
Frontiers in Veterinary Science 01 frontiersin.org

Traditional Chinese medicine and 
plant-derived bioactive 
compounds as sustainable 
alternatives to antibiotics in 
bovine mastitis: a review
Xuewei Fan 1*, Abdul Qadeer 2*, Mohammed Asiri 3, 
Fuad M. Alzahrani 4, Khalid J. Alzahrani 4, Khalaf F. Alsharif 4, 
Muhammad Zahoor Khan 5 and Xin Jiang 1

1 Heilongjiang Agricultural Economy Vocational College, Mudanjiang, China, 2 Department of Cell 
Biology, School of Life Science, Central South University, Changsha, China, 3 Department of Clinical 
Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia, 
4 Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, 
Taif, Saudi Arabia, 5 College of Agriculture and Biology, Liaocheng University, Liaocheng, China

Bovine mastitis, an inflammatory condition of the mammary glands caused by 
diverse etiological agents, represents a significant economic challenge to the 
global dairy industry, resulting in annual losses of approximately $35 billion. While 
antibiotic therapy remains the conventional intervention for both prophylaxis and 
treatment, the increasing prevalence of antimicrobial resistance (AMR), particularly the 
emergence of multidrug-resistant and methicillin-resistant strains, has compromised 
therapeutic efficacy. These developments pose substantial concerns regarding 
milk safety and public health implications. Consequently, research attention has 
shifted toward alternative therapeutic modalities, encompassing phytotherapeutic 
interventions, nutritional modifications, and traditional Chinese medicine (TCM). 
Numerous plant species demonstrate significant antimicrobial properties while 
maintaining favorable safety profiles for humans, animals, and ecological systems. 
Complementary therapeutic approaches, including acupuncture and traditional 
herbal formulations, have exhibited promising potential in enhancing treatment 
outcomes and improving milk quality parameters. This review synthesizes current 
evidence on the integration of traditional Chinese medicine and plant-derived 
bioactive compounds into sustainable, holistic strategies for mastitis management, 
with implications for animal welfare, economic sustainability, and public health 
safety.
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1 Introduction

The dairy industry is a fundamental pillar of global agricultural systems, contributing 
significantly to food security and economic stability worldwide (1). Mastitis, an inflammatory 
condition affecting the mammary glands, is one of the most economically devastating diseases 
in dairy production, characterized by distinct pathological alterations in mammary tissues 
accompanied by pronounced physical and chemical modifications in milk composition (2–4). 
This complex, multifactorial disease predominantly affects dairy cattle during the 
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periparturient period, resulting from intricate interactions among 
host susceptibility factors, pathogenic microorganisms, and 
environmental management practices (5–7). The etiology of mastitis 
encompasses a diverse spectrum of more than 200 microbial agents, 
with Gram-positive and Gram-negative bacteria serving as the 
primary causative pathogens. At the same time, additional 
contributing factors include udder morphology, animal age, genetic 
predisposition (8–11), and environmental conditions (5, 12).

The economic ramifications of mastitis on the global dairy sector 
are profound, with conservative estimates indicating annual losses of 
approximately $35 billion worldwide (13). Regional economic 
assessments reveal similarly substantial impacts, with the United States 
sustaining approximately US$2 billion in annual losses, Canada 
experiencing Can$400 million (US$318 million) in economic damage, 
and China reporting financial losses ranging between 15 and 45 
billion CNY (14, 15). These comprehensive financial impacts 
encompass multiple direct and indirect costs, including diminished 
milk yield, mandatory milk disposal due to antibiotic residues, 
veterinary intervention expenses, premature culling of chronically 
infected animals, and occasional mortality (5, 16–19). Detailed 
economic analyses reveal that approximately 60% of losses are 
attributable to decreased milk production, 16% to increased labor 
requirements, 9% to discarded milk, 7% to elevated animal 
replacement costs, 4% to reduced milk market value, 3% to medication 
expenses, and 1% to veterinary consultation fees (20).

The predominant bacterial pathogens associated with mastitis 
include Staphylococcus aureus (S. aureus), Streptococcus agalactiae 
(S. agalactiae), Streptococcus uberis (S. uberis), Escherichia coli (E. coli), 
and Klebsiella pneumoniae (K. pneumoniae) (21, 22). A growing 
concern is the rising incidence of antimicrobial resistance (AMR) 
among these pathogens, as documented in various global studies. 
Research from Ethiopia and Estonia has revealed high rates of 
penicillin-resistant S. aureus and coagulase-negative staphylococci (23, 
24). At the same time, investigations in West Bengal, India, have 
identified Gram-negative bacteria resistant to β-lactams and 
tetracyclines (25). Comparable resistance patterns have been 
systematically documented in Central Mexico, where coagulase-
negative Staphylococci represented 42% of udder pathogens, followed 
by Streptococci at 17%. Notable isolates included S. aureus, 
Brevibacterium stationis (B. stationis), Brevibacterium conglomeratum 
(B. conglomeratum), and Raoultella species, each comprising 8% of the 
total isolates. Critically, 72.7% of these isolates demonstrated 
multidrug resistance to three or more antimicrobial agents, with the 
highest resistance frequencies observed against penicillin, 
clindamycin, and cefotaxime (26). Parallel studies in Southern Taiwan 
revealed that E. coli isolates exhibited complete resistance to cloxacillin 
(100%) and demonstrated moderate resistance (50%) to tetracycline, 
neomycin, gentamicin, ampicillin, ceftriaxone, cefotaxime, and 
ceftazidime. Approximately 70% of isolates displayed resistance to at 
least two distinct antibiotics. In comparison, 28.1% harbored both 
AmpA and AmpC resistance genes simultaneously, with blaTEM 
representing the most frequently detected beta-lactamase gene, 
followed by blaCMY, blaCTX, blaSHV, and blaDHA (27). Advanced 
whole-genome sequencing analyses conducted in Canada on S. uberis 
and S. dysgalactiae isolates have revealed direct correlations between 
specific AMR genes and elevated minimum inhibitory concentrations 
(MICs), particularly for tetracyclines and lincosamides. In contrast, 
subclinical isolates continued to harbor AMR genes acquired through 

horizontal gene transfer mechanisms, emphasizing their critical role 
in resistance dissemination within dairy herds (28).

The evolutionary development of AMR, initially documented 
with penicillin-resistant Streptococcus pneumoniae (S. pneumoniae), 
occurs through sophisticated mechanisms involving the horizontal 
transfer of resistance genes via mobile genetic elements, including 
bacteriophages, plasmids, naked DNA, and transposable elements 
(29). While antimicrobial intervention remains indispensable for 
maintaining economic viability, ensuring animal welfare, and 
preserving mammary gland health in commercial dairy operations, 
the emergence and proliferation of resistant bacterial strains constitute 
a significant threat to global public health, food security, and 
sustainable agricultural development (29, 30). This concerning 
development has prompted increased interest in alternative 
therapeutic approaches (15), including nutritional interventions, 
bioactive compound therapies, and evidence-based plant-derived 
treatments (31–35).

From a broader public health perspective, the increasing incidence 
of bovine mastitis frequently necessitates intensive antibiotic usage, 
consequently elevating the risk of antibiotic residues in milk products 
and contributing to the global AMR burden, ultimately increasing 
healthcare costs and threatening therapeutic efficacy. To address these 
multifaceted challenges and reduce dependence on conventional 
antimicrobials, researchers worldwide are systematically investigating 
alternative treatment strategies, including homeopathic approaches, 
with a rigorous emphasis on ensuring therapeutic efficacy and safety 
for both animals and consumers (36).

Medicinal plants represent a vast repository of bioactive compounds 
with demonstrated therapeutic potential, containing diverse 
phytochemical constituents that exhibit beneficial effects on human and 
animal health. The encouraging empirical evidence supporting plant-
based therapies has generated substantial scientific interest in exploring 
these natural substances for developing innovative therapeutic 
interventions. Plant extracts and essential oils, renowned for their 
broad-spectrum antimicrobial properties, represent up-and-coming 
alternatives that are generally recognized as safe for animals, humans, 
and environmental systems (30). Plants synthesize a diverse array of 
secondary metabolites as integral components of their natural defense 
mechanisms, many of which possess potent antimicrobial properties 
and have maintained significant roles in traditional medicinal systems 
throughout human history. The antimicrobial efficacy of plant-derived 
compounds is primarily attributed to diverse classes of bioactive 
phytochemicals, including flavonoids (such as quercetin, kaempferol, 
and catechins), alkaloids (including berberine, quinine, and morphine), 
terpenoids and terpenes (encompassing monoterpenes, sesquiterpenes, 
and triterpenes), phenolic acids (such as gallic acid, caffeic acid, and 
ferulic acid), saponins, tannins, and essential oil components (including 
thymol, carvacrol, eugenol, and linalool). These phytochemicals exhibit 
antimicrobial activity through multiple mechanisms, including 
disruption of bacterial cell wall synthesis, interference with cytoplasmic 
membrane integrity, inhibition of nucleic acid synthesis, disruption of 
metabolic pathways, and interference with bacterial communication 
systems (quorum sensing). Flavonoids demonstrate antimicrobial 
efficacy by forming complexes with extracellular proteins and bacterial 
cell walls, while alkaloids exert their effects through DNA intercalation 
and enzyme inhibition. Terpenoids compromise membrane integrity 
and interfere with respiratory processes, whereas phenolic compounds 
disrupt cellular metabolism and protein function (37). The therapeutic 
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application of traditional Chinese medicine (TCM) in mastitis 
management, including established formulations such as Yanghe 
decoction (38), Danggui buxue decoction (39), Medulla tetrapanacis 
water extract (31), and Red ointment (40), has demonstrated 
considerable clinical success and therapeutic efficacy (41–44). Beyond 
TCM, bioactive phytocompounds have emerged as promising 
alternatives to conventional antibiotics for treating bovine mastitis (15, 
45–50). This review critically evaluates the current evidence base for the 
therapeutic application of TCM and plant-derived bioactive compounds 
in bovine mastitis management.

2 Methodology for literature search

This review aims to explore the role of TCM and plant-derived 
bioactive compounds in the treatment of mastitis. To achieve this, a 
comprehensive literature search spanning 2014–2025 (11 years) was 
conducted using reputable databases including Google Scholar, 
PubMed, Web of Science, X-MOL, and additional Chinese databases 
(CNKI, Wanfang, VIP). Keywords such as TCM, plant-derived 
bioactive compounds, Chinese herbal medicine, bovine mastitis, 
udder health, herbal formulations, mastitis risk factors, and 
antimicrobial resistance were employed to find relevant studies. The 
inclusion criteria for this review were as follows: articles published 
between 2014 and 2025 were considered, with a specific focus on the 
application of TCM and plant-derived bioactive compounds for 
mastitis treatment. Studies published as book chapters, conference 
papers, abstracts, or in newspapers were excluded from this review.

3 Mastitis classification and possible 
risk factors

The etiological agents of mastitis are delineated into three distinct 
categories based on the nature and origin of the causative pathogens: 
contagious, environmental, and opportunistic agents (Figure 1) (51).

3.1 Type of mastitis

Broadly, mastitis can be categorized into two types: lactational and 
non-lactational mastitis (as shown in Figure 2). The most common 
form is lactational mastitis, which typically occurs during 
breastfeeding. This condition is infectious and presents with localized 
pain and swelling, accompanied by systemic symptoms. Although it 
can develop at any time during the lactation period, it most frequently 
occurs during the second or third week of postpartum. Non-lactational 
mastitis includes two primary forms: idiopathic granulomatous and 
periductal mastitis. Periductal mastitis, though rare, can affect 
non-lactating individuals, particularly those of reproductive age. It’s 
often linked to bacterial infection (52).

Lactational mastitis can be further classified as either clinical or 
subclinical intramammary inflammation, based on the presence or 
absence of visible symptoms. The primary causative agents in clinical 
cases are Gram-negative bacteria, with E. coli being the most common 
(53). Clinical condition is primarily categorized into two main 
presentations: acute and chronic. Acute mastitis is characterized by 
overt inflammatory signs, including erythema, localized hyperthermia, 

and tissue tumefaction at the affected site. In severe manifestations, 
systemic complications may emerge, including pyrexia, septicemia, 
and abscess formation. Conversely, chronic mastitis exhibits a more 
insidious progression, typically characterized by recurrent infections 
and progressive tissue deterioration (2).

In contrast, subclinical mastitis (SCM) represents a pathogenic 
infection that proceeds without overt clinical manifestations or systemic 
symptomatology. However, it is distinguished by diminished milk 
production, compromised quality parameters, and a marked increase in 
somatic cell count (SCC) (54, 55). This form is predominantly associated 
with Gram-positive bacterial infections, most notably S. aureus (53). 
Clinical mastitis is generally easy to diagnose due to visible symptoms, 
but SCM lacks obvious signs of inflammation, making it more 
challenging to detect. Diagnostic tools such as the California mastitis test 
(CMT), elevated SCC in milk, and microbial isolation and culture from 
milk samples aid in identifying SCM. Early detection is crucial in the 
dairy industry to minimize financial losses. Numerous microorganisms, 
primarily bacteria, have been identified as the causative agents of mastitis 
(56). SCC is a key marker for evaluating udder health and serves as a 
reliable method for detecting mastitis by quantifying immune cells, such 
as neutrophils, lymphocytes, and macrophages, in milk (57). When SCC 
levels exceed 200,000 cells/ml, it often indicates a bacterial infection. 
Both clinical and SCM can lead to significant changes in SCC level, 
highlighting the ongoing inflammatory response in the udder (58).

3.2 Pathogenic factors

Environmental pathogens constitute a diverse group of 
microorganisms that originate from multiple reservoirs within the 

FIGURE 1

Host-pathogen-environment interactions and their association with 
mastitis. This diagram illustrates the disease triangle model, showing 
how mastitis develops through the interaction of three key factors. 
The host (in this case, a cow) represents the susceptible animal, with 
factors such as age, immunity, and genetics influencing susceptibility 
to mastitis. The pathogen shows various disease-causing agents, 
including bacteria, viruses, fungi, and parasites, that can cause 
mastitis. The environment (farm setting) depicts conditions 
influencing transmission, such as temperature, humidity, housing, 
milking practices, and sanitation. The central green triangle 
represents mastitis occurring at the intersection where all three 
factors align - when a susceptible host encounters a virulent 
pathogen under favorable environmental conditions (85).
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agricultural environment, including bedding substrates, arthropod 
vectors, housing infrastructure, and the bovine enteric microbiome, 
with E. coli representing a predominant example (59). The proliferation 
and transmission of these pathogens are significantly influenced by 
suboptimal husbandry conditions, including excessive stocking 
density, inadequate floor sanitation, insufficient ventilation systems, 
and elevated ambient temperatures coupled with high relative 
humidity (60). Contagious pathogens, primarily represented by 
S. aureus and S. agalactiae, exhibit host-adapted characteristics and 
are transmitted through direct inter-animal contact or via 
contaminated milking apparatus (2). Opportunistic pathogens 
demonstrate dual behavioral characteristics, functioning as either 
contagious or environmental agents depending on circumstances, and 
typically exploit periods of immunocompromised host status to 
establish intramammary infections (51).

Recent epidemiological studies have documented increased 
morbidity associated with mycotic mastitis in bovines. Notable fungal 
pathogens include zoonotic yeasts such as C. albicans and Kodamaea 
ohmeri, along with other Candida species: C. guilliermondii, C. famata, 
C. tropicalis, C. colliculosa, C. krusei, C. rugosa, C. glabrata, 
C. parapsilosis, and C. inconspicua. Additional fungal agents 
encompass Trichosporon species, Rhodotorula glutinis, Saccharomyces 
fragilis, Pichia kudriavzevii, and Cyberlindnera rhodanensis. Mold 
species, including Aspergillus amstelodami, A. fumigatus, and 
Geotrichum candidum, have also been implicated (61). Furthermore, 
yeast-like algae, specifically Prototheca zopfii and Prototheca 
blaschkeae, have been identified as causative agents (21). Yeast-like 
algae, including Prototheca zopfii and Prototheca blaschkeae, have also 
been implicated (62).

Viral infections contribute significantly to mastitis pathogenesis 
through direct and indirect mechanisms (63). Direct viral mastitis 
occurs with bovine herpesvirus 1 and 4 (clinical and subclinical 
presentations, respectively) (64–66), parainfluenza virus, and foot-
and-mouth disease virus (67–69). Indirect viral contributions result 
from teat epithelial lesions caused by bovine herpesvirus 2, cowpox 
virus, pseudo-cowpox virus, vesicular stomatitis virus, papillomavirus, 

and bovine leukemia virus, which compromise barrier defenses and 
predispose to secondary bacterial invasion (21, 63, 70–72).

3.3 Non-pathogenic factors

Mechanical trauma associated with automated milking systems 
represents a critical predisposing factor, as it disrupts the 
anatomical integrity of the udder quarter. Specifically, compromised 
keratin plug formation and mucosal damage to the teat sinus create 
portals of entry for pathogenic microorganisms (21, 73). 
Suboptimal milking hygiene protocols demonstrate a significant 
positive correlation with mastitis incidence, emphasizing the 
importance of standardized sanitation procedures (21). In addition 
to mechanical factors, genetic and phenotypic characteristics 
substantially influence mastitis susceptibility through multiple 
interconnected pathways. Breed-specific variations reveal 
differential susceptibility patterns, with high-producing Holstein-
Friesian cattle exhibiting increased vulnerability relative to 
medium-yielding Jersey cattle (74), while low-yielding Rendena 
cattle demonstrate superior disease resistance (60). Moreover, 
parity effects indicate a heightened susceptibility in multiparous 
compared to primiparous animals, reflecting cumulative exposure 
and potential immunological changes (75).

Beyond genetic predisposition, immunological determinants play 
a fundamental role in disease susceptibility through variations in 
cytokine expression profiles and humoral immune responses (76). 
Critical immune effector mechanisms include antimicrobial peptides 
(such as lysozyme and lactoferrin), cellular immune components 
(macrophages and neutrophils), and hormonal receptor expression 
patterns, which collectively modulate the host defense capacity (77). 
Concurrently, anatomical predispositions include specific udder 
conformations, particularly pendulous udder structure and funnel-
shaped teat morphology, which facilitate pathogen entry and 
retention (12). Additionally, age-related physiological changes in 
geriatric animals contribute to increased susceptibility through 

FIGURE 2

Classification of mastitis types. This flowchart classifies bovine mastitis (mammary gland inflammation in cattle) into two main categories. Non-
lactational mastitis occurs when cows aren’t producing milk and includes preductal and idiopathic granulomatous types. Lactational mastitis occurs 
during milk production and is classified by cause (infectious vs. non-infectious) and symptoms (clinical with visible signs vs. sub-clinical with hidden 
infection).

https://doi.org/10.3389/fvets.2025.1642647
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Fan et al.� 10.3389/fvets.2025.1642647

Frontiers in Veterinary Science 05 frontiersin.org

progressive teat canal dilation and enhanced mammary epithelial 
permeability (60).

Temporal physiological changes further complicate these intrinsic 
factors, as the periparturient transition period represents a critical 
vulnerability window characterized by profound metabolic and 
immunological alterations. During this phase, nutritional status has a 
significant influence on mastitis susceptibility, particularly given the 
substantial metabolic demands associated with colostrum synthesis 
and lactogenesis in dairy cattle (12). Consequently, a negative energy 
balance can precipitate deficiencies in essential proteins, trace 
minerals, and vitamins that are fundamental to optimal immune 
function (78). Therefore, maintaining an adequate nutritional status, 
including sufficient selenium, iron, copper, zinc, cobalt, chromium, 
essential amino acids, and vitamins A, E, and C, is paramount for both 
mastitis prevention and sustained lactational performance (79).

4 Factors involved in antibiotic 
resistance

The primary approach to treating bovine mastitis involves the use 
of antibiotics. However, the effectiveness of this treatment is 
diminishing due to the rising incidence of antibiotic-resistant bacteria, 
which is now recognized as a significant global health concern (80). 
While antimicrobials have considerably improved animal health and 
yield, the improper or unnecessary use of antimicrobials in food-
producing animals is believed to play a significant role in the 
development of AMR (81). Moreover, the presence of residues in milk 
poses potential risks to both animal and human health (82). The 
utilization of antimicrobial agents in animal husbandry has been a 
longstanding practice, primarily for therapeutic purposes and 
occasionally for production enhancement. These agents are also 
employed prophylactically to prevent infections. In dairy cattle 
management, antimicrobials are predominantly used to control 
mastitis, a prevalent and economically significant disease, during two 
crucial phases: lactation therapy and dry cow therapy (30).

Specifically, lactation therapy presents a significant challenge as 
antimicrobial use necessitates extended milk withdrawal periods due 
to the risk of drug residues. These residues present multiple concerns 
for human health, including potential adverse reactions in 
hypersensitive individuals, promotion of antimicrobial resistance, and 
interference with dairy product manufacturing processes (30). In 
contrast, dry cow therapy, which involves administering long-acting 
antimicrobials to all mammary quarters at the end of lactation, serves 
both therapeutic and preventive purposes. Although this approach has 
been fundamental to mastitis control programs, concerns about 
increasing AMR have prompted many nations to re-evaluate the use 
of prophylactic antimicrobials in livestock (83).

Unfortunately, the excessive and inappropriate use of antibiotics 
in mastitis treatment has substantially contributed to the emergence 
of antimicrobial and multidrug resistance, thereby complicating 
disease management (84). Consequently, prolonged or excessive 
antibiotic administration disrupts the internal microbial equilibrium, 
promotes the development of resistance, and results in antibiotic 
residues in milk (85). The underlying bacterial resistance mechanisms 
encompass the presence of resistant variants, selective reproductive 
advantages under antibiotic pressure, and the heritability of resistance 
traits, potentially leading to resistant strain dominance within 
populations (86).

A prominent example of this resistance challenge is S. aureus, a 
major pathogen of mastitis, which exemplifies this problem through 
its persistent and recurrent infections that often resist treatment. 
Notably, methicillin-resistant Staphylococcus aureus (MRSA) was first 
identified as a causative agent of mastitis in cows in 1972 (87). These 
methicillin-resistant S. aureus strains, which carry the mecA gene 
encoding penicillin-binding protein 2a, demonstrate resistance to all 
β-lactam antibiotics, including penicillin, cephalosporins, and 
carbapenems. Furthermore, MRSA frequently exhibits resistance to 
multiple antibiotic classes, including aminoglycosides, macrolides, 
tetracyclines, and fluoroquinolones (30).

The rapid evolution of bacterial resistance, driven by the 
widespread use of antimicrobials, has emerged as a global public 
health crisis (88). This situation is further exacerbated by limited 
research and development of new antimicrobial agents. Addressing 
this challenge requires a comprehensive understanding of resistance 
mechanisms and the development of novel antimicrobial strategies 
(30). As a result, there is an urgent need to identify and develop 
alternative therapeutic approaches that address these concerns while 
maintaining high standards of animal welfare and public health (89). 
In response to this critical need, the development of new alternative 
therapies and treatments presents a significant opportunity that 
requires collaborative efforts between veterinary practitioners and 
researchers. Traditional Chinese herbs offer several advantages over 
conventional antibiotics, including reduced side effects, a lower risk 
of bacterial resistance, minimal toxicity, and negligible residue levels. 
Additionally, they are used in the treatment of mastitis, as seen in the 
use of TCM and its extracts in treating mastitis (89–91).

5 Use of TCM and plant-derived 
bioactive compounds as an alternative 
treatment for bovine mastitis

5.1 TCM formulations and therapeutic 
approaches

TCM has garnered significant attention as an effective alternative 
to conventional antibiotic treatments for mastitis, demonstrating 
therapeutic efficacy while minimizing risks associated with 
antimicrobial resistance and secondary complications. The 
comprehensive antibacterial, anti-inflammatory, immunomodulatory, 
and antioxidant properties of TCM, developed over centuries of use, 
position it as a viable alternative therapy for mastitis treatment (32, 41, 
92, 93). Building upon this foundation, numerous TCM formulations 
have been systematically introduced for the treatment of various types 
of mastitis (94). These include a comprehensive range of therapeutic 
options, such as Chai Hu Qing Gan Tang (95), Yanghe decoction (96), 
and Chaihu Qinggan (38). Furthermore, other notable formulations 
include Tuoli Tounong Decoction (97), Yiqi Heying (98) and Gong 
Ying San (99).

Among the most extensively studied traditional formulations, 
Jingfang Granules (JF’s) demonstrate remarkable efficacy in treating 
LPS-induced mastitis through multiple therapeutic pathways. 
Specifically, these granules operate through nuclear factor κB (NF-κB), 
phosphatidylinositol 3-kinase (PI3K), Akt, mitogen-activated protein 
kinase/Extracellular signal-regulated kinase (MAPK/ERK), p38, and 
nucleotide-binding oligomerization domain, leucine-rich-containing 
family, pyrin domain-containing-3 (NLRP3) signaling cascades. 

https://doi.org/10.3389/fvets.2025.1642647
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Fan et al.� 10.3389/fvets.2025.1642647

Frontiers in Veterinary Science 06 frontiersin.org

Moreover, they maintain milk barrier integrity through the regulation 
of tight junction proteins and prevent cell apoptosis by modulating 
Bcl-2 and Bax expression (100). In parallel, Qicao Rukang powder has 
demonstrated comparable effectiveness in treating SCM, showing 
notable improvements in SCC, milk composition, and bacteriological 
cure rates. The powder’s therapeutic efficacy is attributed to its diverse 
active constituents, including polysaccharides, saponins, flavonoids, 
and terpenoids (101). Complementing these oral formulations, 
Pulsatilla saponin B4 injection protocols have shown significant 
effectiveness in treating clinical mastitis. These protocols achieve 
therapeutic benefits by reducing SCC, eliminating pathogenic 
bacteria, and lowering inflammatory markers, including CRP, SAA, 
HP, and various pro-inflammatory cytokines (102). Notably, the 
integration of traditional approaches has shown auspicious results 
when combined with modern therapeutic techniques. For instance, 
combined therapy using intramammary antibiotics and 
complementary acupuncture has demonstrated substantial efficacy in 
reducing bovine mammary inflammation in cases of SCM. This 
innovative approach, which targets specific points on affected 
mammary quarters, resulted in a significant reduction of N-acetyl-
beta-D-glucosaminidase (NAGase) activity, thereby indicating 
improved healing of mammary epithelial cells (103).

Expanding beyond traditional Chinese formulations, a 
comprehensive evaluation of Tibetan herbal medicines has revealed 
additional therapeutic options. These include Swertia bimaculata, 
Gentiana urnula, Uncaria rhynchophylla, Aconitum flavum, 
Dracocephalum tanguticum, and Lagotis brachystachy, all of which 
demonstrated significant antibacterial activity against mastitis-causing 
Staphylococcus strains. Particularly noteworthy is Lagotis brachystachy, 
which demonstrated exceptional efficacy against MDR strains (104). 
Ultimately, clinical studies have provided robust validation of the 
benefits of TCM in the treatment of acute mastitis. These investigations 
have demonstrated significant improvements across multiple 
parameters, including clinical effectiveness, lactation rates, symptom 
relief, quality of life, and emotional well-being. Collectively, these 
findings provide strong evidence supporting the efficacy of TCM 
external therapy in both symptom alleviation and promoting 
recovery (105).

5.2 Plant-derived bioactive compounds

Contemporary research has increasingly focused on identifying 
and characterizing plant-derived bioactive compounds with 
substantial therapeutic potential for managing mastitis. Among the 
most promising candidates are Dimethyl itaconate, Polydatin, 
Sinomenine hydrochloride, and Jiawei Tounong powder, which have 
demonstrated significant efficacy through various molecular 
mechanisms (106–109). Of particular significance is Shikonin (SHI), 
a bioactive natural naphthoquinone constituent extracted from 
Lithospermum erythrorhizon, which shows remarkable anti-
inflammatory and antimicrobial properties. Initially utilized in TCM 
for treating wounds and various skin conditions, SHI has subsequently 
emerged as a viable therapeutic alternative to conventional antibiotics 
in managing inflammatory conditions, most notably 
lipopolysaccharide-induced mastitis. The underlying mechanism of 
action involves the systematic inhibition of the NF-κB signaling 
pathway through the targeted suppression of p-IκBα and p-p65 
proteins, thereby achieving a substantial reduction in 

pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6 (110). 
Furthermore, SHI effectively alleviates oxidative stress through the 
activation of the Nrf2/HO1 signaling pathway (111).

Complementing these findings, comprehensive essential oil 
studies have revealed significant bacteriostatic activity of traditional 
extracts, particularly those from lemon balm and peppermint oil, 
against prevalent mastitis pathogens, including S. aureus and E. coli 
(112). In parallel, Sodium houttuynia (SH), derived from Houttuynia 
cordata, has demonstrated considerable efficacy in inhibiting 
LPS-induced inflammatory responses in bovine mammary epithelial 
cells (bMECs). The therapeutic mechanism involves the sophisticated 
modulation of the NF-κB signaling pathway, resulting in markedly 
reduced pro-inflammatory cytokine expression (IL-1β, IL-6, TNF-α) 
and decreased levels of Toll-like receptor 4 (TLR4), inhibitor of 
nuclear factor kappa B (IκBα), and NF-κB p65 (113).

Building upon these observations, Zhang et al. (114) conducted 
comprehensive investigations into the protective effects of Salvia 
miltiorrhiza polysaccharides (SMPs) in S. aureus-induced mastitis 
models. Their findings convincingly demonstrated that SMP treatment 
significantly reduced bacterial load, inflammatory cell infiltration, and 
cytokine levels while simultaneously inhibiting activation of the 
NF-κB and MAPK pathways. These therapeutic effects were 
substantiated by notable histopathological improvements and 
significant reductions in MPO and NAGase activity (114). 
Correspondingly, quercetin, extracted from Ligustrum lucidum, has 
exhibited considerable promise in both the prevention and treatment 
of mastitis. Through sophisticated network pharmacological analysis, 
researchers identified seven active ingredients and 42 key molecular 
targets, with tumor necrosis factor (TNF), alpha serine/threonine 
kinase 1 (AKT1), and interleukin-6 (IL-6) serving as core therapeutic 
targets. Subsequent in vivo studies validated quercetin’s capacity to 
alleviate pathological changes and downregulate inflammatory 
markers through the modulation of the PI3K-AKT and NF-κB 
signaling pathways (115).

Furthermore, geraniol has emerged as an up-and-coming 
therapeutic alternative, demonstrating effective pathogen inhibition, 
probiotic enhancement, and maintenance of gut microbial diversity. 
Notably, geraniol treatment exhibited no detectable milk residues after 
four days of administration and, significantly, did not induce drug 
resistance during prolonged exposure periods (116). Concomitantly, 
Taraxacum mongolicum has been shown to exhibit substantial 
protective effects against S. aureus-induced mastitis through well-
characterized anti-inflammatory mechanisms, including the targeted 
downregulation of TLR2 and the systemic inhibition of NF-κB and 
MAPK signaling pathways (117).

Of exceptional interest, Forsythiaside A (FTA) has established a 
pivotal role in mastitis treatment through multiple comprehensive 
studies (118–121). Recent research has successfully elucidated FTA’s 
sophisticated protective mechanisms, particularly its capacity to 
modulate mitophagy through the PINK1/Parkin signaling pathway. 
This pathway represents a crucial component for maintaining 
mitochondrial integrity, cellular energy production, and cell viability 
under conditions of mastitis-induced stress. FTA’s selective activation 
of mitophagy facilitates the targeted removal of dysfunctional 
mitochondria, thereby preserving mitochondrial integrity and 
reducing inflammatory responses. Additionally, FTA demonstrates 
remarkable effectiveness in lowering both cellular and mitochondrial 
reactive oxygen species (ROS), thereby mitigating oxidative damage, 
associated inflammation, and tissue injury. These synergistic 
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mechanisms collectively contribute to reduced mastitis severity and 
improved dairy cow health and productivity (122).

Beyond these extensively characterized compounds, various other 
traditional therapeutic agents have demonstrated promising potential. 
Specifically, Tanshinone I and Tanshinone IIA/B exhibit significant 
inhibition of NF-κB activation in nMECs, proving particularly 
effective when combined with conventional antibiotics such as 
cephalosporins (123). Similarly, Artemisia argyi Leaves (ALE) have 
shown substantial therapeutic potential in LPS-induced mouse 
mastitis models, demonstrating the capacity to alleviate tissue damage, 
reduce oxidative stress, and regulate inflammation-associated gene 
expression (124). Moreover, Broadleaf Mahonia has been shown to 
exhibit significant anti-inflammatory properties by reducing 
pro-inflammatory cytokines, including IL-1β, CCL-5, and IL-6, in 
RAW264.7 cell cultures. This therapeutic effect is primarily mediated 
through systematic inhibition of NF-κB and MAPK signaling 
pathways, which represent crucial regulators of inflammatory 
responses. In cases of granulomatous lobular mastitis, preventive 
treatment with Broadleaf mahonia effectively reduces inflammation 
and promotes tissue homeostasis (125).

To comprehensively understand the underlying pathophysiological 
mechanisms, investigations into mastitis caused by S. aureus have 
revealed significant inflammatory responses characterized by elevated 

levels of IL-1β, TNF-α, and MPO activity, alongside increased 
ferroptosis markers such as Fe2+ and MDA levels. Decreased protective 
factors, including GSH, GPX4, and ferritin in mammary tissues, 
accompany these pathological changes (126). Remarkably, the 
strategic integration of traditional therapeutic approaches has yielded 
promising clinical results. In this context, Schisandrin B (SB) 
treatment has demonstrated considerable effectiveness in mitigating 
pathological changes by reducing both inflammation and ferroptosis. 
The underlying therapeutic mechanism involves the upregulation of 
SIRT1 and SLC7A11 expression, the inhibition of p53 and NF-κB 
activation, and the restoration of antioxidant defense systems. These 
therapeutic effects were confirmed through comprehensive 
histological analysis, demonstrating reduced tissue damage in 
SB-treated groups, thereby suggesting that SB’s therapeutic action 
occurs through the SIRT1/p53/SLC7A11 and NF-κB pathways (127). 
The molecular mechanisms underlying the protective effects of 
traditional Chinese medicine and plant-derived bioactive compounds 
against mastitis are schematically represented in Figure 3. Additionally, 
a comprehensive overview of research developments on traditional 
Chinese medicine and plant-derived bioactive compounds in mastitis 
therapy is summarized in Table 1 and Figure 4.

While plant-derived bioactive compounds show promising 
antimicrobial and anti-inflammatory effects against bovine mastitis 

FIGURE 3

Anti-inflammatory mechanisms of TCM and plant-derived bioactive compounds. This figure illustrates the mechanism by which conventional TCM 
and plant-derived bioactive compounds exert anti-inflammatory effects by inhibiting key inflammatory signaling pathways, specifically the MAPK and 
NF-κB pathways, ultimately leading to the prevention of mastitis. The conceptual framework presented in this figure is adapted from findings reported 
in previously published literature (12, 77, 88).
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TABLE 1  Summary of research on TCM and plant- derived bioactive compounds for mastitis treatment (2014–2025).

TCM/plant- derived 
bioactive compounds

Biological effects Research 
model

References

Medulla Tetrapanacis water 

extract

	•	 Decreased inflammatory cytokines (TNF-α, IL-6, and interleukin-1 beta),

	•	 Protected blood-milk barrier integrity by enhancing protecting blood-milk barrier integrity and 

inactivate MAPK-signaling pathways to prevent inflammatory changes

HuMEC and 

rats
(31)

Danggui buxue decoction

	•	 The DD showed anti-inflammatory (suppressed TNF-α, IL-1β, IL-6, IL-8, TLR4 and NF-κB) and 

antibacterial activities

	•	 Relieved oxidative stress by enhancing antioxidant response (inhibiting levels of 

malondialdehyde (MDA), nitric oxide (NO) content assay, and reactive oxygen species (ROS) 

followed by enhanced superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and 

glutathione (GSH) activities) in LPS challenged BMECs.

BMECs (89)

Shikonin (naphthoquinone 

constituent extracted from 

Chinese herb Lithospermum 

erythrorhizon)

	•	 Shikonin prevents LPS-induced mastitis by suppressing TNF-α, IL-1β, and IL-6 followed by 

inhibition of p-IκBα and p-p65, which are the critical proteins functioning in NF-kB 

signaling pathway

Mice (110)

Salvia miltiorrhiza 

polysaccharides

	•	 Salvia miltiorrhiza polysaccharides prevent mastitis induced by S. aureus in rats.

	•	 Significantly reduced bacterial load, inflammatory cell recruitment, and the expression of 

inflammatory cytokines like IL-1β, IL-6, and TNF-α.

	•	 Inhibited the activation of NF-κB and MAPK signaling pathways.

Rats (114)

Jingfang Granules (JF)

	•	 alleviated LPS-induced mastitis by mitigating inflammation, preserving the integrity of the 

blood-milk barrier, and modulating cellular apoptosis. JF decreased myeloperoxidase (MPO) 

activity and the expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α.

	•	 Reduced the protein levels of key inflammatory signaling molecules such as TLR4, P-NF-κB, 

NLRP3, ASC, Caspase-1, IL-1β, P-P38, P-ERK1/2, and P-AKT, indicating its regulatory effect on 

NF-κB, NLRP3, PI3K/AKT, and MAPK pathways.

	•	 Enhanced the expression of tight junction proteins (ZO-1, Claudin-3, and Occludin), thereby 

improving the integrity of the blood-milk barrier.

Mice (100)

Artemisia argyi leaves extract

	•	 Alleviated mammary gland lesions through its anti-inflammatory and antioxidant properties.

	•	 Significantly reduced LPS-induced myeloperoxidase (MPO) activity and restored antioxidant 

enzymes like glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), while 

mitigating oxidative imbalance caused by nitric oxide overproduction.

	•	 Down-regulated inflammatory factors IL6, TNFα, and IL1β, and modulated the TLR2/4 

signaling pathway via MyD88. Inhibited the NF-κB signaling pathway by alleviating IκB 

degradation.

Mice (124)

Broadleaf Mahonia

	•	 Broadleaf Mahonia treatment significantly reduced the expression of inflammatory markers, 

including IL-1β, CCL-5, and IL-6, in RAW264.7 cells.

	•	 The activity of nuclear factor κB (NF-κB), a key regulator of inflammation, was markedly 

inhibited, contributing to the downregulation of inflammatory responses.

	•	 Reduced activity of the MAPK signaling pathway was observed, indicating the potential role of 

Broadleaf Mahonia in modulating upstream inflammatory signaling cascades.

	•	 Preventative treatment with Broadleaf Mahonia alleviated the symptoms of granulomatous 

lobular mastitis by reducing inflammation and promoting tissue homeostasis.

RAW264.7 

cells
(125)

Schisandrin B (Schisandra 

chinensis)

	•	 Schisandrin B inhibited inflammation and ferroptosis and enhanced antioxidant response in 

S. aureus-induced mastitis

	•	 Reduced the IL-1β, TNF-α, and MPO activities, enhanced GSH, GPX4 and Nrf2 levels.

	•	 The Schisandrin B upregulated the SIRT1/p53/SLC7A11 signaling pathway, attenuating the 

activation of inflammation via suppressing the NF-κB activation

Mice (126)

Gong Ying San 	•	 Anti-inflammatory, antibacterial, and antioxidant activities and reduced mastitis Dairy Cows (99)

Prunella vulgaris L.

	•	 Prevent LPS induced mastitis by inhibiting inflammatory markers including TNF-α, IL-6, and 

IL-1β, MAPK and NF-κB pathway-related proteins. In addition, upregulated the expressions of 

tight junction protein (ZO-1, occludin, and claudin-3) in mammary gland tissues.

Mice (130)

Angelica sinensis Polysaccharide 	•	 Alleviates S. aureus-induced mastitis by enhancing gut microbiota in mice Mice (131)

(Continued)
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TABLE 1  (Continued)

TCM/plant- derived 
bioactive compounds

Biological effects Research 
model

References

Hordenine

	•	 Prevented lipopolysaccharide-induced mastitis by inhibiting inflammation through the TLR4-

MAPK/NF-κB signaling pathway and reducing oxidative stress via the AMPK/Nrf2/HO-1 

pathway, while also modulating the intestinal microbiota and preserving the blood–milk barrier 

by upregulating ZO-1, occludin, and claudin-3.

Mice (132)

Iridoid glucosides 	•	 Suppressed the levels of TNF-α, IL-6, and IL-1β in S. aureus-stimulated mastitis in BMECs BMECs (133)

Rhapontici Radix extract (RRE)

	•	 RRE treatment reduced inflammatory cytokines (TNF-α, IL-6, and IL-1β) in LPS-induced mice 

mammary gland cells. The phosphorylation of MAPK and NF-κB pathways was reduced and 

upregulated the expression of TMEM59 and GPR161

MMECs (134)

Pomegranate flower 

polysaccharid

	•	 Prevent mastitis by improving the intestinal flora in mice.

	•	 Reduced inflammation by suppressing inflammatory cytokines
Mice (135)

Quyu Xiaozhong

	•	 Quyu Xiaozhong treatment significantly reduced the pathological damage and inflammation in 

rats with S. aureus-induced mastitis.

	•	 It decreased myeloperoxidase (MPO) activity and inflammatory factor levels TLR4, NF-κB-p65, 

and IκB-α.

	•	 The inflammatory changes were inhibited via TLR4/NF-κB signaling pathway.

Rat (136)

Saikosaponin A

	•	 Saikosaponin A significantly alleviated S. aureus-induced mastitis by reducing inflammation and 

preserving blood-milk barrier integrity.

	•	 Inhibited NF-κB pathway activation and ferroptosis, characterized by reduced iron 

accumulation, mitochondrial changes, and enhanced antioxidant production.

	•	 Upregulated key proteins involved in cellular protection, including SIRT1, Nrf2, HO-1, 

and GPX4.

Mice (137)

Diosmetin

	•	 Diosmetin significantly reduced the pathological changes in the mammary gland caused by 

S. aureus.

	•	 It decreased MPO activity, TNF-α and IL-1β release, and NF-κB activation. Diosmetin also 

inhibited S. aureus-induced malondialdehyde (MDA) and Fe2 + levels, while boosting ATP, 

glutathione (GSH) production, and GPX4 expression. Additionally, diosmetin upregulated 

SIRT1, Nrf2, and HO-1 expression

Mice (138)

Allicin

	•	 Allicin, a natural extract from garlic, effectively reduced LPS-induced inflammation in MAC-T

	•	 Treatment with 2.5 μM allicin significantly decreased the expression of pro-inflammatory 

cytokines IL-1β, IL-6, IL-8, and TNF-α, and inhibited the activation of the 

NLRP3 inflammasome.

	•	 Allicin also suppressed the phosphorylation of IκB-α and NF-κB p65, indicating a blockade of 

NF-κB signaling. In vivo, allicin alleviated LPS-induced mastitis in mice, supporting its anti-

inflammatory effects.

	•	 These findings suggest that allicin mitigates mastitis by modulating the TLR4/NF-κB pathway, 

offering a potential alternative to antibiotics in dairy farming.

MAC-T (139)

Chlorogenic acid

	•	 Chlorogenic acid demonstrated antimicrobial, antioxidant, and anti-inflammatory activities in 

combating Escherichia coli resistant induced mastitis.

	•	 Killed E.coli by directly targeting bacterial cell well and membrane.

Cow (140)

Chlorogenic acid extracted from 

Taraxacum officinale

	•	 Reduced the expression of pro-inflammatory genes and proteins such as TNF-α, IL-6, and IL-1β 

in lipoteichoic acid (LTA)-induced in BMECs.

	•	 It also downregulated NO, TLR2, and NF-κB.

	•	 Chlorogenic acid prevented inflammatory changes via suppressing TLR2/NF-κB pathway 

in BMECs.

BMECs (141)

Jiawei Yanghe decoction
	•	 JYD significantly suppressed inflammatory changes and prevent mastitis in mice mammary 

gland via inhibiting TLR4/Myd88/NF-κB
Mice (142)

(Continued)
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TABLE 1  (Continued)

TCM/plant- derived 
bioactive compounds

Biological effects Research 
model

References

Maslinic acid

	•	 Maslinic acid reduced pro-inflammatory factors (IL-6, IL-1β, TNF-α, iNOS, COX2), and 

protected the blood–milk barrier by maintaining tight-junction protein expression.

	•	 Altered gut microbiota by promoting beneficial bacteria (Enterobacteriaceae) and inhibiting 

harmful bacteria (Streptococcaceae),

	•	 Downregulated inflammation via suppressing NLRP3 inflammasome, AKT/NF-κB, and MAPK 

signaling pathways

Mice (143)

Hexadecanamide

	•	 According to metabolomics analysis revealed that hexadecanamide was reduced in cows with 

SARA-associated mastitis. HEX alleviated S. aureus-induced mastitis in mice by suppressing 

inflammation and restoring the blood-milk barrier.

	•	 In vitro, HEX inhibited NF-κB activation in mammary epithelial cells and activated PPARα, 

which upregulated SIRT1 to reduce inflammation.

MMECs (144)

Wogonin

	•	 In LPS-treated mastitis models, wogonin reduced inflammatory cell infiltration, MPO activity, 

and pro-inflammatory cytokines (TNF-α, IL-1β), while inhibiting Akt/NF-κB pathway 

activation and enhancing Nrf2/HO-1 signaling.

	•	 Wogonin also mitigated oxidative stress in MMECs by reducing ROS and MDA levels and 

increasing GSH and SOD levels.

MMECs (145)

Anemoside B4 (Pulsatilla 

chinensis)
	•	 Prevented mastitis and inflammatory response by regulation lipid metabolism. Cow (146)

Oregano essential oil extracted 

from Origanum vulgare

	•	 Oregano essential oil suppressed key factors in dairy bovine mastitis, including TNF, TLR4, 

IL-1β, IL-6, IFNG, and MyD88, with major signaling pathways involving PI3K-Akt, MAPK, 

IL-17, and NF-κB.

Cow (147)

Esculetin

	•	 Esculetin effectively mitigated inflammation in a murine model of mastitis induced by S. uberis.

	•	 Reduced inflammatory cell infiltration and suppressed key inflammatory cytokines (IL-1β, 

IL-6, TNF-α).

	•	 Mechanistically, inhibited P38 MAPK activation and NF-κB signaling, suggesting its therapeutic 

potential for mastitis management.

Mice (148)

Retinoic acid

	•	 Alleviating low-grade endotoxemia-induced mammary injury and reducing proinflammatory 

cytokine production by suppressing the NF-κB/NLRP3 signaling pathway in MMECs

	•	 Enhancing blood-milk barrier integrity through the upregulation of tight junction proteins, 

including ZO-1, Occludin, and Claudin-3

Mice (149)

Evodiamine

	•	 Evodiamine alleviated mammary tissue injury, reduced pro-inflammatory cytokines, and 

suppressed inflammation-related pathways which suggesting its potential as a therapeutic agent 

for mastitis

Mice (150)

Artemisinin

	•	 Improved cell viability and upregulated TLR4/NF-κB and MAPK/p38 signaling pathways in 

MAC-T cells. It also

	•	 Reduced E. coli-induced inflammation by lowering TNF-α, IL-6, and IL-1β expression.

	•	 In a mouse mastitis model, artemisinin alleviated mammary tissue damage, reduced 

inflammatory cell infiltration, and decreased inflammatory factor levels.

	•	 These findings suggest that artemisinin may be an effective treatment for E. coli-induced mastitis.

Mice and 

MAC-T cells
(151)

Peiminine (alkaloid extracted 

from Fritillaria plants)

	•	 Protect against LPS-induced mastitis in mouse.

	•	 Peiminine prevent inflammatory changes by inhibiting the phosphorylation of the protein 

kinase B (AKT)/ nuclear factor-κB (NF-κB), extracellular regulated protein kinase (ERK1/2), 

and p38 signaling pathways

Mice (152)

Berberine hydrochloride

	•	 Berberine hydrochloride significantly reduced neutrophil infiltration and decreased the 

secretion and mRNA expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner.

	•	 Berberine hydrochloride effectively suppressed LPS-induced activation of TLR4, NF-κB p65, and 

phosphorylation of I-κB.

	•	 Berberine hydrochloride protects against LPS-induced mastitis by modulating the TLR4/NF-κB 

pathway.

Mice (153)

(Continued)
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pathogens in vitro and in mouse models (128), their use in dairy cattle 
remains limited due to several inherent barriers in large animal 
research. Research on Traditional Chinese Medicine and plant-derived 
compounds for mastitis treatment is still in its early stages, with most 
trials still in development using mouse models, resulting in insufficient 
foundational data to support progress to large animal studies. 
Conducting controlled clinical trials in dairy cattle involves significant 
economic challenges, requiring much larger sample sizes, longer 
observation periods, and higher operational costs compared to mouse 
models, often surpassing available research budgets.

The regulatory framework governing veterinary pharmaceuticals 
in food-producing animals requires comprehensive safety evaluations, 
including pharmacokinetic studies, tissue residue analyses, and the 
establishment of withdrawal periods for milk and meat products, 
leading to lengthy approval processes that deter initial research 
investments. The physiological complexity of ruminant digestive 
systems adds further challenges, as plant-derived compounds undergo 
extensive ruminal metabolism that can alter bioavailability and 

therapeutic effectiveness compared to monogastric models. 
Additionally, dairy industry stakeholders usually prioritize rapid-
acting, standardized antimicrobial treatments that work with existing 
automated milking protocols and quality systems, which creates 
market resistance to traditional plant-based therapies that need more 
complex preparation, administration, and monitoring. These 
economic, regulatory, physiological, developmental, and practical 
factors collectively explain why the translation of Traditional Chinese 
Medicine and plant-derived compounds from promising laboratory 
results to field use in dairy cattle is limited, despite their demonstrated 
anti-inflammatory, antimicrobial, and immunomodulatory properties 
in experimental studies (129).

6 Conclusion and future perspective

Based on available literature, we concluded that TCM and plant-
derived bioactive compounds present a sustainable and effective 

TABLE 1  (Continued)

TCM/plant- derived 
bioactive compounds

Biological effects Research 
model

References

Chinese Propolis (CP)

	•	 MAC-T cells treated with bacterial endotoxin (LPS), heat-inactivated E.coli and S. aureus showed 

significant decreases in cell viability, and inflammatory changes.

	•	 Pretreatment with CP prevented the loss of cell viability.

	•	 CP treatment resulted in decreased expressions of proinflammatory cytokine mRNAs, 

specifically IL-6 and TNF-α, compared to untreated mastitis-challenged cells.

	•	 Enhanced expressions of antioxidant response by upregulating the key antioxidants genes via 

activation of Nrf2-ARE signaling pathway.

	•	 CP demonstrated strong inhibitory effects against NF-κB activation, a key inflammatory 

transcription factor.

	•	 The polyphenolic active components of CP, primarily caffeic acid phenethyl ester and quercetin, 

showed strong inhibitive effects against NF-κB activation.

MAC-T cells (179)

Mangiferin

	•	 Mangiferin significantly alleviates LPS-induced histopathological changes in the mouse 

mastitis model

	•	 Treatment with mangiferin decreases LPS-induced myeloperoxidase (MPO) activity

	•	 Remarkably reduces the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6

	•	 Inhibits LPS-induced NF-ĸB signaling pathway activation

	•	 Suppresses LPS-induced NLRP3 inflammasome activation

	•	 The anti-inflammatory effects of mangiferin in LPS-induced mastitis are mediated through 

inhibition of both NF-ĸB and NLRP3 signaling pathways

Mice (180)

Indirubin

	•	 Significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, 

milk stasis, local tissue necrosis, and neutrophil infiltration in the LPS-induced mouse 

mastitis model

	•	 Treatment significantly decreased myeloperoxidase activity in the mastitis model

	•	 Downregulated the production of pro-inflammatory cytokines tumor necrosis factor-α, 

interleukin-1β, and IL-6 caused by LPS

	•	 In vitro studies showed dose-dependent inhibition of LPS-stimulated expression of 

proinflammatory cytokines

	•	 LPS-induced TLR4 expression was downregulated

	•	 Treatment inhibited phosphorylation of LPS-induced NF-κB P65 protein and inhibitor 

of kappa B

	•	 The MAPK signaling pathway was suppressed by inhibiting phosphorylation of extracellular 

signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK)

	•	 Anti-inflammatory effects were achieved through suppressing TLR4 and downstream NF-κB 

and MAPK pathway inflammatory signals

mice (181)

HuMEC, Human mammary epithelial cells; BMECs, Bovine mammary epithelial cells.
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alternative to conventional antibiotics for managing mastitis, 
addressing critical challenges such as antimicrobial resistance, drug 
residue in milk, and environmental impact. Plant-derived bioactive 
compounds and TCM have demonstrated efficacy in targeting key 
inflammatory and immune pathways (e.g., NF-κB, PI3K-AKT, MAPK) 
and improving milk quality without inducing remedies, which holds 
significant promise. Therefore, Plant- derived bioactive compounds 
and TCM require future efforts and concentration to elucidate its 
molecular mechanisms, standardize formulations, and conduct large-
scale clinical trials to validate its efficacy and safety. Integrative 
approaches that combine plant- derived bioactive compounds and 
TCM with conventional therapies and advanced technologies, such as 
omics and artificial intelligence, can enhance therapeutic precision. 
Collaboration among researchers, policymakers, and farmers is 
essential to ensure scalability, farmer acceptance, and the establishment 
of harmonized regulatory frameworks, ultimately promoting 

plant-derived bioactive compounds and TCM as a mainstream, 
eco-friendly solution for mastitis control.
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