K-12 genome. In cattle-
associated strains, yeeJ, espP, and fimC exhibited the highest 
significance values and OR, suggesting a prominent role in host-
specific colonization and adaptation, likely driven by selective 
pressures within the bovine gastrointestinal tract. yeeJ encodes an 
autotransporter protein with structural similarity to intimin, 
facilitating biofilm formation and enhancing STEC O157:H7 binding 
to eukaryotic cells (103, 104). EspP, a serine protease autotransporter 
of Enterobacteriaceae family, encoded on STEC virulence plasmids, 
promotes adhesion to bovine rectal epithelial cells, intestinal 
colonization, and supports biofilm formation and HeLa cell adherence 
(105, 106). Its proteolytic activity targets extracellular matrix and 
mucus proteins, facilitating tissue penetration and receptor exposure 
for other adhesins. fimC, a key component of the fim operon, plays a 
critical role in the assembly of type 1 fimbriae, which promote 
epithelial adhesion and biofilm formation in E. coli. In STEC O157:H7, 
type 1 fimbriae have been implicated in RAJ cell colonization, 
highlighting their potential contribution to cattle adaptation and long-
term persistence (107, 108).

Conversely, clpV, ybgQ, and sab exhibited a highly significant OR 
below one, suggesting their association with human-host adaptation. 
ClpV, a cytosolic ATPase and essential component of the type VI 
secretion system (T6SS), facilitates bacterial competition by delivering 
effector proteins—such as peptidoglycan hydrolases, phospholipases, 
and DNases—into target cells (109, 110). In the STEC O157:H7 strain 
EDL933, ClpV mediates the translocation of catalase into 
macrophages, promoting immune evasion; notably, deletion of clpV 
reduces lethality in murine infection models (111). Furthermore, 
ClpV has been associated with HUS-producing STEC strains, 
supporting its potential role in virulence (112, 113), although its 
precise contribution to intestinal colonization remains unclear. 
Similarly, Sab, a plasmid-encoded autotransporter, enhances 
adherence to human epithelial cells and biofilm formation in 
LEE-negative STEC strains (114), potentially facilitating intestinal 
colonization and persistence.

In addition to the gene presence/absence patterns identified 
through GWAS, variant analysis offered deeper insights into 
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host-specific selective pressures shaping adhesin functionality. 
Human-associated STEC exhibited greater genetic diversity, although 
the predicted functional impacts on adhesins were largely conserved 
across hosts. A key observation was the presence of SNPs with 
moderate-to-high effects on protein sequences. In particular, given 
ybgQ’s role in adhesion and outer membrane integrity, structural 
disruptions caused by SNPs may significantly affect bacterial 
adherence and survival within the human gut. Conversely, cattle-
associated strains exhibited alternative mutations with moderate-to-
high effects, especially in yadK, espP, and ybgP, where near-fixation 
frequencies suggest strong host-driven selection favoring these 
variants for bovine colonization. Notably, different espP alleles exhibit 
distinct biological activities: EspPα and EspPγ are secreted and 
enzymatically active, whereas EspPβ and EspPδ display reduced or 
absent proteolytic function (115). Among them, EspPγ specifically 
cleaves pepsin and coagulation factor V in humans (116), while EspPα 
is more frequently found in human isolates. In contrast, other EspP 
variants are predominantly associated with animal reservoirs and 
environmental sources (117). These host-driven selective pressures 
likely induce functional modifications that may either enhance or 
attenuate virulence. Further experimental studies, including in vitro 
and in vivo infection models, are necessary to clarify the impacts of 
these alternative variants on colonization efficiency and 
adhesin functionality.

A potential limitation of our GWAS is the uneven geographic 
distribution of publicly available STEC genomes, with an over-
representation of isolates from countries such as Chile, Germany, and 
France. However, our analyses were focused on host origin rather than 
country of isolation, and GWAS methods corrected for population 
stratification were applied to mitigate this potential bias. In addition, 
the dataset encompassed diverse serotypes and lineages, which 
supports the robustness of the host-specific associations identified.

Targeting adhesins in STEC offers a promising avenue for 
developing effective intervention strategies. Given the essential role of 
adhesins in host colonization, strategies such as anti-adhesin 
antibodies, competitive inhibitors, or adhesin-based vaccines could 
significantly reduce bacterial adherence and gut colonization, 
ultimately lowering transmission risk. These approaches could 
be particularly beneficial in pre-harvest control programs designed to 
decrease STEC carriage in cattle. Future research should focus on 
identifying adhesins with high conservation across STEC strains and 
evaluating their potential as preventive targets, including efficacy 
assessments through animal model studies.

5 Conclusion

This study provides new insights into the genetic diversity and 
functional roles of adhesins in STEC host adaptation. We identified 
adhesin-encoding genes strongly associated with cattle strains (e.g., 
yadK, espP, fimC) and others in human-associated strains (clpV, 
ybgQ, sab) whose presence and polymorphisms may reflect host-
specific selective pressures. Importantly, these genes are not only 
markers of host origin but also have potential functional 
implications, where cattle-associated strains may display enhanced 
colonization and persistence at the bovine RAJ, while human-
associated strains may have facilitated immune evasion and adhesion 

to epithelial cells, increasing their virulence in the human host. 
However, their precise roles in host colonization require further 
investigation, particularly to evaluate their potential as intervention 
targets. Future functional studies, including adhesion assays and 
transcriptomic profiling under host-mimicking conditions, will 
be crucial to elucidate their contribution to bacterial fitness, biofilm 
dynamics, and immune evasion strategies. Moreover, variant 
analysis revealed greater genetic diversity in adhesin genes among 
human-associated strains, although functional effects remained 
comparable across hosts, suggesting selective constraints that 
preserve key adhesion mechanisms. High-impact mutations should 
be  further examined through protein structure modeling and 
functional assays to assess their influence on adhesion efficiency and 
pathogenicity. Collectively, such studies may contribute to the 
identification of conserved adhesin targets for vaccine development 
and other intervention strategies aimed at reducing STEC 
transmission at the livestock level.
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