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ANXA5 is a pleiotropic candidate gene, however its effect on piglet production 
trait remains unclear. In this study, a novel SNP: g.-519 A > G was identified in 
ANXA5 promoter. In Min pigs, association analysis showed the birth weight of AA 
animals at g.-674 C > A was higher than that of the AC or CC piglets (p < 0.05), 
while the heterozygous of g.-519 A > G had a higher weight than the homozygote 
at day 3, 7, 14, 21 after birth (p < 0.05). Porcine ANXA5 and NR4A1 existed in piglets’ 
gastrointestinal tract, and NR4A1 localized to the nucleus and cytoplasm which 
regulated the expression of ANXA5. Luciferase reporter analysis demonstrated that 
the deletion of predictive NR4A1 binding region decreased the luciferase activity 
of porcine ANXA5 promoter (p < 0.05), and the A allele of g.-519 A > G within this 
region had significantly higher luciferase activity than the G allele (p < 0.01). In 
conclusion, this research suggested that g.-519 A > G was a piglet weight variant 
that regulated the transcription of ANXA5 partially by NR4A1.
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1 Introduction

The genetic improvement of reproduction trait is important for the porcine production. 
In the past decades, gene-based selection for female fertility has increased the ovulation rate 
and the number of piglets born (1). However, the proportion of low birth weight piglets 
increased accordingly (2–4). Additionally, selection for larger litter size produced sows with a 
repeatable low average litter birth weight phenotype (3). Piglets’ low birth weight is associated 
with increased mortality, high infection risk, poor growth and meat quality (5, 6). Hence, it is 
encouraged to identify pleiotropic genes or genetic variations, which contributes to understand 
the genetic mechanism of complex traits and benefits porcine production.

As an important member of Annexin protein family, AnnexinA5 (ANXA5) is linked to 
multiple functions, such as placental anticoagulant, cell apoptosis, immune response, and so 
on (7, 8). Häggman and Uimari (9) located a putative lethal haplotype on SSC8 in Yorkshire 
boars, confirmed the effect of this haplotype on the number of stillborn piglets, and suggested 
ANXA5 as the positional and functional candidate gene for swine reproduction and fertility 
traits. Intra-uterine growth restriction (IUGR) is a critical factor for piglets’ mortality, which 
impairs individual development and reduces the birth weight. Wang et al. (10) found ANXA5 
expressed differentially in the jejunal mucosa of IUGR and normal piglets. In order to 
understand the genetic interplay between litter size and production traits in the Yorkshire, Wei 
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et al. (11) reported a set of pleiotropic candidate genes by integrative 
genomic strategy. Among them, ANXA5 was associated with total 
number of piglets born (TNB), number of piglets born alive (NBA) 
and mean litter weight (MLW). In human, it is clear that the H2 
haplotype on ANXA5 promoter increases the risks of placental 
thrombus and pregnancy loss through reducing the expression of 
ANXA5 (12–14). Consistently, our recent study confirmed the 
existence of functional genetic variation associated with semen traits 
in porcine ANXA5 promoter (15). However, the effect of these 
variations on the piglets’ production trait is still unknown.

The Min pig is the most famous indigenous breed in Northeast 
China. Compared to the global general breeds, Min pigs have superior 
meat quality, high reproductive capacity, and strong stress resistance1. 
However, the slow growth rate of Min pigs limits their utilization in 
commercial production. In terms of the multifunction of ANXA5, the 
purpose of this study was to evaluate the effect of ANXA5 on the 
growth of Min piglets, explore the biological function of the identified 
mutations, thereby providing new insights into the pleiotropic genetic 
architecture, the conservation and utilization of Min pigs.

2 Materials and methods

2.1 Animals

Tissue samples (stomach, duodenum, jejunum, ileum, cecum, 
colon, and rectum) from 4 piglets were described by Niu et al. (16). A 
total of 186 Min piglets were raised in the Lanxi Breeding Farm 
(Lanxi, Heilongjiang, China). All these piglets were weighed (at birth, 
day 3, 7, 14, and 21) and weaned at day 35. Average daily gain (ADG) 
was calculated using the formula: ADG = (21-day weight  - birth 
weight) /21. 84 Jinhua pigs were raised in the Zhejiang Mebolo Swine 
Breeding farm, and 16 Durocs were provided by Haining Yangdu 
Science and Technology Ranch of Zhejiang Academy of Agricultural 
Sciences, China.

2.2 Genotyping SNPs within the promoter 
of porcine ANXA5

All the primers were designed based on porcine ANXA5 
(GenBank accession: XM_003129218.5) and NR4A1 (Ensembl: 
ENSSSCT00000059252.3) by Primer 5 (Table 1). For the PCR, the 
20 μL reactions contained 100–150 ng DNA, 10 μL 2 × Taq Master 
Mix (Takara, Dalian, China), and 0.5 μM primers (Table  1), 
performed under the following conditions: 94 °C for 4 min; 
35 cycles of 94 °C/30 s, primer-specific annealing (Table  1)/30 s, 
72 °C/1 min; final extension at 72 °C/10 min. For the Hha 
I PCR-RFLP, the DNA fragments containing SNP: g.-674 C > A were 
amplified using primer pair ANXA5-HhaI (Table 1) from 186 Min 
pigs. Then, the 8.5 μL of PCR-amplified products, 1 μL of 10 × M 
Buffer, and 0.5 μL of Hha I enzyme (Takara, Dalian, China) were 
mixed, incubated at 37 °C for 8 h and detected by 1.5% agarose 
gels electrophoresis.

1  http://afs.okstate.edu/breeds/swine/minzhu/index.html/

The sequence of ANXA5 promoter from Min pigs and Landraces 
obtained in our previous study (15) was re-aligned by DNAMAN2. 
The putative functional transcription factor binding sites were 
analyzed by JASPAR3. For the SNP: g.-519 A > G, the DNA 
fragments containing this SNP were amplified using primer pair 
ANXA5-SSCP in 186 Min pigs (Table  1). Then, the 1 μL PCR 
product was mixed with 9 μL denaturing buffer and denatured at 
98 °C for 10 min. After this, the mixture was immediately cooled in 
ice water for 5 min, separated by 14% polyacrylamide gel 
electrophoresis (PAGE), and finally analyzed by silver staining. 
Alternatively, the PCR products containing this SNP were amplified 
by primers: ANXA5-S-F/R (15), purified and sequenced 
commercially (Sangon, Shanghai, China).

2.3 Plasmids construction

The pGL3-ANXA5-J3 containing the putative NR4A1 and ESR1 
binding sites and the pGL3-ANXA5-P containing A allele at g.-519 
A > G of the ANXA5 promoter were constructed in our previous study 
(15). In this study, with the pGL3-ANXA5-J3 as template, the 5’ 
NR4A1 binding region deletion fragments were produced using 
primers: ANXA5-J5-F/R (Table  1) and named ANXA5-J5. With 
pGL3-ANXA5-P as template, a mutant fragment with G allele which 
caused the loss of the putative NR4A1 binding region was amplified 
using mutagenic primer: ANXA5-P-GG-F/R (Table 1) and termed 
ANXA5-GG. Then, the fragment of ANXA5-GG was digested by Kpn 
I and Xho I (Takara, Dalian, China), inserted into pGL3-Basic vector 
(Promega, Madison, WI, USA), confirmed by DNA sequence and 
double restriction endonuclease digestion, which was named pGL3-
ANXA5-GG, respectively.

The complete coding sequence of porcine NR4A1 was amplified 
using primers NR4A1-CDS-F/R (Table 1), digested and cloned into 
the Kpn I/EcoR I restriction sites of the pCMV-HA expression vector, 
confirmed and named pCMV-HA-NR4A1.

The coding sequence of both EGFP and porcine NR4A1 were 
amplified using primer pairs EGFP-F/R and NR4A1-F/R, respectively 
(Table  1). With the mixture of these two fragments as template, 
overlap extension PCR was performed with primers EGFP-F and 
NR4A1-R to generate the NR4A1-EGFP fusion fragment. After 
purification and sequencing, the NR4A1-EGFP fragment was inserted 
into the EcoR I/ Kpn I  sites of pCMV-HA to construct the 
pCMV-HA-EGFP-NR4A1.

2.4 Cell transfection and luciferase reporter 
assay

The ST and IPEC-J2 cells were cultured with DMEM 
supplemented with 10% FBS (Gibco, Carlsbad, CA, USA) and 1% 
penicillin–streptomycin solution (Beyotime, Shanghai, China), 
maintained at 37 °C in the atmosphere of 5% CO2. For the promoter 
activity assay, cells were seeded in 24-well plates. To explore the role 

2  https://www.lynnon.com/

3  https://jaspar.elixir.no/
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of the putative NR4A1 binding site within the ANXA5 promoter, with 
1.5 μL of LP2000 Transfection Reagent (Invitrogen, Carlsbad, CA, 
USA), the cells were transiently transfected with 0.5 μg of the 
corresponding luciferase reporter gene vectors (pGL3- ANXA5-J3, 
pGL3- ANXA5-J4 and pGL3- ANXA5-J5), or 0.005 μg of pGL3-basic 
as negative control and pRL-TK as internal control. To validate the 
role of NR4A1 on the transcription of ANXA5, the cells were 
co-transfected with 0.25 μg of the pCMV-HA-NR4A1 or pCMV-HA, 
0.25 μg of the pGL3-ANXA5-P(AA) or pGL3- ANXA5-GG, and 
0.005 μg of pRL-TK, with 1.5 μL of LP2000 (Invitrogen, Carlsbad, CA, 
USA). 24 h after transfection, in line with the Dual Luciferase Reporter 
Assay System (Beyotime, Shanghai, China), all the cells were harvested 
and lysed, and the enzymatic activity of firefly and Renilla luciferase 
were assessed using the Sirius L Luminometer (Berthold, Pforzheim, 
Germany). Relative luciferase activity was calculated as the ratio of 
firefly to Renilla luciferase activity (Fluc/Rluc). All transfections were 
performed in triplicate and repeated three times.

2.5 The subcellular distribution of NR4A1

The localization of porcine NR4A1 in the cells was firstly predicted 
by PSORT II4 and Uniprot5. Then, the pCMV-HA-EGFP-NR4A1 or 
pCMV-HA-EGFP were transfected into the cells, respectively. After 48 h, 
1 mL of 1 × Hoechst 33342 was added into each well, incubated at room 
temperature in the dark for 10 min. Then, the staining solution were 
discarded, all the cells were washed with PBS for three times. The 
subcellular distribution of NR4A1-EGFP was observed using the Leica 

4  https://www.genscript.com/psort.html

5  https://www.uniprot.org/

TCS SP8 confocal microscope (Leica Microsystems, Wetzlar, Germany). 
The experiment was repeated three times with consistent results.

2.6 Quantitative RT-PCR (qRT-PCR)

Total RNA was extracted from specific tissues of four Min piglets, ST 
and IPEC-J2 cells (n = 3 biological replicates) using TRIzol (Takara, 
Dalian, China), reverse-transcribed into cDNA by PrimeScript RT 
Master Mix (Takara, Dalian, China). According to the manufacturer’s 
instructions of the TB Green Premix Ex Taq II (Tli RNaseH Plus) kit 
(Takara, Dalian, China), the qRT-PCR reactions (20 μL) contained 
100 ng cDNA, 10 μL SYBR mix (Takara, Dalian, China), and 0.2 μM 
primers (Table 1), performed on the ABI QuantStudio 3 system (Applied 
Biosystems, Foster City, CA, USA) with: 95 °C/30s; 40 cycles of 95 °C/5 s 
and 60–62 °C/35 s; melt curve analysis (60–95 °C, 0.3 °C/s). The 
qRT-PCR for each sample was performed in technical triplicate. 
GAPDH-normalized mRNA levels were quantified by the 2−ΔΔCT method.

2.7 Statistical analysis

Statistical analyses were performed using SPSS (IBM, Armonk, 
NY, USA). The mRNA expression of ANXA5 or NR4A1 in different 
tissues were analyzed by ANOVA (Analysis of Variance). The 
differences of gene expression between the cells, or the transcriptional 
activity between groups were evaluated using the two-tailed Student’s 
t-test. All data are presented as the mean ± standard error of the mean.

The effect of SNP on growth traits of 186 piglets was evaluated by 
general linear model (GLM) of SAS version 9.2.21 (SAS, Cary, NC, 
USA) as follow:

Yij = μ + Gi + Sj + eij, where Yij is the observed traits under study, 
μ is the mean value of the trait, Gi is the genotype effects, Sj is the 

TABLE 1  Primers used for real-time PCR, SNPs identification and plasmids construction.

Primer Primer sequence (5′-3′)
Annealing
temp (°C)

Product
size (bp)

Binding region

NR4A1
F: TTAGAATTCGCATGCCCTGTATCCAAGCCCAA

60 1797 -
R: ATTGGTACCTCAGAAGGGCAGCGTGTCCATAAAG

EGFP
F: TTAGAATTCGCATGGTGAGCAAGGGCGAGGA

60 726 -
R: ACAGGGCATCTTGTACAGCTCGTCCAT

ANXA5-J5 F: TATGGTACCCGGAAGCGTGTCCCTACT 58 818 −493

ANXA5-R (15) R: CCGCTCGAGGCGATTTTCTGGATTTTGG - - -

ANXA5-P-GG
F: CTGCGCAAGGGCCAGGCGGT

- - -
R: ACCGCCTGGCCCTTGCGCAG

NR4A1-Exp
F: TGGACAAGAGGCGGCGAAAC

55 177 -
R: GGACCAGGGAGGTGAGGAGATT

GAPDH-Exp
F: CCCCAACGTGTCGGTTGT

55 83 -
R: CCTGCTTCACCACCTTCTTGA

ANXA5-SSCP
F: GAGGTCACGGAGGGGAGT

59 124 -
R: TGGAACTCAGTAGGGACACG

ANXA5-HhaI
F: TTGAAAGTTCTAGGCTGGTT

52 327 -
R: ACTCTAGGTTTCGGGTGC

The underline shows the additional restriction sites: Kpn I (GGTACC), Xho I (CTCGAG), and EcoR I (GAATTC). The bolded bases are the mutated bases.
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maternal effects and eij is the random residual. Significance was 
declared at p < 0.05 or p < 0.01.

3 Results

3.1 g.-674 C > A in the promoter of ANXA5 
was associated with piglets’ weight in Min 
pigs

In our previous research (15), three tightly linked SNPs which 
constructed one haplotype were found in the ANXA5 promoter. In 
this study, a Hha I PCR-RFLP assay based on SNP: g.-674C > A was 
established to genotype this haplotype. As shown in Figure  1, a 
327 bp fragment was produced by PCR and three genotypes including 
AA (327 bp), AC (327, 198, 129 bp) and CC (198, 129 bp) were 
distinguished after the Hha I  digestion and the agarose gels 
electrophoresis. Association analysis in Min pigs showed that the 
birth weight of the AA animals was significantly higher than that of 
the AC and CC genotypes (p < 0.05) (Table 2).

3.2 g.-519 A > G in the promoter of ANXA5 
was associated with piglets’ weight in Min 
pigs

By sequence alignment, a novel g.-519 A > G located in the 
NR4A1 binding site (−523 bp to −512 bp before the ATG) of the 
ANXA5 promoter was identified in Min pigs instead of Landraces 
or Yorkshires (Figures  2A,B). As predicted by JASPAR, 
transcription factor NR4A1 would bind to the ANXA5 promoter 
with A allele but not the G allele (Figure 2C). Then, a PCR-SSCP 
assay was established to genotype this SNP in Min pigs, where the 
124-bp fragment was obtained using primer pairs ANXA5-
SSCP-F/R (Table 1) and three genotypes (AA, AG and GG) were 
observed through polyacrylamide gel electrophoresis (Figure 2D). 
This novel SNP was genotyped in Min pigs, Jinhua pigs and Durocs. 
As shown in Table 3, the A allele frequency was 0.50 in Min pigs, 
while it was 0.85  in Jinhua pigs and fixed in Durocs. Statistical 
analysis in Min pigs showed that AG animals had higher weight at 
day 3 and day 7 when compared with GG (p < 0.01) or AA piglets 

(p < 0.05 or p < 0.05), and the weight of AG individuals at day 14 
or 21 were higher than that of AA piglets (p < 0.05) (Table 4).

3.3 The subcellular distribution of NR4A1

Based on UniProt, Figure 3A presents a schematic of the subcellular 
localization of NR4A1. Using PSORT II, the subcellular localization of 
NR4A1 was predicted as follows: 30.4% nuclear, 21.7% cytoplasmic, 
13.0% mitochondrial, 13.0% Golgi, 8.7% endoplasmic reticulum, 8.7% 
vesicles of the secretory system, and 4.3% peroxisomal (Figure 3A). To 
clarify the subcellular distribution of NR4A1 in swine cells, the 1797 bp 
coding sequence of NR4A1 was amplified, inserted into eukaryotic 
expression plasmid pCMV-HA-EGFP and verified using double-
restriction enzyme digestion (Figure  3B). The pCMV-HA-EGFP-
NR4A1 expression vector was transfected into IPEC-J2. Fluorescence 
and confocal analyses in IPEC-J2 showed that porcine NR4A1-EGFP 
fusion proteins located within the cell nucleus and cytoplasm 
(Figure 3C), which was consistent with the prediction of PSORT II.

3.4 NR4A1 promotes the mRNA expression 
of ANXA5

The mRNA expression of NR4A1 and ANXA5 in the 
gastrointestinal tract of weaned piglets was quantification by 
qRT-PCR. As shown in Figure 4A, both NR4A1 and ANXA5 were 
expressed in all the tissues including stomach, duodenum, jejunum, 
ileum, colon, cecum and rectum, where the expression of ANXA5 
were higher than that of the NR4A1 gene (p < 0.05 or p < 0.01). Then, 
the NR4A1 expression vector pCMV-HA-NR4A1 were constructed, 
verified and transfected into IPEC-J2 and ST. qRT-PCR showed that 
NR4A1 overexpression significantly increased the mRNA expression 
of ANXA5 in both IPEC-J2 (p < 0.01) and ST (p < 0.01) (Figures 4B,C).

3.5 Identification of the putative NR4A1 
binding site of porcine ANXA5 promoter

To explore the function of this putative NR4A1 binding site, an 
818-bp 5′-deletion fragment targeting the NR4A1 binding site was 

FIGURE 1

PCR-RFLP assay for g.-674 C > A in the promoter of porcine ANXA5.
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amplified to construct the corresponding pGL3-ANXA5-J5 
(Figure 5A). Then, pGL3-ANXA5-J5, pGL3-ANXA5-J3 and pGL3-
ANXA5-J4, were transfected into ST, respectively. As shown in 
Figure 5B, the luciferase activity of pGL3-ANXA5-J5 was weaker than 
that of pGL3-ANXA5-J3 (p < 0.01), but stronger when compared with 
pGL3-ANXA5-J4 (p < 0.01), indicating the promotive effect of the 
predictive NR4A1 binding region (−523 bp to -512 bp) on the 
transcription of porcine ANXA5.

3.6 g.-519 A > G modulates the ANXA5 
transcription partially through NR4A1

According to our previous study, the luciferase reporter pGL3-
ANXA5 containing A allele of SNP: g.-519 A > G, which was renamed 
as pGL3-ANXA5-P(AA) in the current study. To verify the effects of 
this SNP on ANXA5 transcription, a fragment containing G allele was 
obtained based on pGL3-ANXA5-P(AA) and the mutation primer 
(Table  1) to construct pGL3-ANXA5-GG (Figure  6A). Both the 
pGL3-ANXA5-P(AA) and pGL3-ANXA5-GG were transfected into 
ST cells, respectively. Statistical analysis showed that the luciferase 
activity of pGL3-ANXA5-GG was lower than its wild type promoter 
(p < 0.01) (Figure  6B). Then, NR4A1 expression vector was 
co-transfected into IPEC-J2 or ST with pGL3-ANXA5-P(AA) or 
pGL3-ANXA5-GG. As shown in Figure 6C, overexpression of NR4A1 
in IPEC-J2 significantly increased the luciferase activity of the pGL3-
ANXA5-P(AA) (p < 0.01) or pGL3-ANXA5-GG (p < 0.01), and the 
luciferase activity of pGL3-ANXA5-P(AA) had higher luciferase 
activity when compared with pGL3-ANXA5-GG (p < 0.05). In the ST 
cells, NR4A1 overexpression enhanced the luciferase activity of the 
pGL3-ANXA5-P(AA) (p < 0.01), but not the pGL3-ANXA5-GG 
(Figure  6D). Irrespective of NR4A1 overexpression, the luciferase 
activity of pGL3-ANXA5-P(AA) remained higher than that of pGL3-
ANXA5-GG (p < 0.01) in Figure 6D.

4 Discussion

4.1 Effects of g.-674 C > A and g.-519 A > G 
on piglet growth

Previous studies have revealed the effects of ANXA5 
polymorphism on reproduction traits in Yorkshires (9, 15), it is 

necessary to evaluate the genetic effect of ANXA5 on piglets’ 
performance trait before the genome selection. In this study, a Hha 
I PCR-RFLP assay was established to detect an identified haplotype 
(SNP: g.-676 T > C, g.-674 C > A and g.-105G > T) by genotyping 
g.-674 C > A. According to Han et al. (15), the semen traits of AA 
animals were lower than AG boars. In the current study, although AA 
piglets had higher birth weight than the AC and CC animals, the 
g.-674 C > A was not associated with the later weight (from 3 day to 
the 21 day) and ADG. It seems the genetic selection based on g.-674 
C > A might improve boar reproduction traits without negative effect 
on piglet weaning weight and growth. Additionally, this PCR-RFLP 
approach is more accurate and cost-effective when it compares with 
DNA sequencing. Hence, the HhaI PCR-RFLP is suggested to 
distinguish the identified haplotype in the promoter of ANXA5.

The abundance of genetic variation in local breeds is higher than 
that in commercial breeds. In current study, a novel g.-519 A > G in 
the promoter of ANXA5 was identified in Min and Jinhua pigs, but 
fixed as A allele in Yorkshires and Durocs. It is known that the human-
driven selection resulted in substantial phenotypic diversity among 
indigenous and commercial pigs (17–19). Hence, one possible 
explanation for the existence of g.-519 A > G in the Min pig and the 
Jinhua pig might be the weak artificial selection pressure. Chinese 
indigenous pigs are divided into North China, Central China, South 
Chinese, Lower Yangtze River Basin, Southwest, and Plateau, based on 
geographic distribution, historical origin and morphological 
characteristics (20, 21). The Min pig is well-adapted to the conditions 
of North China, while the Jinhua pig belongs to Central China. The 
geographic differences might be the second explanation for the allelic 
diversity among these breeds (17, 22, 23). Additionally, the 
heterozygous Min pig had better growth performance, which might 
be  caused by the epistatic effect of non-alleles, or the interaction 
between the gene and environment. Min and Jinhua pigs’ high allelic 
diversity in ANXA5 gene suggested the merit role of indigenous 
animals in swine genetic improvement.

4.2 g.-519 A > G regulates ANXA5 
transcription partially by NR4A1

Nuclear receptor subfamily 4 group A Member 1 (NR4A1) is an 
immediate-early response gene which regulates diverse biological 
processes, including cell proliferation, apoptosis, and inflammatory 
responses (24). The current study demonstrated the existence of both 

TABLE 2  Association analysis between g.-674C > A and growth trait in Min pigs.

Traits Genotypes

AA AC CC

Number 30 74 44

Birth weight (kg) 1.15 ± 0.04a 1.05 ± 0.03b 1.04 ± 0.03b

3-day body weight (kg) 1.32 ± 0.05 1.26 ± 0.03 1.23 ± 0.04

7-day body weight (kg) 1.78 ± 0.08 1.77 ± 0.05 1.72 ± 0.06

14-day body weight (kg) 2.37 ± 0.13 2.36 ± 0.08 2.32 ± 0.10

21-day body weight (kg) 3.47 ± 0.19 3.35 ± 0.12 3.35 ± 0.15

ADG (kg/d) 0.11 ± 0.01 0.11 ± 0.00 0.12 ± 0.01

Different lowercase letters indicate significant difference (p < 0.05) and capital letters indicate significant difference (p < 0.01).
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NR4A1 and ANXA5 in the piglet’s intestine, and NR4A1 promoted the 
transcription and expression of porcine ANXA5 in IPEC-J2 cells. It is 
well known that the spatiotemporal expression of genes is closely 
linked to their functions. Hence, we presume that NR4A1 might take 

important part in the intestine development or health partially by 
regulating the transcription of ANXA5, thereby affecting piglets’ 
growth. This hypothesis was supported by literature. For example, 
both NR4A1 and ANXA5 were associated with ulcerative colitis (UC) 
(8, 25); NR4A1 expressed in intestine tissues, inflammatory cells and 
epithelium (26, 27), regulated the differentiation and function of 
Paneth cell (28); ANXA5 had differential expression in the jejunal 
mucosa of IUGR and normal piglets (10).

The subcellular localization of one protein partially determines its 
function. NR4A1 generally resides in the nucleus, but can 
be  translocated to the mitochondria in specific cells or upon 
stimulation. For example, H2O2 (29), Celastrol (24) or Gly-Pro-Ala 
(GPA) peptide (30) can promote the nucleocytoplasmic shuttling of 
NR4A1, induces autophagy, apoptosis, inflammation or other 
biological process. Here, the NR4A1-EGFP fusion proteins were 
observed in the nucleus and cytoplasm, indicating that NR4A1 might 
regulate ANXA5 as a transcription factor in IPEC-J2 cells.

Nowadays, it has been accepted that non-coding regions 
harbor abundant variations (31–33). For example, g.128G > A 
influenced granulosa cell apoptosis and sow fertility by altering 
the RBP-Binding sit of LncRNA NORSF (34); g.-283G > C and 

FIGURE 2

Identification of g.-519 A > G in the promoter of porcine ANXA5. (A) Sequencing result of A allele. (B) Sequencing result of G allele. (C) The transcription 
factor NR4A1 binding site. (D) PCR-SSCP assay for g.-519 A > G in the promoter of porcine ANXA5.

TABLE 3  Genotype and allele frequencies of SNP g.-519 A > G in different pig breeds.

SNP locus Breeds Number Genotype frequency Allelic frequency

AA AG GG A G

SNP g.-519 A > G 

(rs81402897)

Min pig 186 0.435 (81) 0.135 (25) 0.430 (80) 0.502 0.498

Jinhua pig 84 0.702 (59) 0.298 (25) 0 0.851 0.149

Duroc 16 1 (16) 0 0 1 0

TABLE 4  Association analysis between SNP g.-519 A > G and growth traits 
in Min pigs.

Traits Genotypes

AA AG GG

Number 81 25 80

Birth weight (kg) 1.04 ± 0.02 1.10 ± 0.04 1.01 ± 0.02

3-day body weight (kg) 1.22 ± 0.03b 1.37 ± 0.05A, a 1.20 ± 0.03B

7-day body weight (kg) 1.70 ± 0.05B 1.95 ± 0.08A 1.68 ± 0.05B

14-day body weight (kg) 2.20 ± 0.07b 2.57 ± 0.13a 2.32 ± 0.07

21-day body weight (kg) 3.19 ± 0.11b 3.66 ± 0.20a 3.35 ± 0.11

ADG (kg/d) 0.10 ± 0.00 0.12 ± 0.01 0.11 ± 0.00

Different lowercase letters indicate significant difference (p < 0.05) and capital letters indicate 
significant difference (p < 0.01).
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FIGURE 3

The subcellular distribution of NR4A1. (A) Prediction of cellular localization of NR4A1. (B) Construction of pCMV-HA-NR4A1. (C) The distribution of 
NR4A1-EGFP in the IPEC-J2 cell. Scale bar: 30 μm.

FIGURE 4

NR4A1 promotes the mRNA expression of ANXA5. (A) Tissue expression profiles of the porcine ANXA5 and NR4A1. (B) Overexpression of NR4A1 
increases the mRNA expression of ANXA5 in the IPEC-J2 cell. (C) Overexpression of NR4A1 increases the mRNA level of ANXA5 in the ST cell. Values 
were shown as the mean ± SEM (n = 3). *p < 0.05, **p < 0.01.
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g.-271C > T in the miR-23a promoter affected Large White 
fertility traits partially by altering the transcription of miR-23a in 
porcine GCs (35). The roles of promoters and enhancers in 
complex traits have emphasized by accumulating swine genome-
wide chromatin landscapes (36–38). The current study focused on 
the cis-elements of porcine ANXA5, the increased effect of NR4A1 
on the luciferase activity of the A allele suggested that g.-519 
A > G might alter ANXA5 expression dynamics partially through 
the modulation of NR4A1 binding. It should be noted that A allele 
has high transcription activity, but the heterozygote piglets exhibit 

higher weight. The explanation is as follows: Firstly, post-
transcriptional regulation or post-translational modifications of 
ANXA5 potentially weaken the functional impact of g.-519 A > G; 
Secondly, allelic interactions (e.g., overdominance effect) 
strengthen heterozygote phenotypes. Additionally, although 
g.-519 A > G was identified as a functional variant, it is still 
unclear whether this SNP alters the transcription of ANXA5 by 
binding the cis-element or interacting with other transcriptional 
factors or small RNA. Further study will focus on clarifying the 
regulatory mechanism of ANXA5. Given the pleiotropic nature of 

FIGURE 5

Identification of the putative NR4A1 binding site of porcine ANXA5 promoter. (A) Construction of pGL3-ANXA5-J5. (B) Dual luciferase activity analysis 
of pGL3-ANXA5-J3 ~ J5. Values were shown as the mean ± SEM (n = 3). *p < 0.05, **p < 0.01.

FIGURE 6

-519 A > G modulates the ANXA5 transcription partially through NR4A1. (A) A schematic diagram of SNP point mutations in the promoter region of the 
porcine ANXA5 gene. (B) Dual luciferase activity analysis of the SNP g.-519 A > G mutation plasmids. (C) Effect of NR4A1 overexpression on the 
promoter activity of different alleles of SNP g.-519 A > G in IPEC-J2 cells. (D) Effect of the transcription factor NR4A1 on the promoter activity of 
different alleles of SNP g.-519 A > G in ST cells. Values were shown as the mean ± SEM (n = 3). *p < 0.05, **p < 0.01.
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ANXA5, future studies are warranted to evaluate the genetic 
effects or function of g.-519 A > G on Min pigs’ reproductive trait.

5 Conclusion

This study demonstrated that both g.-674 C > A and g.-519 A > G 
were associated with piglets’ weight in the Min pig, and it is efficient 
and convenient to genotype g.-674 C > A by Hha I PCR-RFLP. Porcine 
NR4A1 was located in the nucleus and cytoplasm, regulated the 
transcription and expression of ANXA5 in piglet intestinal epithelial 
cells. SNP: g.-519 A > G might have an allele-specific effect on ANXA5 
transcription partially by varying affinity for NR4A1.
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