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Whole-genome sequencing of
Tahe red deer (Cervus hanglu
yarkandensis) reveals genetic
diversity and selection signatures

Te Pi, Wenfeng Yi, Zengwei Mao, Zhihua Wang, Hao Sun and
Shouqing Yan*

College of Animal Science, Jilin University, Changchun, China

The Tahe red deer (TRD), domesticated and artificially raised from wild Tarim
red deer, is valued for its high-quality antlers and ability to survive tough desert
conditions. Nowadays, the decline in the population of TRD has significantly
impacted their genetic diversity, posing a serious threat to their conservation and
utilization. However, information based on whole-genome sequencing data of
TRD is scarce, and the mechanisms underlying adaptive characteristics remain
poorly understood. Additionally, research on Tahe red deer holds great importance
for elucidating the evolutionary history and adaptability of the genus Cervus. This
study aimed to investigate the genetic diversity, population structure, and selection
signals of TRD using whole-genome sequencing data. The results revealed that
TRD exhibited high inbreeding level and relatively low genetic diversity, and that
TRD had a closer relationship with Cervus canadensis. Using three methods,
including the fixation index, nucleotide diversity and cross-population extended
haplotype homozygosity, there were 573 genes annotated in 2,303 overlapping
candidate selection regions such as IL1R1, F13B, ARHGAP15, DCLK3, CACHDJ,
NDEL1, and UPF1, most of which were associated with adaptation to a hot arid
environment. In summary, this study offered genomic markers and candidate
genes associated with these traits, providing valuable insights for improving future
breeding strategies of TRD.

KEYWORDS

genetic diversity, population structure, selection signature, Tahe red deer, whole-
genome sequencing

1 Introduction

Adaptation represents a continuous and long-term evolutionary process, during which
beneficial alleles accumulate at gene loci (1). Species within the genus Cervus have evolved
distinct survival strategies and physiological adaptations over time, shaped by various
environmental factors such as climate and habitat types. Understanding the mechanisms by
which populations or species respond to environmental changes is essential for the
conservation of key species under the pressure of global climate change (2).

The genus Cervus with its diverse populations across China has long been extensively
farmed for a variety of valuable products such as antler velvet and venison. The Tarim red deer
found in the Tarim River basin, as an essential component of the local ecosystem, exhibits
considerable biological adaptability under harsh desert environment (3). In recent decades,
the fragmentation of the wild Tarim red deer’s habitat, caused by increased human activities
and climate change, has led to a further decline in the wild population (4). Accordingly, China
has classified the wild Tarim red deer as a first-class nationally protected wild animal and
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implemented a series of conservation measures to protect this
endangered species. The Tahe red deer (TRD) was domesticated and
artificially raised from the wild Tarim red deer (Cervus hanglu
yarkandensis) by the Second Agricultural Division of Xinjiang
Construction Corps since the 1950s (5). As an artificially bred
population with significant economic and ecological value, TRD is
highly regarded for its high antler yield and remarkable ability to cope
with arid conditions. Due to a lack of awareness and the impact of
market forces, the number of TRD has witnessed a sharp decline, with
the current stock being less than 10,000, posing a serious threat to
their genetic diversity (6).

Currently, studies on the genetic diversity of TRD mainly focuses
on the sequences from Y chromosome and mitochondrion, and the
results indicates an imbalance with high haplotype diversity and low
nucleotide diversity (6). Analyses on the phylogenetic relationships
about the Tarim red deer have primarily relied on mitochondrial
genomes and markers (6-8). Mitochondrial control region analyses
have identified two distinct lineages: the Western lineage including red
deer (Cervus elaphus) and the Tarim red deer, and the Eastern lineage
comprising wapiti (Cervus canadensis) and sika deer (Cervus nippon)
(7). However, studies based on cytochrome b gene and D-loop region
have identified the red deer, the Tarim red deer, and wapiti as three
individual species (6-9). Studies based on mitochondrial DNA and
microsatellite markers have not reached a concordant conclusion on
the phylogeny of Cervus. Compared with mitochondrial DNA and
microsatellite markers, nuclear DNA data can more accurately reveal
genetic differences between breeds, making it widely used to evaluate
genetic diversity and detect selective sweeps (10). Undoubtedly, the
assessment of genetic diversity and population structure based on
genomic information will be essential for the better breeding
management and sustainable use of genetic resources.

TRD has unique adaptability that makes it an ideal subject for
studying how animals cope with extreme conditions (11). The antler
velvet with high yield serves as a vital ingredient in traditional Chinese
medicines and health products (6). Given that the valuable genetic
resource is severely depleted, rational conservation and utilization are
urgent. In addition, the study of TRD is of great significance for
understanding the evolution and adaptability of the genus Cervus.
Presently, information on genomic diversity of TRD based on the
whole genomic sequences is scarce and the publicly available genomic
data remain limited. This study assessed the genetic diversity in TRD
and identified candidate genes associated with adaptation to hot arid
environments using whole-genome data from 17 TRD individuals,
thereby providing valuable insights into important genetic variations
and the conservation of genetic resource.

2 Materials and methods
2.1 Sample selection

Antler slices of 17 TRD were purchased as the commercial
products from the farm located in Korla City, Xinjiang Uygur
Autonomous Region of China (Supplementary Figure S1). Genomic
DNA was extracted for WGS using the EasyPure Genomic DNA Kit
(TransGen Biotech). DNBSEQ-T7 was used at the Novogene
Bioinformatics Institute company (Beijing, China) to generate
2x150bp  paired-end individual

read data for each
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(Supplementary Table S1). Additionally, to enhance our understanding
of the genomic genetic diversity and selection signals in TRD, WGS
data for 27 published individuals including Cervus elaphus hispanicus
(ERD, n =14) and Cervus canadensis nelsoni (CRD, n =13) were
acquired from the Sequence Read Archive.!

2.2 Reads mapping and quality control

Raw data were filtered using FASTP v 0.20.1 software (12).
Burrows-Wheeler Aligner (BWA) software (v0.7.13) was used for
mapping all cleaned data to the red deer reference genome
(GCF_910594005.1, mCerElal.1) using “bwa mem” parameters (13).
The aligned BAM files were sorted using SAMtools v1.19 (14).
Subsequently, the Picard MarkDuplicates tool (v1.115)* was employed
to mark duplicate reads from each alignment. After sorting reads,
variants were called using the Genome Analysis Toolkit (GATK
v4.1.4) and filtered with GATK’s “VariantFiltration” module (15). The
hard filters were applied to the raw SNPs according to the criteria as
follows: QD <2.0 || FS>60.0 || MQ<40.0 || SOR>3.0 ||
MQRankSum < —12.5 || ReadPosRankSum < —8.0. Quality control
was then performed using PLINK (v1.9) with the parameters “--geno
0.05 --mind 0.1,” ensuring that each locus retained a minimum of 3
alleles, and biallelic loci on autosomes were acquired using BCFtools
(v1.8) (14, 16). The remaining SNPs were subsequently used for
further analysis. Based on the mCerElal.l reference genome
annotation file, the variants after quality control in TRD were
annotated using SnpEft software (v5.1d) (17).

2.3 Genetic diversity analyses

To assess genetic diversity, expected heterozygosity (Hg), observed
heterozygosity (H,), nucleotide diversity (pi) and the runs of
homozygosity (ROH) were estimated. PLINK (v1.9) software was used
to calculate Ho and H; with the option “—hardy” (16). VCFtools
software (v0.1.16) was employed to assess pi with the parameters
“--window-pi 20,000 --window-pi-step 10,000” (18). To evaluate the
inbreeding degree, the number and length of ROH fragments were
calculated using VCFtools with the “—LROH” command (18). After
that, the runs of homozygosity-based inbreeding coefficient (Fropn)
were calculated as the total length of ROH fragments divided by the
length of the autosomes. PopLDdecay (v3.42) was applied to assess the
degree of linkage disequilibrium decay (LD) of each population by
calculating the pairwise SNP correlation coefficients (r*) with the
parameter “-MaxDist 1,000” (19).

2.4 Population structure analysis
The NJ method was applied to construct a tree based on Nei

genetic distance using VCF2Dis (v1.47) and visualized with the
Splitstree software (20-22). Sites with high linkage disequilibrium

1 https://www.ncbi.nlm.nih.gov/sra;

2 https://github.com/broadinstitute/picard
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(LD) were removed using PLINK with the parameter “-indep-pairwise
50 25 0.2” and the remaining SNPs were used for the following
population structure analysis (16). Principal component analysis
(PCA) was performed using GCTA software (v1.92.3) with the
parameter “grm” and plotted in the R package ggplot2 (23, 24).
Admixture analyses were conducted using ADMIXTURE software
(v1.3.0) with the parameters “admixture -cv” to infer ancestral
populations in our dataset (25). Cross-validation error values for
clustering at K = 2 to 4 were also calculated. BEAGLE (v5.4) software
was employed to first phase the data file and impute missing genotypes
(26, 27). Haplotypes were then inferred with Refine IBD, using a
40-SNP sliding window, a 1.5cM minimum haplotype length, a
0.15 cM trimming threshold, and a LOD score of 1 (28). The counts
of haplotypes shared between populations were visualized with the
circlize package in R (29).

2.5 Genome-wide scanning for selection
signatures

To identify the candidate regions and genes associated with the
unique traits of TRD compared to CRD and ERD, three analytical
methods were performed: the fixation index (Fsr), pi and cross-
population extended haplotype homozygosity (XP-EHH). Selection
signal values were computed based on a 20 kb sliding window. The pi
and Fgr values were calculated using VCFtools (v0.1.16) with the
parameters “--window-pi 20,000 --window-pi-step 10,000” and
“--fst-window-size 20,000 --fst-window-step 10,000, respectively
(18). Additionally, haplotype phasing was conducted using BEAGLE
(v5.4), and the phased data were then used to estimate XP-EHH (30).
To detect the positive selection signatures between TRD and other
populations, XP-EHH was calculated using selscan (v1.1), and the
results were subsequently normalized using the “-norm” module of
selscan for each 20 kb region (31). To reduce false positives, only the
top 5% genomic windows from the three methods were selected for
further analysis. The genomic regions identified by all three methods
were intersected using BEDtools (v2.30.0) with the “intersect”
parameters to determine the potential candidate regions of selection
(32). Functional annotations of the identified regions were carried out
using SnpEff software (v5.1d). To gain a better understanding of the
identified candidate genes, Gene Ontology (GO) and Kyoto
Encyclopedia of Gene and Genomes (KEGG) pathway enrichment
analyses were performed using KOBAS, with cow (Bos taurus) genome
selected as ortholog (33). Only when the p-value was less than 0.05
were the pathways considered to be significantly enriched.

3 Results and discussion
3.1 SNP genotyping and annotation of TRD

In total, 675.51 Gb of raw data from 17 TRD individuals was
obtained  through  the  whole-genome resequencing
(Supplementary Table S1). After the filters, 671.74 Gb of clean data
were retained. The sequencing quality metrics indicated an average
Q20 of 99.49%, an average Q30 of 98.08%, a GC content of 43.37%,
mapping rates between 99.23 and 99.88%, and an average sequencing
depth of 13.44x. Furthermore, 12,086,946 high-quality autosomal
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bi-allelic SNPs were detected in the SNP dataset of 17 TRD after
quality control, of which no individuals were excluded based on the
“mind 0.1” criterion. Among the identified variants, there were
8,819,706 transition SNPs (Ts) and 3,267,240 transversion SNPs (T\),
leading to a T¢/Ty ratio of 2.70. The least number of SNPs was
observed in chromosome 26, while the highest number of SNPs was
found in chromosome 30, with an average variants frequency of 4.47
SNPs/Kb (Supplementary Table S2). A detailed SnpEff annotation
showed that most SNPs were found in intergenic regions (47.26%) and
intronic regions (38.42%), with only 1.01% located in exonic regions
(Supplementary Table S3). Among the 121,553 exonic SNPs identified,
there were 66,662 synonymous variants, 54,167 missense variants, and
724 nonsense variants.

3.2 Genetic diversity analysis

The average values of Ho, Hg, ROH and pi were computed to

evaluate  the  genetic  diversity of all  populations
(Supplementary Table S4). The results indicated that the pi value
ranged from 0.0013 to 0.0020. Among them, TRD (0.0016) was higher
than CRD (0.0013) but lower than ERD (0.0020). Besides, the H, and
Hg, of TRD was between CRD and ERD (Figure 1A). Consistent with
the research on the genetic diversity of TRD based on mitochondrial
sequences and the Y chromosome, the results also indicated a low
level of nucleotide diversity (6). The Fyon value of TRD was 0.2729,
which was much higher compared to ERD. As for LD decay, the r*
values declined sharply as genomic distance increased in all
populations, with the most rapid decline occurring within the first
50 kb (Figure 1B). This indicated that there had been a significant
amount of recombination in the recent history of TRD. When the
distance between markers exceeded the first 50 kb, the results
indicated that TRD had a relatively high LD level, whereas ERD had
the lowest. These values suggested that TRD may have relatively low
genetic polymorphism and inbreeding within the population, which
reminds us that rational conservation measures and breeding plans

should be established to conserve the genetic resource.

3.3 Population structure analysis

To investigate the genetic distances among different populations,
phylogenetic analysis was performed on 44 individuals representing
three populations. It can be observed from the Neighbor-Net network
that three populations formed clearly distinct clusters from one
another and TRD was more closely related to CRD than to ERD,
which was different from the previous research finding on the basis of
comparative genomics (Figure 2B). The 2,506,148 SNPs after linkage
pruning were used for PCA and admixture analysis to further
investigate the cluster patterns between TRD with other populations
(Figure 2A). The lowest cross-validation error value was observed at
K = 3, as the hypothetical ancestral groups were evaluated for K values
between 2 and 3. When K =2, these different populations can
be genetically divided into two groups: one group consisted of ERD,
while the other group included CRD and TRD. When K = 3, TRD
showed distinct admixture component proportions compared to the
CRD. In PCA analysis, the first principal component (PC1) accounted
for 19.02% of the variation in the genomic data, while the second
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Population structure and relationships of TRD with other populations. (A) Result of admixture (K = 2 and 3). (B) Neighbor network constructed from
Nei. (C) Principal component analysis (PCA). (D) Circos plot of the number of shared haplotypes.

principal component (PC2) explained 15.49% (Figure 2C). The PCA
result showed that TRD exhibited a closer genetic relationship with
CRD compared to ERD, which was consistent with Neighbor-Net
network and ADMIXTURE results. The haplotype exchange analysis
between populations identifies more pronounced haplotype exchange
between CRD and TRD, while revealing reduced IBD sharing between
TRD and ERD (Figure 2D). Moreover, TRD was genetically closer to
CRD than to ERD. In addition, mitochondrial phylogenetic tree
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indicated that TRD had a closer genetic relationship with ERD than
CRD. Phylogenetic analysis based on comparative genomics and
mitogenomes were inconsistent with the nuclear DNA phylogeny,
probably due to incomplete lineage sorting or genetic introgression
(10, 34). Whole genomes would provide more accurate evidence in
this respect because nuclear DNA data contains a greater quantity of
genetic markers. One might interpret it as the Tarim red deer
differentiated relatively early due to either an extreme cold climate or
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https://doi.org/10.3389/fvets.2025.1642382
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Pietal. 10.3389/fvets.2025.1642382

human activities, evolved independently in an isolated environment, ~ and genes. In total, 2,303 candidate selection regions were identified
and had a distant genetic relationship with other CRD populations (4).  including 573 genes likely subject to strong selection in TRD. The
Given the individuals selected for this study were domesticated, the  detailed information regarding these regions was depicted in Figure 3
results of population structure and phylogenetic relationships may  and documented in Supplementary Tables S5-58. Study indicates that
be influenced by the size and source of the sampled populations. ~ ARHGAPI5, which regulates various biological processes such as
Therefore, samples from a larger number of TRD and wild Tarimred  cytoskeletal dynamics and cell movement, is linked to physiological
deer should be included to verify whether this pattern  traits related to tropical adaptation in Zaobei Beef cattle (Table 1) (36).
remains consistent. FI13B, a gene strongly selected in TRD, has also been pinpointed as a
candidate gene for the desert adaptation of Bactrian camels (37).
Meanwhile, DCLK3 (doublecortin like kinase 3), characterized by its
3.4 Selection signature analysis biased expression in testis and brain, might be involved in the heat
stress and essential for improving thermoregulation in sika deer (38).
Two wild populations were selected as the reference populations,  Several candidate genes, including MYOI8A, FCERIG, ILI0RB, CCRS,
including the European red deer (ERD), which primarily inhabit  and CXCR6, are connected to the immune system and environmental
mountain forests with a Mediterranean climate, and the North  adaptation, which might be useful for the survival of the Tarim red deer
American Elk (CRD), which live in forests dominated by pine trees with ~ in the Tarim Basin (39-42). ANKH regulates bone formation and
distinct seasonal changes. The Tarim red deer have evolved to cope with  skeletal development by inhibiting the mineralization process through
the heat and arid desert environment, but the mechanisms underlying  the encoding of an inorganic pyrophosphate transport regulator (43).
their adaptive features remain poorly understood. In the selection  Additionally, we noted several genes associated with meat quality
signature analyses, there were 11,673 regions, 12,091 regions and 6,441 (RPL29, ANK1, and GSK3A), production and growth traits (CDK®,
regions ascertained through pi, Fs; and XP-EHH methods in the = ZBTB7C, KIF22, ATP6V1H, UBR2, and CUBN) (44-49).
top 5%, respectively. For example, CACHDI, CPLX1, DIS3L2, MAGI2, The functional enrichment analysis for 573 overlapped genes were
MYH10, NCAM2, NDEL1, POCIA, SUPT3H, TWEF2, and UPFI, which  further analyzed. The significantly enriched GO terms and KEGG
have high selective sweeps identified by both pi and Fs; methods in ~ pathways are shown in Supplementary Table S9. Among them, a total
TRD, have also been identified as candidate genes in sheep breeds  of 267 significantly enriched GO terms with p-value < 0.05 were
adapting to desert environments (35). Only the top 5% of windows  observed, such as heat shock protein binding (GO:0031072,
identified by all three methods were used to pinpoint candidate regions ~ p = 0.015360), cellular response to oxidative stress (GO:0034599,
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FIGURE 3
Manhattan plots of selection signature between TRD and other populations. The dashed line is the 5 percent threshold. (A) The fixation index (Fsq).
(B) Nucleotide diversity (pi). (C) Cross-population extended haplotype homozygosity (XP-EHH). (D) Signal intersection analysis of pi, Fsr, and XP-EHH.
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TABLE 1 Potential selected genes associated with important traits
identified by three methods in TRD.

Chr Position (bp) Candidate Traits

Genes

4 25,260,001-25,280,000 | MT3 Skeletal development (50)

4 51,440,001-51,460,000 | GSK3A Meat quality and fat
deposition (52)

5 93,280,001-93,300,000 | MYOI8A Immune response (39)

5 100,520,001 -100,540,000 | NDEL1 Heat adaptability (35)

9 6,800,001-6,820,000 OBSCN Muscle contraction (52)

9 8,240,001 -8,260,000 UPF1 Heat adaptability (53)

10 40,280,001-40,300,000 | KIF22 Skeletal development (44)

11 95,760,001-95,780,000 | ILIRI Heat adaptability (51)

14 76,820,001-76,840,000 | FI3B Heat adaptability (37)

17 19,000,001-19,020,000 LEFI Immune response (54)

18 20,400,001-20,420,000 | CDK6 Body size (49)

20 31,740,001-31,760,000 | FCERIG Immune response (40)

20 101,900,001 -101,920,000 A CACHDI Heat adaptability (35)

21 25,620,001-25,640,000 | ATP6VIH Skeletal development (48)

23 31,640,001-31,660,000 = CUBN Skeletal muscle
development (47)

24 23,260,001-23,280,000 | DCLK3 Heat adaptability (38)

24 25,060,001-25,080,000 | CCR8 Immune response (55)

24 64,300,001-64,320,000 CXCR6 Immune response (42)

24 59,960,001-59,980,000  RPL29 Meat quality and fat
deposition (56)

25 58,680,001-58,700,000 | ANKH Skeletal development (43)

33 55,140,001-55,160,000 | ARHGAPI5 Heat adaptability (36)

p =0.004995), response to bacterium (GO:0009617, p = 0.021797),
regulation of neuron projection development (GO:0010975,
p =0.004311), and positive regulation of phagocytosis (GO:0050766,
p =0.011622), which may play role in desert adaptation. Several genes,
including FCERIG, ALCAM, CCR8, CXCR6, CNTFR, TNFRSF13C,
and IL1R1, were significantly enriched in the external side of plasma
membrane, which is key for environmental signal perception and
immune cell communication (GO:0050766, p = 0.037169). In addition,
metabolism-related and growth-related biological functions were
significant, such as regulation of bone mineralization (GO:0030500,
p =0.026519), Wnt signaling pathway (GO:0016055, p = 0.000777),
activation of protein kinase B activity (GO:0032148, p = 0.021715),
ATP binding (GO:0005524, p = 0.000015), and microtubule-based
movement (GO:0007018, p = 0.048545). ANKH and SGMS2 were both
enriched in the regulation of bone mineralization (G0:0030500,
p=0.026519), suggesting their potential involvement in antler
formation and skeletal development in red deer. MT3, which is
involved in activation of protein kinase B activity (GO:0032148,
p=0.021714), exerts a key influence on osteoclastogenesis and
osteoporosis via dual routes involving reactive oxygen species and
specificity protein 1 (50). Furthermore, 45 significant enriched
pathways were obtained, including MAPK signaling pathway
(bta04010, p = 0.001910), cell cycle (bta04110, p = 0.006348), cytokine-
cytokine receptor interaction (bta04060, p = 0.027605), and Jak-STAT
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signaling pathway (bta04630, p = 0.005778), which are related to
immune response and skeletal development. The enrichment of
interleukin-1 receptor activity (GO:0004908, p =0.003269) and
MAPK signaling pathway (bta04010, p = 0.001910) further supports
the role of ILIRI as a vital mediator in many immune and
inflammatory responses induced by cytokines, which has been
reported to be involved in the heat stress response (51). Overall, the
results suggest that TRD has experienced strong selection on genes
related to immunity, skeletal development, and stress resistance,
reflecting a genetic adaptation to arid desert environments.

4 Conclusion

The study showed that TRD population has relatively low genetic
diversity and a high level of inbreeding. The results also validate the
classification of TRD, ERD, and CRD into three distinct branches,
with TRD being more closely related to CRD. Additionally, based on
whole-genomic data, candidate genes related to adaptation to heat
environments were identified and annotated. These findings will
be very useful for the future conservation and management of TRD
and determining the mechanisms  in

potential genomic

harsh environments.
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