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Metatranscriptome analysis to 
unveil the molecular signatures of 
transcriptionally active pathogens 
associated with bovine mastitis
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Bovine mastitis, a multi-etiological disease, is driven by complex microbial consortia; 
however, the transcriptional activity of pathogens and their underlying molecular 
mechanisms remains insufficiently explored. To the best of our knowledge, no 
metatranscriptome study on bovine mastitis is available in the public domain 
that identifies transcriptionally active pathogens and their associated molecular 
signatures. In this study, an in silico metatranscriptomics approach is employed on 
publicly available bovine mastitis RNA sequencing (RNA-Seq) datasets to identify 
transcriptionally active pathogens and their gene expression signatures. The 
analysis of unmapped reads (those not mapped to the bovine genome) identified 
25 transcriptionally active pathogenic genera, accounting for 8,995 sequences, 
approximately from 500 bacterial strains of different species. Major findings of the 
study includes: (I) list of emerging pathogens “Pseudomonas, Stenotrophomonas, 
Comamonas, and Sphingomonas” actively contributing to disease development 
alongside well-known pathogens; (II) expression profiling of 4,121 virulence 
proteins, 484 peptidases, 432 secretory proteins, and 74 antimicrobial resistance 
genes; (III) identification of numerous hypothetical proteins in Staphylococcus 
(112), Mycoplasma (69), and Escherichia (32), representing potential source for 
diagnostics and multi-epitope vaccine candidates; and (IV) negative correlations 
between beneficial bacteria (Blautia, Bacillus, Lactobacillus) and pathogenic species 
in microbial co-occurrence interaction networks, suggesting opportunities for 
microbiome-based therapeutic strategies to treat subclinical mastitis. This study 
demonstrated the advantages of the metatranscriptomics approach and publicly 
available dual RNA-Seq datasets in unraveling the complexity of polymicrobial 
infectious diseases.
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1 Introduction

Bovine mastitis is a multi-etiological disease in dairy cattle, characterised by inflammation 
of the mammary gland. It affects animal health, milk production and quality and causes 
substantial economic losses to dairy farmers (1). Additionally, treating bovine mastitis 
significantly contributes to the bigger problem of antimicrobial resistance (AMR), particularly 
through the potential use and misuse of antibiotics in livestock production (2). Various 
culture-dependent and culture-independent high-throughput research studies have reported 
the association of hundreds of microbial species, including Streptococcus agalactiae, 
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Streptococcus uberis, Staphylococcus aureus, Streptococcus pyogenes, 
Streptococcus dysgalactiae, Trueperella pyogenes, Escherichia coli, 
Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes, and 
Pasteurella spp.  16S rRNA and whole metagenome shotgun 
sequencing (WMGS) have significantly contributed to the discovery 
of microbial species associated with bovine mastitis (3–6). A 16S 
sequencing-based study reported the top  10 genera of causative 
pathogens in the milk of mastitic quarters from 65 cows, and also 
reported less-known bacteria, such as Sneathia sanguinegens and 
Listeria innocua, which are difficult to identify using culture-based 
diagnostics (7). Another 16S study highlighted significant variation in 
taxonomic profiles among different udder quarters (healthy, mastitis-
affected, and quarters with undetermined status) at the genus level (8). 
Similarly, another study investigated the impact of bacteria causing 
subclinical mastitis on the structure of the cow’s milk microbiome, 
reporting that Firmicutes and Proteobacteria were predominantly 
present in subclinical mastitis (9). Burakova et al. (10) investigated the 
relationship between milk microbiome composition and bovine 
mastitis before and after antibiotic treatment using 16S rRNA 
sequencing. This study linked the increased abundance of the genera 
Hymenobacter and Lachnospiraceae NK4A136 group with the 
development of subclinical and clinical mastitis. In contrast, a reduced 
abundance of Ralstonia, Lachnospiraceae NK3A20 group, 
Acetitomaculum, Massilia, and Atopostipes in mastitic milk was linked 
to their potential role in maintaining udder health. In the 16S 
sequencing, specific regions of rDNA are targeted to characterise the 
community composition. However, it has several major limitations, 
including low taxonomic resolution (primarily at the genus level), 
PCR bias, limited functional insight, and a lack of viability assessment 
of the bacterial community (11–13). To overcome these limitations, 
the WMGS approach was employed to gain a deeper understanding 
of the functional aspects of microbial species associated with bovine 
mastitis. A milk WGS metagenome study on healthy and clinical 
mastitis (CM) cows reported 363 unique bacterial species and strains 
in CM samples (4). Another metagenomic analysis was performed on 
the subclinical mastitis milk samples of Kankrej, Gir (Bos indicus), and 
crossbred (Bos taurus × B. indicus) animals. A total of 56 different 
species, with varying abundances, were detected in the subclinical 
mastitis milk samples (6). Recently, a longitudinal study on the udder 
microbiome of Norwegian Red dairy cows was conducted using a 
shotgun metagenomic approach to gain insights into pathogen-driven 
microbial adaptation and succession. This study revealed that samples 
with low somatic cell counts were enriched with beneficial genera, 
such as Corynebacterium, Bradyrhizobium, and Lactococcus, while 
Staphylococcus predominated in high somatic cell count milk samples 
(14). In WMGS, the whole stretch of DNA is sequenced to identify the 
presence of genes and associated bacteria. However, it fails to 
distinguish between transcriptionally active and dead bacteria, and 
has low real-time functional resolution at the species and gene levels. 
These limitations can be  addressed through a 
metatranscriptomics approach.

The accurate identification of molecular weapons used by disease-
associated pathogens against their hosts is critical for gaining insight 
into disease initiation and progression (15). RNA-Seq datasets of 
diseases contain extensive functional information on disease-related 
pathogens that are expressed simultaneously (16). However, host-
centric studies often overlook the functional importance of microbial 
communities, such as in bovine mastitis. The proportion of 

opportunistic and commensal microbial populations in the udder 
tissue constantly shifts as mastitis progresses, which can be utilised to 
understand in vivo host-pathogen interactions. Therefore, publicly 
available bovine mastitis dual RNA-Seq studies have been analysed to 
identify transcriptionally active bacteria associated with bovine 
mastitis, elucidating their functional role in pathogenesis. 
We extracted the non-bovine, non-ribosomal sequenced reads and 
constructed de novo metatranscriptome assemblies (17, 18). The 
assembled transcripts were further annotated to reveal the taxonomy 
and functional profile of transcriptionally active pathogens associated 
with bovine mastitis.

2 Materials and methods

2.1 Selection of bovine mastitis 
transcriptome studies

A systematic approach was employed to identify publicly available 
bovine mastitis transcriptomics datasets from the NCBI Sequence 
Read Archive (SRA) database. A total of eight bovine mastitis studies 
combining five field (PRJEB43443, PRJNA544129, PRJNA627642, 
PRJNA551141, and PRJNA668296) and three cell lines studies 
(PRJNA778892, PRJNA556769, and PRJNA556769) were selected for 
this study. The NCBI bio project ID and study details for each project 
are listed in Supplementary Table S1. The three studies (PRJNA778892, 
PRJNA556769, and PRJNA591729) utilised the bovine mammary 
alveolar cell line (MACT), while one study (PRJNA668296) employed 
blood, two studies (PRJEB43443 and PRJNA544129) used milk, and 
two studies (PRJNA551141 and PRJNA627642) used mammary gland 
samples to generate RNA-Seq data. A brief information of each study 
including experimental conditions, sample sizes, sequencing 
platforms, and read statistics are provided in Supplementary Tables S2.

2.2 Quality check and control of sequence 
data

The quality of the RNA-Seq datasets from each project was 
assessed using FastQC v0.11.9 and pre-processed using FastP v0.23.2. 
using default parameters (19). The pre-processed RNA-Seq reads were 
aligned against the Bos Taurus ARS-UCD1.3 genome using STAR 
version 2.7.3a (20) with a maximum number of multiple alignments 
set to 10. Further, unmapped reads were extracted, and ribosomal 
reads were removed from unmapped reads using SortMeRNA version 
2.1b (21) with default parameters. High-quality unmapped 
non-ribosomal reads were used to construct the 
metatranscriptome assembly.

2.3 Metatranscriptome assembly and 
annotation

The de novo metatranscriptome was constructed from 
non-ribosomal unmapped short reads using the Trinity version 2.9.0 
software (22). Protein-coding sequences were identified and translated 
using TransDecoder v5.5.0 for ORF identification with a minimum 
amino acid length of 60. Only complete ORFs with start and stop 
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codons were retained for analysis to ensure the reliability of the 
generated protein sequences. The abundance of each translated 
transcript was calculated by counting the number of mapped reads to 
each transcript using STAR v2.7.3a and featureCounts v2.0 (23), 
followed by DESeq2 normalisation. Transcripts longer than 60 amino 
acids and with an average read count of ≥3 were selected for 
redundancy removal, which was carried out by clustering the 
sequences at 90% identity using CD-HIT v4.8.1 (24). Further, 
clustered transcripts were annotated using NCBI BLAST v2.12.0 (25) 
against the UniProt UniRef100 database. Only the annotated proteins 
with sequence identity ≥75% and query coverage ≥60% with the 
reference sequence were selected for further taxonomy and functional 
assignment. Microbial species and functional information for each 
sequence were extracted from the description of hit sequences. 
Furthermore, species-to-kingdom links were traced through the 
UniProt taxonomy tree map. The project PRJNA668296 was omitted 
due to technical incompatibility with the downstream analysis.

A list of 102 genera was compiled from published metagenomics 
studies on bovine mastitis to identify mastitis pathogens in the 
assembled metatranscriptome. KEGG Orthology (KO) annotations 
for sequences were obtained from eggNOG-mapper version 2.1.12 
(26) using emapper.py, which assigned KO terms to each protein 
sequence. KO enrichment was performed using the enrichKO 
function of MicrobiomeProfiler (version 1.15) R package (24) at a 
p-value cut-off of 0.05 and q-value (FDR) cut-off of 0.2. Benjamini & 
Hochberg method was applied for p-value correction. Additionally, 
gene set filter criteria with a minimum size of 10 and a maximum size 
of 500 were used to reduce noise and exclude overly broad or narrow 
categories. The annotation of hypothetical protein sequences was 
performed using the InterProScan database (27). VirulentPred 2.0 
(28), and signalP 5.0 (29) were used to identify virulent and secretory 
proteins. Peptidase and AMR genes were identified using a BLAST 
similarity search against the above-mentioned criteria in Merops [27] 
and the Comprehensive Antibiotic Resistance Database (CARD) (30).

2.4 Microbial diversity analysis of 
metatranscriptome

Microbial abundance data were pre-processed in the R language 
(version 4.2.3) using the R packages tidyverse (version 2.0) and 
RColorBrewer (version 1.1.3) (31). Microbial diversity, species 
evenness and richness analysis were performed using the R package 
vegan version 2.7. A linear regression model was fitted between 
Shannon diversity and species richness using the lm function, with 
95% confidence intervals. The ggplot2 version 3.5 was used for 
visualization. Non-parametric Spearman correlation was calculated 
using the R cor function from the taxonomic abundance matrix. A 
correlation threshold of ≥0.6 and a p-value of ≤ 0.05 was applied to 
reduce noise while capturing biologically meaningful co-occurrence 
patterns. A microbial co-occurrence interaction network was 
generated using the R package igraph (version 2.1.4).

3 Results

Host-centric RNA-Seq datasets are a valuable resource for 
exploring in vivo gene expression profiles of pathogens to develop new 

diagnostic and therapeutic solutions. In this study, non-ribosomal and 
unmapped reads from the host genome were extracted from all the 
selected RNA-Seq datasets and used for metatranscriptome assembly 
and analysis of pathogens. This study aims to identify transcriptionally 
active pathogens and their associated molecular signatures for bovine 
mastitis disease. The schematic workflow of the performed study is 
detailed in Figure 1.

3.1 Metatranscriptome assembly and 
annotation

The assembled metatranscriptomes were translated into protein 
sequences (Table 1). First, all transcripts were screened for an average 
read count of ≥3 and coded protein lengths of ≥60 amino acids to 
exclude chimeric and low-quality partial transcripts. Secondly, all the 
selected proteins at the first step were clustered at 90% sequence 
identity to remove redundant and similar proteins generated from 
different isoforms. In the third step, non-redundant protein sequences 
were annotated using a BLAST similarity search against the UniProt 
database. Only sequences that matched the UniProt database with at 
least 75% sequence identity and 60% query coverage were selected for 
downstream analysis, aiming to capture the inherent functional 
diversity of microbial consortia with greater accuracy. Microbial 
species information for each sequence was extracted from the 
description of hit sequences. Furthermore, species-to-kingdom links 
were traced through the UniProt taxonomy tree map. The above-
mentioned filtering steps were applied to each project to ensure high-
quality assembled transcripts and translated proteins for further 
taxonomic and functional analysis. The annotated protein sequences 
were classified into five groups based on their origin, namely bacteria, 
fungi, bovine, humans, and others (Table 2). This study primarily 
focused on identifying functionally active bacteria associated with 
bovine mastitis. Therefore, protein sequences from fungi, bovine, 
human, and other groups were removed after annotation from further 
downstream analysis.

3.2 Metatranscriptome analysis to reveal 
taxonomic and functional profiling of 
pathogenic microbial communities 
associated with bovine mastitis

Protein sequences of bacterial origin were further analysed for 
each project to determine their taxonomic and functional role. 
Bacterial sequences were detected in distinct proteins of each project 
at the phylum, genus and species levels (Figures 2A,B).

However, various sequences were missing species-level 
information because the UniProt database may not contains species 
level information for these sequences. The phyla Pseudomonadota and 
Bacillota were highly prevalent in all projects and had a higher number 
of distinct sequences. Both phyla cover 16 to 96% of each project, with 
an average coverage of 70% (Figure  2). Pseudomonas is a highly 
abundant genus in the phylum Pseudomonadota. P. alcaligenes, 
P. entomophila, P. marginalis, P. monteilii, P. phage, P. plecoglossicida, 
P. stutzeri, P. taiwanensis, P. geniculata, P. coronafaciens, P. savastanoi, 
P. amygdali, P. fluorescens, P. aeruginosa, P. syringae, P. putida were 
among the most abundant species in the metatranscriptome. In the 
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phylum Bacillota, various Bacillus species (B. amyloliquefaciens, 
B. cereus, B. obstructivus, B. pumilus, B. subtilis, B. thuringiensis, and 
B. wiedmannii) were also found in abundance.

In three projects, Staphylococcus aureus was used as a pathogen to 
study bovine mastitis infection, while the project PRJNA544129 

studied naturally infected bovine mastitis. Mycoplasma bovis and 
Streptococcus uberis are the other two infection agents used in the 
projects PRJNA551141 and PRJNA627642, respectively. Table 3 shows 
that Staphylococcus species (S. aureus, S. cohnii, S. sciuri, S. succinus) 
have a significant number of distinct proteins in four projects. 

FIGURE 1

Schematic representation of the performed metatranscriptomics study to identify the transcriptionally active bacterial pathogens associated with 
bovine mastitis.

https://doi.org/10.3389/fvets.2025.1642351
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Naveenprasath et al.� 10.3389/fvets.2025.1642351

Frontiers in Veterinary Science 05 frontiersin.org

TABLE 1  Summary of de novo metatranscriptome assembly for each RNA-Seq study.

Project Data 
(million 
reads)

No of 
contigs

No of 
protein

Transcript filtering

Abundance >3 
and length 

>60

Cluster at 
90% 

identity

Blast 
annotation

Annotated 
proteins with 
identity >75 

and coverage 
>60

PRJNA591729 99.57 394,208 161,589 5,183 3,036 2,977 2,442

PRJNA556769 22.37 148,064 80,312 9,908 6,337 6,178 4,869

PRJNA551141 11.99 86,899 29,603 13,222 12,682 12,368 10,431

PRJEB43443 174.58 378,422 246,442 67,401 41,220 39,417 25,577

PRJNA544129 40.6 47,042 27,901 20,573 18,661 17,673 1,582

PRJNA627642 5.15 7,517 4,520 3,701 3,282 3,051 1,174

PRJNA778892 2.34 57,039 36,470 21,077 19,868 19,183 12,986

TABLE 2  Summary of annotated metatranscriptome for each RNA-Seq study with the number of transcripts identified for bacteria, fungi, bovine, 
human and other categories.

Project Annotated 
proteins with 

identity >75 and 
coverage >60

Source of sequences

Bacterial Fungal Bovine Human Other

PRJNA591729 2,442 250 0 1,318 9 865

PRJNA556769 4,869 44 0 3,263 23 1,539

PRJNA551141 10,431 7,895 6 516 43 1977

PRJEB43443 25,577 603 58 8,776 1,575 14,623

PRJNA544129 1,582 20 0 699 32 831

PRJNA627642 1,174 6 0 675 7 486

PRJNA778892 12,986 177 5 391 208 12,210

FIGURE 2

Taxonomic summary of metatranscriptome for each RNA-Seq study: (A) relative abundance of bacterial phyla, and (B) relative abundance of bacterial 
genera. F1 (PRJNA544129); F2 (PRJEN43443); F3 (PRJNA551141); F4 (PRJNA556769); F5 (PRJNA591729); F6 (PRJNA627642); F7 (PRJNA778892).
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Project-wise identified genera, number of sequences and respective 
species are provided in Supplementary File 2 (ST1–ST8). Based on the 
number of sequences (≥5 distinct sequences), 58 transcriptionally 
active genera were identified. Transcriptionally active pathogenic 
genera and their top 20 species, with the number of distinct sequences, 
are provided in Supplementary File 2 (ST9 and ST10).

The Shannon index of studies (PRJNA544129:1.63 and 
PRJNA778892: 1.37) exhibits moderate diversity, indicating the 
dominance of certain species, while others show lower diversity 
(dominance of a very few species) (Figure 3A). The diversity results 
are very well supported by the species evenness index. The studies 
(PRJNA591729, PRJNA627642, and PRJNA551141) have extremely 
uneven species composition, whereas PRJNA544129, PRJNA778892, 
and PRJNA556769 have low species evenness (Figure  3B). 
PRJEN43443 has moderate species evenness (0.5) among all the 
studies. The Bray-Curtis and Jaccard dissimilarity indices of all the 
studies are relatively high (>0.6), indicating high dissimilarity in 
microbial composition and abundance across all the studies 
(Figure 3C).

Each RNA-Seq study was designed differently according to its 
objectives. Therefore, we  selected only mammary gland and milk 
samples and grouped them into ‘Mastitic’ and ‘Healthy’ groups to 
identify the most abundantly expressed proteins by calculating the 
mean abundance of their transcript sequences for each project 
separately. In study PRJEB43443, a time-point-based infection study, 
samples from the zero-hour time point were considered healthy, and 
all others were grouped as mastitic. Since PRJNA627642 does not have 
control samples, it was excluded from the abundance calculation. 
Staphylococcus aureus is the most prevalent pathogen of bovine 
mastitis reported in studies worldwide, and we also observed that 
Staphylococcus aureus proteins were among the most abundant 
proteins in all the projects. In our analysis, other known mastitis 

pathogens, such as Escherichia, Mycoplasma, Streptococcus and 
Pseudomonas species, were also present in higher abundance. We have 
observed that various transcripts exhibit higher average expression 
levels in mastitis samples. The proteins were sorted according to their 
abundance in the mastitis samples and provided the top five most 
abundant proteins across all projects (Table 4), which are primarily 
associated with cell division and gene regulatory mechanisms. 
Interestingly, most of the top-abundant proteins were either 
uncharacterised or hypothetical, with limited information available 
regarding their function. The project-wise average abundance of 
pathogens, as determined by identified distinct sequences, and the 
abundance of all identified sequences, are provided in 
Supplementary Table S3, Supplementary Files 1 and 
Supplementary Files 3a,b.

3.3 KEGG orthology (KO) enrichment 
analysis of metatranscriptome

KO enrichment analysis of the metatranscriptome is crucial for 
developing deep insight into bacterial pathogenesis, as enriched 
pathways can reveal key virulence factors, survival mechanisms, and 
employed metabolic adaptations in host environments. Overall, 83 
pathways were obtained from KO enrichment. The description of 
pathways and counts of mapped KO terms is provided in 
Supplementary Table S5, Supplementary Files 1. Our KO analysis 
shows (Figure 4) that mastitis-associated pathogens are finely tuned 
to the host environment with a strong representation of signalling and 
regulation pathways (Two-component systems), nutrient acquisition 
and metabolism (amino acid and cofactor biosynthesis), motility and 
colonisation (flagella, chemotaxis), virulence and immune evasion 
(secretion systems, biofilm formation).

TABLE 3  Summary of identified bacterial species and number of bacterial proteins associated with species for each study.

Project PRJNA 
591729

PRJNA77 
8,892

PRJNA 551141 PRJEB 
43443

PRJNA 
556769

PRJNA 
544129

PRJNA 
627642

Infectious 

agent

Staphylococcus 

aureus

Staphylococcus 

aureus
Mycoplasma bovis

Staphylococcus 

aureus
Escherichia coli Naturally infected

Streptococcus 

uberis

Samples Cell line (MACT) Cell line (MACT) Mammary gland Milk Cell line (MACT) Milk Mammary gland

Proteins 250 177 7,895 603 44 20 6

Species with 

the highest 

number of 

proteins

Mycoplasma bovis, 

Staphylococcus 

aureus, 

Mycoplasma bovis 

DSM 22781, 

Mycoplasma bovis 

1,067, Mycoplasma 

bovis 8,790, 

Mycoplasma 

agalactiae, Vibrio 

cholera, Klebsiella 

pneumoniae, 

Anaplasma 

phagocytophilum,

Mycoplasma 

hyorhinis, 

Mycoplasma 

hyorhinis HUB-1, 

Chlamydia 

trachomatis, 

Chlamydia abortus, 

Mycoplasma 

hyorhinis SK76, 

Escherichia coli, 

Brevundimonas sp., 

Delftia tsuruhatensis, 

Bradyrhizobiaceae 

bacterium PARB1, 

Achromobacter sp. 

2789STDY5608621

Stenotrophomonas 

maltophilia, 

Pseudomonas sp. 

GM84, Pseudomonas 

putida, Pseudomonas 

aeruginosa, 

Pseudomonas 

plecoglossicida 

NB2011, Escherichia 

coli, Comamonas 

aquatic, Pseudomonas 

plecoglossicida, 

Stenotrophomonasp.

Staphylococcus 

aureus, Klebsiella 

pneumoniae, 

Escherichia coli, 

Acinetobacter 

baumannii, 

Lactobacillus 

johnsonii, 

Streptococcus 

pneumoniae, 

Bacillus subtilis, 

Pseudomonas sp., 

Mycobacterium 

tuberculosis, 

Pseudomonas 

fluorescens

Staphylococcus 

aureus, 

Photobacterium 

ganghwense, 

Klebsiella 

pneumoniae, 

Mycoplasma 

arginine, 

Escherichia coli, 

Anaplasma 

phagocytophilum, 

Vibrio 

parahaemolyticus, 

Streptococcus 

pneumoniae, 

Salmonella enterica,

Staphylococcus 

aureus, Bacillus 

obstructivus, 

Bacillus cereus 

R309803, 

Anaplasma 

phagocytophilum, 

Porphyromonas 

macacae, 

Meiothermus 

silvanus, 

Enterobacter 

cloacae, Blautia 

luti,

Staphylococcus 

aureus, 

Nesterenkonia 

sp. M8, 

Klebsiella 

pneumoniae, 

Bacillus 

wiedmannii
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The two-component system, the most enriched pathway, enables 
bacteria to sense and respond to environmental changes, such as host 
defences and antibiotic treatment. The biosynthesis of amino acids 
and cofactors is another enriched pathway that suggests the survival 
and growth of pathogens in nutrient-limited host environments, 
activating pyruvate and amino-acid metabolism (including pyruvate, 
glycine, serine, and threonine) in response to stress. Flagellar assembly 
and chemotaxis pathways suggest bacterial motility for initial 
colonisation and host tissue invasion, and deliver effector proteins into 
host cells using bacterial secretion systems type III and VI secretion 
systems, a well-known virulence mechanism of bacteria. Biofilm 
formation pathways provide shelter against antimicrobials and host 
immunity, contributing to recurrence, chronic infections, and 
antimicrobial resistance. The enrichment of arginine, proline, cysteine, 
and methionine metabolism suggests that the pathogenic bacterial 
community has developed adaptive mechanisms (redox balance, stress 
response and polyamine synthesis) against host oxidative stress and 
immune modulation.

3.4 Identification of virulence factors, 
peptidase and AMR genes in 
metatranscriptome assembly

In bacteria, various types of proteins exist which can interact with 
the host directly or indirectly and may contribute to disease 

pathogenesis. Therefore, identifying such bacterial proteins in the 
metatranscriptome is essential for evaluating the pathogenic potential 
of pathogens. Virulent, peptidase and AMR genes fall under these 
categories. Therefore, bacterial proteins with virulence features were 
identified using VirlentPred software. Further, the predicted proteins 
were also explored in the Virulence Factor Database (VFDB) using 
BLAST similarity search (Table 5). Detailed descriptions of virulent 
proteins are provided in Supplementary File 4 (ST2). Predicted 
virulent proteins from Stenotrophomonas, Mycoplasma, Staphylococcus 
Species, Comamonas, and Sphingomonas species mostly belong to 
hypothetical and uncharacterized proteins.

Proteases are key bacterial proteins that cleave peptide bonds in 
proteins to facilitate host cell colonisation, defence evasion, and 
damage. The cross-compatibility of several bacterial proteases with the 
host system enables them to cleave host proteins and disrupt host 
cellular functions. MEROPS database was used to identify the 
peptidase sequences among bacterial proteins (Table 6). The identified 
peptidases mainly belong to the serine and metalloprotease families, 
and the PRJNA551141 project has the highest number of peptidases. 
Proteases were identified for the following projects: PRJNA551141 
(625), PRJEB43443 (32), PRJNA778892 (26), PRJNA591729 (9), and 
PRJNA556769 (4). Project-wise information on identified proteases is 
provided in Supplementary File 4 (ST3). The prevalence of antibiotic 
resistance among bacterial pathogens is increasing due to the 
unsupervised use of antibiotics in treatment, and the treatment of 
bovine mastitis contributes significantly to antimicrobial resistance. 

FIGURE 3

Microbial diversity indices of metatranscriptome for each RNA-Seq study: (A) Shannon diversity, (B) species evenness, (C) Bray–Curtis and Jaccard 
distance between samples, and (D) relationship between species richness and diversity. Box plots of Shannon, Simpson, Chao1, and Beta diversity for 
each project are provided in Supplementary Figures S1A–E. F1 (PRJNA544129); F2 (PRJEN43443); F3(PRJNA551141); F4(PRJNA556769); 
F5(PRJNA591729); F6(PRJNA627642); F7 (PRJNA778892).
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Therefore, the identified bacterial proteins from each project were 
analysed against the CARD database (Table 7). A total of 85 proteins 
were predicted to have antibiotic resistance; 82 sequences belonged to 
study PRJNA551141. Two resistance proteins were identified from 
PRJEB43443 and PRJNA778892, respectively. The identified proteins 
from the bovine mastitis metatranscriptome are resistant to major 
antibiotics and drugs, such as Tetracycline, Penicillin, Macrolides, and 

Cephalosporins, which are routinely used for bovine mastitis 
treatments. A project-wise detailed description of antibiotic resistance 
proteins is provided in Supplementary File 4 (ST4).

Based on metatranscriptome analysis, a list of the 25 most 
transcriptionally active bacterial genera has been compiled to 
illustrate the active pathogenic load associated with bovine mastitis, 
with a particular focus on virulence factors, peptidases, secretory 

TABLE 4  List of the five most abundant proteins and their average abundance between two groups for each project.

Protein sequences Abundance

Healthy Mastitic

PRJNA591729

Cell division protein FtsZ n = 1 Tax = Mycoplasma bovis TaxID = 28,903 RepID = A0A2N8U2C8_MYCBV 24635.4 14500.1

Chaperone protein DnaK n = 2 Tax = Mycoplasma bovis TaxID = 28,903 RepID = A0A454APB5_MYCBG 9926.2 17579.9

Cell division protein FtsZ n = 2 Tax = Mycoplasma bovis TaxID = 28,903 RepID = A0A454APL1_MYCBG 35500.5 20048.0

Transcriptional regulator MraZ n = 3 Tax = Mycoplasma agalactiae TaxID = 2,110 RepID = A5IYG3_MYCAP 173993.9 107345.4

Cell division protein FtsZ n = 2 Tax = Mycoplasma bovis TaxID = 28,903 RepID = A0A059XZB6_MYCBV 224068.3 125845.4

PRJNA551141

Uncharacterized protein (fragment) n = 1 Tax = Flavobacteriaceae bacterium BH-SD17 TaxID = 2,487,930 RepID = A0A3N4N944_9FLAO 4455.7 5465.0

Uncharacterized protein (Fragment) n = 1 Tax = Flavobacteriaceae bacterium BH-SD17 TaxID = 2,487,930 RepID = A0A3N4N944_9FLAO 2870.2 7491.8

Uncharacterized protein (Fragment) n = 1 Tax = Flavobacteriaceae bacterium BH-SD17 TaxID = 2,487,930 RepID = A0A3N4N944_9FLAO 18560.8 26590.4

Uncharacterized protein (Fragment) n = 1 Tax = Flavobacteriaceae bacterium BH-SD17 TaxID = 2,487,930 RepID = A0A3N4N944_9FLAO 23650.0 43142.1

Hypothetical protein n = 1 Tax = Vibrio cholerae TaxID = 666 RepID=UPI000C288509 60705.1 68035.2

PRJEB43443

Uncharacterized protein n = 2 Tax = Anaplasma phagocytophilum TaxID = 948 RepID = A0A181ZYN8_ANAPH 59.7 182.4

Hypothetical protein n = 1 Tax = Xanthomonas oryzae TaxID = 347 RepID=UPI000CA06AA2 1083.1 232.7

Hypothetical protein n = 1 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI000E3C86C6 52.2 372.6

Hypothetical protein n = 2 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI001156E9BB 346.0 1643.4

Hypothetical protein n = 1 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI000E3E9016 653.2 1930.8

PRJNA544129

Hypothetical protein n = 1 Tax = Porphyromonas macacae TaxID = 28,115 RepID=UPI000347688B 438.9 60.1

Hypothetical protein n = 1 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI000EC6EB46 107.1 126.2

Reverse transcriptase family protein n = 1 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI00115943A6 254.8 270.2

Endonuclease n = 1 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI000E3CED8D 333.8 573.1

Hypothetical protein n = 1 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI000E3E9016 1472.8 1830.6

PRJNA778892

Hypothetical protein n = 1 Tax = Escherichia coli TaxID = 562 RepID=UPI0011AE3841 1.7 37.1

Dihydrolipoamide dehydrogenase of branched-chain alpha-keto acid dehydrogenase n = 1 Tax = Mycoplasma hyorhinis SK76 TaxID = 1,118,964 

RepID=K7X8N3_MYCHR 5.2 39.5

Uncharacterized protein n = 2 Tax = Anaplasma phagocytophilum TaxID = 948 RepID = A0A181ZYN8_ANAPH 125.6 63.8

Adenine phosphoribosyltransferase n = 3 Tax = Mycoplasma hyorhinis TaxID = 2,100 RepID = A0A3B0PK95_MYCHR 1314.0 324.7

Hypothetical protein n = 2 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI001156E9BB 697.6 350.2

PRJNA556769

Protein A* n = 1 Tax = Salmonella enterica TaxID = 28,901 RepID=UPI000775F056 11.0 11.4

Uncharacterized protein n = 1 Tax = Anaplasma phagocytophilum TaxID = 948 RepID = A0A181ZWJ0_ANAPH 11.0 20.5

Endonuclease n = 1 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI000E3CB2D5 83.5 81.4

Uncharacterized protein n = 2 Tax = Anaplasma phagocytophilum TaxID = 948 RepID = A0A181ZYN8_ANAPH 119.7 140.9

Hypothetical protein n = 2 Tax = Staphylococcus aureus TaxID = 1,280 RepID=UPI001156E9BB 190.5 274.4
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FIGURE 4

KEGG orthology (KO) enrichment analysis of assembled metatranscriptome.

TABLE 5  Summary of identified virulence protein, most abundant bacterial species, and associated virulence genes.

Project PRJNA 
551141

PRJEB 
43443

PRJNA 
778892

PRJNA 
591729

PRJNA 
556769

PRJNA 
544129

PRJNA 
627642

Identified virulent 

proteins

4,011 358 90 156 30 16 5

Most abundant 

bacterial species 

among identified 

virulent proteins

Pseudomonas species: P. putida, P. sp. GM84, P. aeruginosa, P. plecoglossicida, P. sp. NBRC 111124/111131, P. mosselii, P. monteilii, P. fluorescens, P. 

geniculate

Stenotrophomonas species: S. maltophilia, S. maltophilia SKK35/CC120222-04/CC120223-11

Mycoplasma species: M. bovis, M. hyorhinis, M. bovis (ATCC 25523 / DSM 22781 / NCTC 10131 / PG45)

Staphylococcus species: S. aureus, S. succinus, S. sciuri

Escherichia species: E. coli, E. coli CFT073, E. coli NA114, E. coli, UMNK88/MS 85/ISC7

Comamonas species: C. aquatica, C. aquatica st. DA1877, C. testosterone, C. kerstersii

Sphingomonas species: S. sp. IBVSS2, LK11, FARSPH, S. taxi, S. sanguinis

Delftia species: D. tsuruhatensis, D. acidovorans, D. lacustris, Delftia sp. ZNC0008

Virulence Genes 

associated with 

bacterial species

Pseudomonas species: PA0685, PA0686, PA0687, PA1458, PA1459, PA1464, PA14_RS24370, PA1663, PA3349, PA4706, PFL_RS24295, PSEEN_

RS11600, PSPTO_RS07240, alg(44,8, B, C, F, K, L, W, X, Z), cheZ,chp(A, C), clpV1, crc, cup(A3, B5), estA, exlA, fap(D, F), fimV, fle(N, Q, R, S), flg(A, 

C, D, E, F, H, I, J, K, L, M),flh(A, F), fli(C, G, H, I, J, K, M, R), fpv(A, R), gacS, hasE, hcnB, hdtS, hopAJ2, hsi(G1, J1), mot(B, C, D, Y),muc(A, B, D, P), 

pch(A, E), pcrD, phuR, phuT, phz(D1, H), pil(C, J, M, Q, R, T), pprA, prpL, pvd(A, D, E, H, I, J, L, M, N, O, Q, Y), rpoN, tadC, tagS, tke4, tss(B1, F1, H, 

K, L1), vfr, vgrG1a, waa(A, C, F, G, P), xcp(Q, R, Y)

Klebsiella species: KP1_RS17295, KPHS_35550, KPR_RS09000, acr(A, B), allC, clpV, gndA, impH, ugd, vgrG,

Escherichia species: ECNA114_RS14835, cah, cheB, f17d-C, fepA, flhB, iroN, ompA, tar, tssH, vgrG

Mycobacterium species: devR/dosR, glcB, glnA1, katG, mgtC, narG, purC,

Acinobacter species: adeG, bfmR, gsp(E2, F), pilC
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proteins, and antibiotic resistance (AMR) genes. The minimum 
number of virulent proteins, 10, was considered to select the most 
transcriptionally active genera from metatranscriptome data 
(Table  8). A detailed description is provided in 
Supplementary File 2 (ST11). Microbial co-occurrence interaction 
network analysis, based on expression abundance, revealed that 

Blautia, Bacillus, Klebsiella, and Lactobacillus are negatively correlated 
with other genera of pathogenic consortia. It suggests that the 
abundance of Blautia and Lactobacillus, a genus with probiotic 
characteristics, decreases during disease, whereas the genus Bacillus 
contains both pathogenic and probiotic species; perhaps the 
abundance of probiotics is more prevalent in healthy conditions. 
Interestingly, a significant number of virulent (33), peptidase (2), and 
antibiotic resistance (AMR) (3) proteins were identified in the 
Klebsiella genus from metatranscriptome data. However, it is 
negatively correlated to consortium species (Figure 5).

4 Discussion

This study primarily focused on identifying transcriptionally active 
bacteria from publicly available bovine mastitis dual RNA-Seq studies, as 
these datasets contain extensive functional information on disease-related 
microbial species within the same biological samples. The microbial 
content expressed during the host-pathogen interaction, provides in vivo 
gene expression profile of pathogens, which facilitates the discovery of 
bacterial virulence factors to develop new diagnostics and therapeutics. 
Similar attempts have been made to understand the role of microbial 
communities in human cancer diseases using RNA-Seq data (34, 35).

In this study, rigorous quality control criteria were used to exclude 
chimeric, low-quality, partial and redundant transcript sequences. A 
minimum protein length of ≥60 was used to include small proteins 
from microbial communities that are involved in regulating larger 
proteins, cell signaling, antibiotic production and toxin regulation, 
membrane-associated functions, metabolism, and stress response, as 
well as metal ion homeostasis (36). Moreover, the inclusion of 60 
amino acids provided higher confidence in functional gene-to-species 
assignment compared to shorter lengths and relatively less partial 
sequences. The average read counts of greater than or equal to 3 for 
genes across the samples were considered to remove chimeric and rare 
protein sequences, due to the hypersensitivity of high-throughput 
sequencing technology. The average read count is a better metric for 
reducing disparity between small and large numbers of studies. 
Various isoforms of microbial gene sequences were generated due to 
the stitching of short k-mers during transcriptome assembly. 
Therefore, we clustered protein isoforms at 90% sequence identity to 
reduce functional redundancy and false specificity for cross-species 
orthology inference. Stringent BLAST similarity search criteria 
(sequence identity ≥75% and query coverage ≥60%) were used to 
ensure the high-quality taxonomical and functional assignment 
(Table 2). This approach is more reliable and accurate than the seed 
sequence mapping approach, which lacks robustness for assigning 
gene species links in microbial community analysis.

Even after excluding non-host reads before assembly, a large 
number of the proteins belonged to the bovine species, which may 
be due to the presence of conserved domains and motif sequences 
across the kingdom. In filtered protein sequences, the proportion of 
bovine sequences varied from 3% to 71%, compared to the low 
bacterial protein proportion (0.5%–10%) across all projects, except for 
study PRJNA551141. It has 75% bacterial protein and 5% bovine 
protein. The enhanced representation of bacterial proteins may be due 
to the fact that rRNA was removed during sample preparation, as 
rRNA constitutes 70%–90% of the total RNA in these samples. None 
of the other projects had used ribo-depletion during their 
sample preparation.

TABLE 6  Summary of identified protease gene families, most abundant 
bacterial species, and associated protease families in metatranscriptome.

Analysis Description

Total number of peptidase proteins 721

The most abundant peptidase 

family and count

Serine peptidases family: S9 (46), S12 (16), 

S16 (12), S33 (43)

Cysteine peptidases family: C26 (20), C44 

(12), C56 (11)

Metallo peptidases family: M13 (10), M38 

(40), Subfamily M23B (13)

Unknown type peptidases family U69 (21)

Inhibitor proteases family: I87 (20)

Aspartic peptidases family: A2 (10)

The most abundant peptidase 

protein family and count

Stenotrophomonas species: (S. maltophilia, 

S. maltophilia sp. CC120223-11, RIT309, 

SKA14)

Peptidases families: A24, C14, C26, C40, 

C44, C56, C59, C82, G05, I39, I78, I87, 

M01, M02, M03, M103, M13, M14, M15, 

M16, M19, M20, M23, M24, M28, M38, 

M48, M50, M56, M61, S01, S08, S09, S11, 

S12, S14, S15, S16, S33, S41, S45, S46, T01, 

T03, U69,

Pseudomonas species: (P. aeruginosa, P. 

asiatica, P. brassicacearum, P. capeferrum, P. 

entomophila, P. fluorescens, P. mendocina, P. 

monteilii, P. mosselii, P. plecoglossicida, P. 

putida, P. resinovorans, P. taiwanensis, P. 

sp. 10-1B, 2_1_26, Ag1, B11-1, BAY1663, 

C5pp, GM55, GM84, NBRC 111131, PAMC 

25886, TJI-51, TKP, VLB120)

Peptidases families: A24, A39, C13, C26, 

C39, C40, C44, C45, C56, C82, G05, I13, 

I39, I42, I87, M01, M03, M103, M14, M15, 

M16, M17, M18, M19, M20, M23, M24, 

M38, M41, M42, M48, M50, M67, M75, 

M90, N04, S01, S08, S09, S11, S12, S13, S16, 

S24, S26, S33, S45, S49, S54, S66, T03, T05, 

U32, U69

Escherichia species: (E. coli, E. fergusonii, E. 

sp. 4_1_40B, KTE114, KTE31, TW09308)

Peptidases families: A26, C44, C51, C56, 

C82, G04, I39, M103, M17, M20, M24, 

M38, M74, N06, S11, S33, T02, U32, U69, 

X20,

Mycoplasma species: (M. agalactiae, M. 

bovis, M. hyorhinis)

Peptidase families: M03, M17, M26, M41, 

M42, S08, S41
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The microbial diversity, species richness and evenness metric 
support the functional diversity among the selected RNA-Seq studies. 
The scatter plot of species richness and Shannon diversity index shows 
a positive correlation between species richness and Shannon diversity, 
as indicated by the upward-sloping linear regression line (Figure 3D). 
This suggests that sample PRJEB43443 demonstrated a relatively high 
Shannon index with moderate species richness, potentially indicating 
a more evenly distributed community structure, as supported by its 
larger point size (Simpson index). In contrast, sample PRJNA551141, 
while showing the highest richness, exhibited only moderate Shannon 
diversity, suggesting dominance by a few taxa (Stenotrophomonas and 
Pseudomonas species) and reduced evenness. Higher or moderate 
evenness often suggests stable communities, while low evenness may 
indicate vulnerability to disturbance (PRJNA591729 and 
PRJNA627642). Low Shannon diversity and high species richness 
indicate dysbiosis or infection dominance (PRJNA551141). Moderate 
Shannon diversity and moderate species richness may reflect baseline 

microbial communities (PRJNA544129), whereas moderate diversity 
with fewer taxa suggests a balanced microbial environment with 
minimal colonisation (PRJNA778892), possibly post-antibiotic or in 
the early stage of infection.

In KO analysis, enriched pathways include the two-component 
system, amino acid/cofactor biosynthesis, flagellar assembly and 
secretion systems, and biofilm formation, reflecting bacterial 
adaptation to host defences, nutrient limitation, and persistence 
mechanisms. Enrichment of amino acid metabolism further highlights 
adaptive responses of the pathogenic community to oxidative stress 
and immune modulation (37–41). The Project-wise KO analysis is 
provided in Supplementary Figures S2A–E. Various highly abundant 
sequences were either uncharacterised or hypothetical despite their 
known genomic sequences (Table 4). Therefore, in silico sequence 
analysis of hypothetical and uncharacterised proteins was performed 
to explore their functional information. On average, 62% of the total 
putative proteins were annotated, which contain domains of catalytic 

TABLE 7  Summary of AMR genes and gene families, resistance mechanisms, most abundant bacterial species, and associated AMR genes in 
metatranscriptome.

Analysis Description

Drug classes associated with resistance 

proteins

Tetracycline antibiotic (39), Macrolide antibiotic (35)

Fluoroquinolone antibiotic (33), Phenicol antibiotic (31)

Penam (28), Cephalosporin (23), Monobactam (21),

Disinfecting agents and Antiseptics (20), Carbapenem (20),

Aminocoumarin antibiotic (19), Penem (17),

Diaminopyrimidine antibiotic (17), Cephamycin (17),

Peptide antibiotic (15), Sulfonamide antibiotic (9),

Aminoglycoside antibiotic (8), Glycylcycline (7),

Nitrofuran antibiotic (4), Rifamycin antibiotic (2),

Nucleoside antibiotic (1), Mupirocin-like antibiotic (1),

Bicyclomycin-like antibiotic (1)

Bacterial species associated with resistance 

proteins

Pseudomonas aeruginosa PAO1 (27),

Pseudomonas aeruginosa (16),

Escherichia coli str. K-12 substr. MG1655 (10) / W3110 (5),

Escherichia coli (4), Escherichia coli KTE14 (2),

Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 (4),

Stenotrophomonas maltophilia (4),

Aeromonas caviae/salmonicida (3),

Klebsiella pneumoniae (3), Acinetobacter baumannii (2),

Nocardia farcinica IFM 10152 (1),

Photobacterium damselae subsp. Piscicida (1),

Staphylococcus aureus subsp. aureus USA300_TCH959 (1),

Vibrio fluvialis (1), Bifidobacterium bifidum PRL2010 (1),

Resistance protein’s mechanism of action 

and count

Antibiotic efflux (71),

Antibiotic target alteration (7)

Antibiotic inactivation (5)

Reduced permeability to antibiotic (4)

Antibiotic target replacement (2)

Most abundant species and their 

expressed AMR genes

Pseudomonas aeruginosa: APH(3′)-IIb, PDC-456, Mex(A, B, F, J, K, L, N, Q, W, Y), Mux(A, B, C), Opm(B, H), Opr(J, M), 

Paer(CpxR, soxR), ParR, Tri(A, B, C), basS, bcr-1

Escherichia coli: CRP, Ecol_acrA, Kpne_KpnH, PmrF, eptA, mdt(B, C, E, F, P),oqx (A, B), ugd,

Salmonella enterica: mds(A, B)

Stenotrophomonas maltophilia: sme(E, F)

Aeromonas caviae/salmonicida: Mox-4, tet-C

Klebsiella pneumoniae: Kpne_OmpK37, OmpA
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enzymes, transposable elements, retrotransposable elements, reverse 
transcriptases, prokaryotic membrane lipoproteins, endonucleases, 
and various other molecular signatures. A summary of hypothetical 
protein annotation and detailed descriptions of the InterProScan 
annotation of all hypothetical proteins are provided in 
Supplementary Table S4 and Supplementary File 4 (ST1).

In our analysis, various abundant hypothetical and 
uncharacterised proteins contain intrinsically disordered regions, 
suggesting that these proteins may have roles in host–microbe 
interactions in  vivo conditions, such as bacterial effector protein 
translocation, evasion of the host immune system, and mimicing host 
protein functions (42). The presence of intrinsically disordered regions 
in secreted bacterial effectors is well-reported (43). The biofilm-
forming curli protein of E. coli has disordered regions that facilitate its 
aggregation and contribute to the formation of the extracellular matrix 
of the biofilm (33). Various intrinsically disordered regions containing 
hypothetical or uncharacterised proteins exhibit a virulent nature in 
our analysis. The in silico annotated sequence contains reverse 
transcriptases, transposable elements and transposon-related 
domains. Reverse transcriptase converts RNA into double-stranded 
cDNA, and it is a major component of diversity-generating 

retroelements (DGRs) in bacteria. Reverse transcriptases in DGRs can 
create hypervariable regions in target genes, fuelling the faster 
evolution of bacterial genomes to ensure bacterial survival in harsh 
environments (44). Transposable elements can also alter the genome 
by insertion and excision, promoting bacterial evolution. These 
jumping genes are known to be part of bacterial virulent elements 
(45). These proteins may have roles in antibiotic resistance and 
pathogenicity, which need to be explored further.

Based on the number of virulent proteins (≥10), peptidases, 
secretory proteins, and antibiotic resistance (AMR) genes, a list of 25 
transcriptionally active bacterial genera was compiled to highlight 
pathogenic load associated with bovine mastitis. Pseudomonas species 
dominated in the constructed metatranscriptome with the highest 
number of species (205) and expressed genes (3898), including the 
highest number of virulence (1952), secretory (198), peptidases (231) 
and antimicrobial resistance genes (44), highlighting a significant role 
of Pseudomonas species in bovine mastitis pathogenesis. Moreover, 
P. putida, and P. aeruginosa are emerged as multidrug-resistant 
pathogens linked with clinical and subclinical bovine mastitis 
worldwide (46–49). Stenotrophomonas species, a lesser-known 
pathogen of bovine mastitis, have been shown to express substantial 

TABLE 8  List of transcriptionally active bacteria associated with bovine mastitis based on the number of virulent proteins identified for each genus.

Number of sequences identified from bovine mastitis metatranscriptome

Genus Seq Sp/St. Genes Hyp/Un Vir Pept Sec AMR

Pseudomonas 4,261 205 3,898 363 1952 231 198 43

Stenotrophomonas 2,108 44 1892 216 1,226 149 170 4

Mycoplasma 312 13 243 69 175 14 35 0

Staphylococcus 191 5 79 112 132 1 0 1

Escherichia 335 17 302 33 106 48 7 21

Comamonas 257 8 237 20 93 13 7 0

Sphingomonas 80 23 62 18 51 4 1 0

Delftia 85 14 77 8 44 0 0 0

Klebsiella 67 6 36 31 42 2 0 3

Bacillus 114 38 72 42 37 10 2 0

Chlamydia 45 4 20 25 30 0 0 0

Acinetobacter 66 15 34 32 28 1 0 2

Brevundimonas 39 17 36 3 23 2 3 0

Enterococcus 28 3 2 26 23 0 0 0

Microbacterium 30 24 22 8 20 0 0 0

Streptococcus 28 5 19 9 20 0 0 0

Arthrobacter 34 5 32 2 17 0 0 0

Caulobacter 24 10 22 2 16 2 2 0

Rhodococcus 30 14 25 5 15 0 0 0

Enterobacter 38 9 28 10 13 3 0 0

Campylobacter 28 7 26 2 13 1 6 0

Mycobacterium 20 3 6 14 13 3 0 0

Archangium 16 1 10 6 12 0 0 0

Anaplasma 16 1 0 16 10 0 1 0

Aquabacterium 16 2 14 2 10 0 0 0

Seq, sequences; Sp/st, species/strains; Hyp/Un, hypothetical or uncharacterised; Vi, virulent; Pept, peptidase; Sec, secretory; AMR, antimicrobial resistance.
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virulence genes (1226) and secretory proteins (170), indicating their 
active involvement in pathogenesis and potential biofilm formation or 
host interaction, making them an emerging global opportunistic 
pathogen (50). Recent research also demonstrated that enterogenic 
S. maltophilia can migrate from the gut to the mammary gland via the 
gut-mammary axis to induce mastitis by activating the calcium-ROS-
AMPK-mTOR-autophagy pathway (51). Mycoplasma species, despite 
having a lower virulence gene count (175) out of a total of 243 
identified genes, indicate a specialisation in pathogenesis rather than 
metabolic versatility. Staphylococcus, a known pathogen of mastitis, 
displayed a lower number of species but a notable number of virulence 
factors (132). The expression of hypothetical or uncharacterised 
sequences (112) suggests the presence of novel molecular factors from 
these species in bovine mastitis pathogenic consortia.

Among all identified virulent genes, 633 were uncharacterized, 
and 379 were hypothetical by Uniprot definition. The protein sequence 
(Sequence id: TRINITY_DN43764_c0_g1_i1.p4; Uniprot id of hit: 
UniRef100_UPI000DEBC0B7) from Pseudomonas aeruginosa is one 
of the identified virulent hypothetical proteins that also possesses an 
AMR gene feature (Drug class: disinfecting agents and antiseptics; 
mode of mechanism: Antibiotic efflux; ARO ID:3003680; Gene name: 
TriB). In our study, we identified 84 antimicrobial resistance (AMR) 
genes, some are reported for bovine mastitis, including tetG, tetC, 
blaZ, sul1, adeB, acrA, APH(3′)-IIb, mexA, mexB, and mexF. These 
genes are involved in well-known resistance mechanisms, including 
efflux pumps, antibiotic-modifying enzymes, and target protection 
proteins. Other genes like adeB, adeF, APH(3′)-IIb, eptA, kpnH, 
ompA, oqxA, and oqxB were also reported for bovine mastitis. The 
presence of these AMR genes in this dataset suggests a broader 
distribution of resistance determinants among mastitis-associated 

microbiota (52–54). The association of other identified AMR genes 
with bovine mastitis has not been found in the literature. In the 
absence of literature support, it is challenging to speculate on the role 
of these bacteria in pathogenic consortia mastitis, which are 
predominantly composed of Pseudomonas species. However, the 
expression of such a large number of AMR genes from Pseudomonas 
species suggests a potential role in providing protection against 
antibiotics, which warrants further in-depth investigation. Most 
Pseudomonas aeruginosa strains possess a Type III Secretion System 
(T3SS), which plays a crucial role in pathogenesis and has been linked 
to elevated somatic cell counts in the milk of cows with mastitis (55). 
Key T3SS-related genes identified in bovine mastitis isolates include 
exlA, pcrD, and hopAJ2. Additionally, a range of other virulence and 
secretion system genes—such as clpV1, flgC, flgG, flgK, flgL, fliC, 
mucA, mucB, algD, algF, algA, pilV, pilY2, pvdF, pvdS, rhlR, rhlI, rhlA, 
rhlB, rhlC, tssB1, tssF1, tssG1, vgrG1, as well as components of the xcp 
(PA3095–PA3105) and hxc (PA0677–PA0687) secretion system are 
regulated by phosphate availability (56).

The negative correlation of Klebsiella with other genera of 
pathogenic consortia (Bacillus/ Balutia/ Salmonella/ Leptospira/ 
Porphyromonas/ Ruminococcaceae/ Lactobacillus) in the 
non-directional microbial co-occurrence network indicates that when 
Klebsiella abundance increases, Bacillus/ Balutia/ Salmonella/ 
Leptospira/ Porphyromonas/ Ruminococcaceae/ Lactobacillus tends to 
decrease, and vice versa. This could be due to competition, niche 
exclusion, or antagonistic interactions. These species may not co-exist 
well in the same environment. Some species, such as Bacillus/
Lactobacillus, produce bacteriocins that inhibit the growth of Klebsiella 
(57). Host factors (such as temperature, oxygen level, or pH) may 
favour the growth of Klebsiella species after environmental E. coli 

FIGURE 5

The microbial co-occurrence interaction networks of bovine mastitis-associated microbial communities at the genus level, based on the Spearman 
correlation coefficient.
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infection compared to other pathogens, due to similar growth 
conditions to those of other Enterobacteriaceae. The chance of 
Klebsiella infection after exposure to environmental mastitis 
conditions is moderate to high in poor bedding conditions (58). 
Blautia and Lactobacillus, a genus with probiotic characteristics, may 
decrease during disease, whereas the genus Bacillus contains both 
pathogenic and probiotic species; perhaps the abundance of probiotic 
strains is more prevalent in healthy conditions. It is not easy to 
speculate and interpret until further multi-bacterial culture-based 
research investigation. Different Bacillus strains have been reported to 
exhibit antimicrobial, antioxidant, and immune-modulatory activities 
in the host. A study by Pinchuk et al. (32) has reported the B. subtilis 
strains’ anti H. pylori activity, which was attributed to the secretion of 
aninocoumacin A antibiotic. The antagonistic activity of 
aninocoumacin A was also documented against enteric E. faecium and 
Shigella flexneri. An interesting communication by Ripert et al. (59) 
revealed that the probiotic B. clausii O/C strain protected Vero and 
Caco-2 cells from the cytotoxic effects of Clostridium difficili and 
B. cereus toxins.

Pseudomonas, Stenotrophomonas, Comamonas, and Sphingomonas 
are among the most transcriptionally active pathogens. Pseudomonas 
and Sphingomonas genera are often reported in association with 
bovine mastitis in various studies (60, 61). The Stenotrophomonas 
genus is a lesser-known opportunistic pathogen associated with 
bovine mastitis. However, various Stenotrophomonas isolates were 
extracted and reported from bovine milk samples for mastitis cases 
(62). The Prevalence and survival of Stenotrophomonas species in milk 
and dairy products have also been reported (63, 64). A study has 
explored the prevalence of genetic relatedness, antimicrobial 
resistance, biofilm formation, biofilm genes associated with virulence 
and integron genes among isolates of S. maltophilia recovered from 
bovine milk with subclinical mastitis (65). Comamonas is another less-
known genus associated with bovine mastitis. However, it was isolated 
from bulk tank milk (66). Therefore, our study emphasises the 
inclusion of these prominent pathogens in the list of primary bovine 
mastitis-causing pathogens.

4.1 Limitations

This study utilised different host-centric RNA-Seq studies to 
identify transcriptionally active bacteria and their molecular 
signature. However, these studies have their own experimental 
designs, sequencing methods (single-end/paired-end/different 
platforms), and data analysis approaches to achieve their objectives. 
It is very challenging to obtain datasets from the same source with 
identical technical specifications. Therefore, a uniform data 
processing approach has been used to extract and assemble the 
metatranscriptome to minimise confounding risks and technical 
disparity. Each study was processed and reported separately before 
being integrated into the overall analysis. A fraction of the non-host 
reads from host-centric dual RNA-seq studies has been extracted and 
used to construct a metatranscriptome, rather than a microbial-
centric metatranscriptome. Additionally, transcription levels do not 
always correlate with protein abundance or activity. Therefore, these 
findings may differ slightly from the actual situation. This study aims 
to generate research leads for scientists by leveraging computational 
tools and publicly available datasets. However, in vitro validation of 
these findings is crucial for a better understanding of the microbial 

aspects of bovine mastitis, which is beyond the current scope of 
this work.

5 Conclusion

This is the first in-depth metatranscriptomics study on bovine 
mastitis, delineating transcriptionally active pathogenic bacterial taxa, 
their associated molecular signatures, and uncovering a complex 
pathogenic consortium that goes beyond the well-known causative 
pathogens. Pseudomonas (P. putida, P. aeruginosa, P. fluorescens, 
P. monteilii, P. mosselii, and P. plecoglossicida), Stenotrophomonas 
(S. maltophilia, and S. sp. RIT309, SKA14), Mycoplasma (M. bovis, 
M. hyorhinis, M. agalactiae, and M. ovipneumoniae), Staphylococcus 
(S. aureus, S. succinus, and S. sciuri), Escherichia (E. coli CFT073, and 
NA114), Comamonas (C. aquatica, C. testosteroni) and Sphingomonas 
(S. sp. IBVSS2, LK11, FARSPH, S. sanguinis, and S. taxi) species were 
predominant among transcriptionally active pathogens, and should 
be  considered as significant contributors to bovine mastitis 
pathogenesis alongside established pathogens.

Identified 213 hypothetical and uncharacterized proteins from 
Staphylococcus, Mycoplasma, and Escherichia, providing a list of 
unexplored virulence factors that could serve as targets for multi-
epitope vaccine development, while the expression of 74 AMR genes, 
particularly from Pseudomonas and Escherichia species, suggests these 
pathogens may confer antibiotic protection to the entire pathogenic 
consortium, necessitating the need to update current treatment 
strategies. The abundance of uncharacterized proteins presents 
opportunities for developing novel diagnostics and therapeutics. The 
negative correlation of beneficial bacteria (Blautia, Bacillus, and 
Lactobacillus) with pathogenic species indicates that microbiome 
modulation could be  a viable prevention strategy for subclinical 
mastitis. A balanced microbiome with these antagonistic bacteria 
could help to reduce pathogen loads and prevent subclinical infections 
from becoming clinical. However, these findings need to be validated 
thoughtfully to develop microbiome-assisted prevention strategies for 
subclinical bovine mastitis. Our study highlights that transcriptionally 
active bacteria and their expressed genes (AMR, secretory, peptidase 
and virulence genes) can aid in identifying novel therapeutic targets, 
early diagnostic biomarkers and expressed candidate genes for 
developing a multi-epitope vaccine that targets multiple pathogens. 
Our findings also suggest the potential of microbiome modulation 
strategies to develop microbiome-assisted prevention approaches for 
better management of subclinical bovine mastitis.
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