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Postural stability (PS) is essential for functional mobility and rehabilitation. While 
posturography and center of pressure (COP) parameters are commonly used to 
assess PS, little is known about the effects of proprioceptive training programs 
in dogs. This study aimed to evaluate the effects of a 4-week training program 
in dogs on a motorized proprioceptive training platform which creates a curved 
movement in the 3 planes of space that follows Elispheric® trajectories (Imoove-
vet®, Allcare Innovations, France). Twenty dogs were divided into a training group 
and a control group. Five conventional COP parameters were measured under 4 
different conditions (neutral, uphill, downhill, perturbed standing) pre- and post-
intervention. The primary outcomes included statistically significant improvements in 
craniocaudal (CCD%), mediolateral (MLD%) displacement, and support surface (SS%). 
Dogs participating in the training group showed statistically significant reductions 
in COP excursions post-intervention, specifically CCD% during perturbed standing, 
MLD% during downhill standing, and SS% during uphill standing. Compared to 
the control group, the training group showed a statistically significant reduction 
in CCD% and SS% during uphill standing, and MLD% during downhill standing 
post-intervention. No statistically significant changes were observed, and effect 
sizes remained below Cohen’s d < 0.5  in the control group. In contrast, large 
training effects (d > 0.8) for all significantly decreased parameters were found 
in the training group. The results support the effectiveness of proprioceptive 
training in improving PS specifically under biomechanically challenging conditions 
highlighting the relevance of including these tasks in PS assessment and training 
protocols. Further research is warranted in orthopedically and neurologically 
diseased populations to explore therapeutic applications.
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1 Introduction

Effective exercise and rehabilitation programs are crucial for 
optimizing canine physical health, performance, and well-being. 
Whether for working dogs, canine athletes, or companion animals, 
structured exercise plays a key role in enhancing strength and 
coordination (1). One aspect of exercise that is becoming increasingly 
important is postural stability (PS), which underpins a dog’s ability to 
maintain balance and safely navigate in challenging environments. 
Therefore PS is essential for efficient movement, injury prevention, 
and overall quality of life (2–5).

PS relies on a complex interplay between the central and 
peripheral nervous systems, musculoskeletal structures, and 
sensory inputs (6–8). In both human and veterinary research, PS 
is widely recognized as a critical component of mobility, the ability 
to maintain posture and perform controlled movements across 
different positions and environments, and functional 
independence (7–10). While substantial progress has been made 
in understanding PS mechanisms in humans, research on PS in 
animals, particularly dogs, remains comparatively limited. With 
the increasing interest in canine rehabilitation, sports medicine, 
and age-related mobility limitations (2, 3, 5, 11), there is a need for 
proprioceptive training protocols specifically targeting 
impairments in PS in dogs.

In dogs, PS assessments are frequently conducted using force or 
pressure plate analysis. These assessments provide objective data on 
stability by evaluating the body’s center of pressure (COP). The COP 
moves within the functional base of support (BOS), which is the area 
that reflects the limits of stability (12). If the COP exceeds the 
functional BOS, a protective step is typically initiated to prevent falling 
(4, 12). The most frequently used COP parameters are the 
displacement in craniocaudal (CLD) and mediolateral (MLD) 
directions within the functional BOS, the average speed (AS), the 
support surface (SS) and the statokinesiogram length (total trajectory 
length of the COP, L). These parameters provide critical insights into 
an animal’s postural efficiency and performance, with deviations from 
normal patterns indicative of impaired PS (3, 11, 13–15). Generally, 
smaller COP displacements and reduced AS, SS and L are associated 
with superior PS (3, 16).

It has already been shown that rehabilitation programs including 
proprioceptive training designed to improve PS significantly benefit 
human patients (17). Proprioceptive training interventions increase 
the BOS, reduce postural sway, and enhance neuromuscular 
coordination (18). In humans, these programs typically incorporate 
exercises that narrow the BOS, challenge proprioceptive input, and 
introduce controlled perturbations to stimulate adaptive postural 
responses (19–21). The movement of the COP within the BOS reflects 
the underlying muscle activity required to maintain an upright 
posture (3, 4, 22).

In dogs, aging, orthopedic conditions, and neurological disorders 
often impair PS (3, 11, 13, 14). Healthy senior dogs display greater 
postural sway and reduced stability, likely due to diminished 
neuromuscular control and musculoskeletal degeneration when 
compared to young dogs (3, 11). Dogs with osteoarthritis or joint pain 
also show compromised stability, as indicated by increased COP 
displacement (13, 14). These findings highlight the importance of 
targeted rehabilitation strategies in dogs to reduce PS impairments 
and support functional mobility in dogs.

Veterinary researchers have explored how dogs and horses adapt 
their posture under various conditions, including loss of vision when 
blindfolded (3, 23, 24), the use of proprioceptive balance pads (25), 
and exposure to external perturbations (4, 26). Exercise-based 
therapeutic training protocols have been shown to improve static 
body weight distribution, reduce pain-related functional disability, 
and enhance stifle joint function in dogs with stifle injuries (27). In 
horses, rehabilitation exercises that included proprioceptive exercises 
significantly reduced COP parameters, especially under challenging 
conditions like standing on a proprioceptive balance pad (25). 
Further, equine research found a significant effect of underwater 
treadmill training on COP parameters when compared to a land 
treadmill (24).

Despite the growing application of proprioceptive exercises in 
canine rehabilitation and physiotherapy—such as standing on balance 
boards—standardized and validated study protocols are still lacking. 
This limits the ability to systematically evaluate their effectiveness and 
to adjust exercise interventions targeting PS accordingly. Recent 
studies have started to address this gap. One investigation used a 
motorized training platform which creates a curved movement in the 
3 planes of space that follows Elispheric® trajectories. Different 
combinations of speed and amplitude (inclination of the platform) 
showed that the amplitude, rather than the speed, had a greater effect 
on COP parameters, indicating a stronger challenge to PS (4). These 
findings suggest that motorized training platforms might be  an 
applicable tool to tailor exercise parameters and assess treatment 
outcome in a more standardized way.

Pressure-sensitive proprioceptive platforms produce highly 
reliable measurements in healthy dogs, with consistent COP data—
such as L, SS, and average velocity—across multiple time points. 
Perturbations revealed moderate training effects, implying that 
repeated exposure may influence performance (26). However, no 
studies have yet evaluated the impact of a proprioceptive training 
program on COP parameters in dogs.

The present study aims to address this gap by evaluating the effects 
of a 4-week proprioceptive training program on PS. By assessing pre- 
and post-intervention COP parameters using a pressure measurement 
plate, this study seeks to provide empirical evidence on the effect of a 
proprioceptive training intervention in dogs. PS development was 
assessed under 4 different conditions: neutral (standing on even 
ground), standing uphill, standing downhill and perturbed standing 
on a motorized training platform. The hypotheses were that standing 
uphill leads to smaller changes in PS parameters than standing 
downhill and that external perturbations cause the largest PS 
deviations. Further, we hypothesized that PS would improve after 
completion of the training program, which is reflected by a decrease 
in COP parameters, especially in the 3 aggravated conditions.

2 Materials and methods

2.1 Approval and consent

This study was approved by the Ethics and Animal Welfare 
Committee of the University of Veterinary Medicine, Vienna, in 
accordance with the University’s guidelines for Good Scientific 
Practice (ETK-148/10/2021 and ETK-168/10/2022). Informed 
consent was obtained from all dog caretakers.
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2.2 Animals and inclusion criteria

This was a prospective, randomized, controlled intervention study 
conducted over a period of 6 weeks including 20 client-owned dogs. 
The criteria for inclusion required the dogs to be  free from any 
diagnoses or clinical signs of orthopedic, neurological, or visual 
disorders, with an age range of 1–8 years and a body weight between 
15 and 35 kg. Body height (measured from the ground level to margo 
dorsalis of the scapula) and body length (measured from the greater 
tubercle of the humerus to the ischial tuberosity) were recorded. Each 
dog underwent a comprehensive clinical evaluation by a veterinarian, 
which included visual gait observation, orthopedic and neurological 
assessments, and an objective gait analysis.

For the gait analysis, a pressure measurement plate measuring 
203 × 54.2 cm (FDM Type 2, Zebris Medical GmbH, Allgäu, 
Germany) equipped with 15,360 sensors and a measuring frequency 
of 100 Hz was utilized. The plate was covered with a 1-mm thick black 
polyvinyl chloride rubber mat to prevent slipping. Initially, the dogs 
were allowed to explore the measurement area freely to become 
accustomed to the environment. Data collection was conducted 
during both walking and trotting, ensuring that at least 5 valid trials 
were recorded for each gait. A trial was considered valid if the dog 
moved across the plate at a consistent pace without altering its gait, 
turning its head, pulling on the leash, or interacting with the owner. 
Speed variations while crossing the plate were limited to ±0.3 m/s, and 
acceleration differences to ±0.5 m/s2 (28–30). For inclusion, the 
symmetry index (SI) of peak vertical force (PFz) and vertical impulse 
(IFz) had to be  below 3%, which is the margin typically used to 
differentiate between a symmetric and asymmetric gait (31).

2.3 Study protocol

2.3.1 Measurement conditions
Static measurements were conducted under 4 conditions: standing 

on level ground (neutral), standing downhill and uphill on a 20° slope 
and standing on a motorized training platform (Imoove-vet® 
platform, Allcare Innovations, France) (perturbated). The order of the 
four measurement conditions – (1) neutral stance, (2) downhill, (3) 
uphill, and (4) perturbed stance – was randomized. The randomization 
was performed using the Excel function “RAND” to assign a random 
sequence for each dog. Only whole numbers between 1 and 4 were 
used to ensure valid condition assignments.

For each condition, data were collected using a pressure 
measurement plate. The same plate as for the gait analysis was used for 
the neutral condition, while a smaller sized (149 × 54.2 cm) pressure 
measurement plate with the same features as described above (FDM-
1.5, Zebris Medical GmbH, Allgäu, Germany) was utilized for the 
sloped and perturbation condition. The pressure plate for these 
conditions was either integrated into the slope setup or positioned on 
top of the motorized training platform. Since the plate was longer than 
the training platform, two cavaletti were used to ensure that the dogs 
did not pass over the edge. In all conditions the measurement plate 
was covered with a black, 1-mm-thick rubber mat made of polyvinyl 
chloride (Figure 1).

The caregiver guided the dog on top of the pressure plate into a 
straight and square posture by using positive reinforcement methods. 
The dogs had to stand still on the pressure measurement plate with all 

4 paws placed on the plate and with a straight and symmetrical limb 
position, without any movement of the body, head, tail, limbs, or 
paws. For this purpose, the owner stood in front of the animal to 
maintain its attention during the measurement procedure. After each 
measurement, the animal was rewarded with a treat and was allowed 
to rest. The required measurement duration was set to 5 s of quiet 
standing. As recommended, 2 valid passes of 5 s measurements per 
condition were collected and analyzed for each dog (32).

The setting selected in this study was previously used in postural 
research in healthy dogs and consisted of an amplitude of 30% or ± 
2.4° angle and a speed of 10% or 6 rpm (4, 33). This setting ensured a 
maximum challenge for PS that was considered safe for all dogs, 
without the need for protective steps (4). Each measurement was 
filmed with a Panasonic camera (model NV-MX500) to ensure no 
head, limb, and tail movements during data analysis.

2.3.2 Proprioceptive training
After the baseline measurements (T0) in all 4 conditions, the dogs 

were randomly assigned to group C (control group) or group T 
(training group). The randomization was performed using the Excel 
function “RAND,” followed by ranking to generate a randomized 
sequence of whole numbers (1 or 2) for group allocation. Group T 
participated in a 4-week training program consisting of 2 
proprioceptive training sessions per week. Each training comprised a 
10-min session, where the dog had to maintain a standing position 
while the platform was rotating at the setting previously described. If 
the dog sat down, it was motivated to resume standing by using 
positive reinforcement methods such as treats. To further support the 
dog, the standing posture was intermittently rewarded throughout the 
session based on the individual’s needs. The demographic data of both 
groups can be found in Table 1.

Five weeks after the baseline assessment, both groups were 
re-evaluated in all 4 conditions. By this time, group T had completed 
the 4-week training on the motorized training platform, including a 
1 week break before the second measurements (T1). Caregivers were 
instructed not to make any changes to their dogs’ usual level of 
physical activity throughout the study period.

2.3.3 Data analysis
All parameters were analyzed using a custom software Pressure 

Analyzer (Michael Schwanda, version 4.9.3.0), which was then 
exported to Microsoft Excel 2016.

The following parameters were used for the evaluation of the 
inclusion criteria during objective gait analysis:

 • Mean speed (m/s) and acceleration (m/s2) were calculated for the 
left forelimb.

 • Symmetry index (SI) expressed as a percentage (SI%), was 
calculated for both parameters (PFz and IFz) according to the 
following modified equation (34):

 
( )

   = ∗  +   

XFzLLx –XFzRLx
SIXFz % 100

XFzLLx XFzRLx
abs

Where XFz is the mean value of peak vertical force (PFz) or 
vertical impulse (IFz) of valid steps, LLx is the left front or hindlimb, 
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and RLx is the right front or hind; Perfect symmetry between the right 
and left front or hindlimbs was assigned a value of 0%.

During the posturographic analysis, all data were low-pass filtered 
using a 4th-order Butterworth Filter with a cutoff frequency of 10 Hz 
(35). The following parameters were analyzed:

2.3.3.1 Base of support

 • BOS (cm2): area enclosed by the coordinates of the center of 
the paws.

 • Base of support length (BOS L, cm): distance between the paw 
center of the front and hindlimbs.

 • Base of support width (BOS W, cm): distance between the paw 
center of the left and right limbs.

2.3.3.2 Center of pressure

 • Craniocaudal displacement (mm): Deviation on the craniocaudal 
axis. It was normalized to the BOS L and expressed as a 
percentage (CCD%).

FIGURE 1

Measurement setup for each condition, including neutral standing (A), downhill standing (B), uphill standing (C) and perturbed standing on a motorized 
training platform (Imoove-vet® platform, Allcare Innovations, France) (D). The pressure measurement plate is indicated with dotted lines.

TABLE 1 Demographics of the participating dogs in group C (control) and group T (training), including mean ± SD of body mass, height and length and 
p-values of the comparison between groups.

Group N Age (m) Body mass (kg) Height (cm) Length (cm)

C 10 48.70 ± 15.05 21.16 ± 6.70 54.25 ± 5.27 58.10 ± 6.74

T 10 53.50 ± 24.07 22.70 ± 5.24 56.25 ± 6.06 55.75 ± 4.32

p-value 0.599 0.574 0.441 0.366
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 • Mediolateral displacement (mm): Deviation on the lateral axis. 
It was normalized to the BOS W and expressed as a 
percentage (MLD%).

 • Statokinesiogram length (m): the length of the line that joins the 
points of the COP trajectory. It was normalized to the BOS and 
expressed as a percentage (L%).

 • Support surface or statokinesiogram (mm2): The area determined 
by an ellipse that contains 90% of the points of the COP 
trajectory. It was normalized to the BOS and expressed as a 
percentage (SS%).

 • Mean speed (AS) (mm/s) of COP sway.

2.3.3.3 Percentage difference
The percentage difference between T0 and T1 in all 4 conditions 

was calculated for each dog. Individual percentage COP reactions 
were expressed as ΔCCD%, ΔMLD%, ΔL%, ΔAS, ΔSS% using the 
following formula exemplarily shown for ΔCCD%:

 

( ) ( )
( )

−
∆ = ∗

% 1 % 0
% 100

% 0
CCD T CCD T

CCD
CCD T

2.4 Statistical analysis

All statistical analyses were performed using IBM SPSS v29. To 
evaluate potential differences between groups, independent two-tailed 
t-tests were performed for body height, body length, age, and body mass.

To analyze the effects of different measurement conditions, data 
from all dogs at baseline (T0) were pooled and assessed using linear 
mixed-effects models, with conditions included as fixed factors. 
Subsequently, the dogs were divided into two groups (Group C and 
Group T) and separate analyzes were conducted to compare the groups 
at T0 and T1, as well as to investigate the effect of the training program 
over time within group T. Sidak’s alpha correction was applied to adjust 
for multiple comparisons. The assumption of normality was tested using 
the Shapiro–Wilk test. Statistical significance was considered at an alpha 
level of p < 0.05.

To quantify the magnitude of an observed difference between 
groups, Cohen’s d was calculated for all COP parameters. Effect sizes 
were categorized as negligible (<0.2), small (0.2–0.5), moderate (0.5–
0.8), and large (>0.8) (26).

3 Results

3.1 Comparison of demographic data

No significant differences between groups were found for age, 
body mass, body height, body length (Table 1).

3.2 Base of support

Descriptive statistics of the baseline measurements of all dogs 
are displayed in the Supplementary Table S1. No significant 
differences were found during baseline measurements of all dogs in 
BOS parameters between conditions (Supplementary Table S2). 

Looking at the groups separately, mean for each group and each 
measurement condition can be found in Supplementary Table S3. 
No significant differences were found between measurement 
timepoints T0 and T1 (Supplementary Table S4) and groups C and 
T (Supplementary Table S5).

3.3 Center of pressure

3.3.1 Effect of measurement conditions
When analyzing the baseline data (T0) of all 20 dogs, the 

perturbed standing condition resulted in significantly higher 
values in all 5 investigated COP parameters when compared to the 
other 3 conditions (Tables 2, 3). In addition, compared to the 
neutral condition, both standing uphill and standing downhill led 
to a significant increase in CCD% and SS%. Moreover, standing 
downhill was associated with a significantly greater MLD% when 
compared to the neutral condition. No significant differences in 
all COP parameters were observed between standing uphill 
and standing downhill. For a graphical illustration see 
Supplementary Figure S1.

3.3.2 Effect of the training program
At baseline (T0), no significant differences were found between 

groups C and T in any of the 5 COP parameters (Tables 4, 5). 
Furthermore, no significant differences between T0 and T1 were 
observed in group C in any COP parameters (Table 6). Based on 
calculated Cohen’s d, a small effect was observed for L%, SS%, and AS 
during neutral standing (d = 0.45, 0.38, and 0.38, respectively); for L% 
during downhill standing (d = 0.24); for CCD% and AS% during 
uphill standing (d = 0.40 and 0.23, respectively); and for CCD% and 
AS% during perturbed standing (d = 0.27 and 0.43, respectively). All 
remaining 12 calculated effect sizes within the control group remained 
negligible (d < 0.2) (Table 7).

Following the 4-week proprioceptive training program, Group T 
showed the following significantly lower COP values when compared 
to Group C: CCD% and SS% during uphill standing, and MLD% 
during downhill standing (Table 5).

Within Group T, the proprioceptive training program also led to 
significant decreases in CCD% during perturbed standing, MLD% 
during downhill standing, and SS% during uphill standing (Table 6). 
All statistically significant changes were accompanied by large effect 
size as indicated by Cohen’s d > 0.8. Further clear effects (d > 0.8) were 
observed in Group T for CCD% during neutral and uphill standing, 
MLD% during uphill standing, and SS% during neutral and downhill 
standing (Table 7).

No significant training effects were found for L% and AS in any of 
the tested conditions. Consistently, the calculated effect sizes for L% 
and SS% ranged from negligible to small (Table  7). A graphical 
illustration of all comparisons is provided in Supplementary Figure S2, 
whereas all significant differences are illustrated in Figure 2.

3.3.3 Percentage change
Group T exhibited significant decreases in ΔCCD% in the 

perturbed standing condition and in ΔMLD% when standing 
downhill at T1 when compared to Group C. No significant differences 
between the groups were observed in the remaining conditions and 
COP parameters (Table 8).
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TABLE 3 p-values of the comparison between all 4 measurement conditions of all dogs during baseline measurements (T0), including the craniocaudal 
(CCD%) and mediolateral (MLD%) center of pressure displacement, the statokinesiogram length (L%), the support surface (SS%) and average speed (AS).

Condition I Condition II CCD% MLD% L% SS% AS (mm/s)

Neutral Downhill 0.010 0.009 0.091 0.005 0.596

Uphill 0.005 0.177 0.877 0.024 1.000

Perturbed <0.001 <0.001 <0.001 <0.001 <0.001

Downhill Neutral 0.010 0.009 0.091 0.005 0.596

Uphill 0.984 1.000 0.763 0.994 0.812

Perturbed <0.001 <0.001 <0.001 <0.001 <0.001

Uphill Neutral 0.005 0.177 0.877 0.024 1.000

Downhill 0.984 1.000 0.763 0.994 0.812

Perturbed <0.001 <0.001 <0.001 <0.001 <0.001

Perturbed Neutral <0.001 <0.001 <0.001 <0.001 <0.001

Downhill <0.001 <0.001 <0.001 <0.001 <0.001

Uphill <0.001 <0.001 <0.001 <0.001 <0.001

Numbers in bold represent p < 0.05.

TABLE 4 Descriptive analysis of all 4 conditions of both control group (C) and training group (T) at both measurement timepoints (baseline T0 and 
5 weeks later T1).

Condition Day Group CCD% MLD% L% SS% AS (mm/s)

Neutral T0 C 1.22 ± 0.26 1.27 ± 0.24 0.11 ± 0.04 0.09 ± 0.03 21.84 ± 6.97

T 1.20 ± 0.26 1.36 ± 0.36 0.10 ± 0.02 0.09 ± 0.04 19.65 ± 7.23

T1 C 1.21 ± 0.40 1.31 ± 0.42 0.13 ± 0.07 0.11 ± 0.07 25.95 ± 13.70

T 0.97 ± 0.15 1.16 ± 0.23 0.09 ± 0.03 0.06 ± 0.02 19.35 ± 7.55

Downhill T0 C 1.70 ± 0.56 1.61 ± 0.32 0.14 ± 0.05 0.16 ± 0.08 24.17 ± 6.82

T 1.56 ± 0.40 1.67 ± 0.29* 0.13 ± 0.03 0.14 ± 0.04 24.31 ± 8.72

T1 C 1.61 ± 0.59 1.66 ± 0.43# 0.15 ± 0.08 0.15 ± 0.10 24.20 ± 10.11

T 1.34 ± 0.42 1.32 ± 0.21*,# 0.14 ± 0.05 0.10 ± 0.03 23.82 ± 7.39

Uphill T0 C 1.52 ± 0.27 1.57 ± 0.67 0.13 ± 0.05 0.15 ± 0.11 23.86 ± 7.22

T 1.56 ± 0.38 1.69 ± 0.42 0.11 ± 0.04 0.18 ± 0.10* 18.94 ± 7.32

T1 C 1.67 ± 0.44# 1.48 ± 0.35 0.12 ± 0.06 0.15 ± 0.05# 21.86 ± 9.59

T 1.29 ± 0.23# 1.32 ± 0.26 0.10 ± 0.02 0.10 ± 0.03*,# 20.10 ± 6.37

Perturbed T0 C 9.46 ± 2.18 24.52 ± 6.23 0.46 ± 0.24 28.38 ± 12.47 37.82 ± 7.01

T 10.27 ± 1.91* 29.13 ± 6.90 0.44 ± 0.19 35.38 ± 14.05 40.96 ± 10.73

T1 C 8.87 ± 2.18 23.36 ± 7.09 0.47 ± 0.16 25.93 ± 14.93 41.22 ± 8.62

T 8.10 ± 1.04* 25.44 ± 8.25 0.44 ± 0.12 25.80 ± 10.94 39.10 ± 6.45

Mean values and standard deviation of the craniocaudal (CCD%) and mediolateral center of pressure displacement (MLD%), the statokinesiogram length (L%), the support surface (SS%) and 
average speed (AS) are shown. *Significant difference between measurement time points; #significant difference between groups.

TABLE 2 Mean values ± standard deviation of the craniocaudal (CCD%) and mediolateral (MLD%) center of pressure displacement, the statokinesiogram 
length (L%), the support surface (SS%) and average speed (AS) of the measurement conditions across all subjects during the measurement timepoint 
baseline (T0).

Condition CCD% MLD% L% SS% AS (mm/s)

Neutral 1.21 ± 0.251,2,3 1.32 ± 0.301,3 0.10 ± 0.033 0.09 ± 0.031,2,3 20.75 ± 7.003

Downhill 1.63 ± 0.48*,3 1.64 ± 0.30*,3 0.13 ± 0.043 0.15 ± 0.07*,3 24.24 ± 7.623

Uphill 1.54 ± 0.32*,3 1.63 ± 0.553 0.12 ± 0.043 0.17 ± 0.10*,3 21.40 ± 7.513

Perturbated 9.86 ± 2.04*,1,2 26.83 ± 6.82*,1,2 0.45 ± 0.21*,1,2 31.88 ± 13.42*,1,2 39.39 ± 8.97*,1,2

*Significant difference to neutral condition; 1significant difference to downhill; 2significant difference to uphill; 3significant difference to perturbed.
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4 Discussion

This study aimed to investigate the effect of a 4-week 
proprioceptive training program on PS in dogs, particularly under 
biomechanically challenging conditions such as standing uphill, 
standing downhill, and perturbed standing. COP parameters were 
used to quantify effects on canine PS. A threefold hypothesis was 
formulated: first, that uphill standing would result in smaller 

deviations in COP parameters compared to downhill standing; 
second, that perturbed standing during external perturbations cause 
the largest COP deviations; and third, that the proprioceptive training 
program would improve PS under aggravated conditions, reflected by 
a reduction in COP excursions. The results support these hypotheses, 
revealing condition-dependent variations in postural mechanisms and 
indicating a beneficial effect of proprioceptive training on PS in young 
healthy dogs.

TABLE 5 Comparison of p-values between control group C and training group T of all center of pressure (COP) parameters, including the craniocaudal 
(CCD%) and mediolateral COP displacement (MLD%), the statokinesiogram length (L%), the support surface (SS%) and average speed (AS) for both 
measurement timepoints baseline (T0) and 5 weeks later (T1).

Day Condition CCD% MLD% L% SS% AS (mm/s)

T0 Neutral 0.853 0.511 0.434 0.749 0.499

Downhill 0.548 0.648 0.683 0.401 0.969

Uphill 0.806 0.615 0.309 0.591 0.148

Perturbed 0.388 0.134 0.828 0.254 0.449

T1 Neutral 0.098 0.330 0.098 0.058 0.199

Downhill 0.257 0.041 0.592 0.131 0.924

Uphill 0.026 0.271 0.380 0.028 0.634

Perturbed 0.328 0.552 0.681 0.982 0.543

Numbers in bold represent p < 0.05.

TABLE 6 Comparison of p-values within control group C and training group T of all center of pressure (COP) parameters, including the craniocaudal 
(CCD%) and mediolateral COP displacement (MLD%), the statokinesiogram length (L%), the support surface (SS%) and average speed (AS) for both 
measurement timepoints baseline (T0) and 5 weeks later (T1).

Group Condition CCD% MLD% L% SS% AS (mm/s)

C Neutral 0.956 0.789 0.214 0.321 0.331

Downhill 0.697 0.738 0.524 0.727 0.992

Uphill 0.346 0.656 0.723 0.849 0.567

Perturbed 0.488 0.718 0.892 0.680 0.371

T Neutral 0.088 0.165 0.793 0.121 0.943

Downhill 0.328 0.021 0.749 0.257 0.898

Uphill 0.084 0.073 0.800 0.038 0.739

Perturbed 0.015 0.257 0.941 0.113 0.623

Numbers in bold represent p < 0.05.

TABLE 7 Effect sizes (Cohen’s d) for each center of pressure parameter across the four tested conditions (neutral, uphill, downhill, perturbed) 
comparing baseline (T0) and post-intervention (T1) values within groups.

Condition Group CCD% MLD% L% SS% AS (mm/s)

Neutral C 0.02 0.11 0.45 0.38 0.38

T 1.05 0.68 0.19 0.95 0.04

Downhill C 0.15 0.13 0.24 0.12 0.00

T 0.54 1.37 0.18 0.93 0.06

Uphill C 0.40 0.17 0.13 0.08 0.23

T 0.86 1.08 0.16 1.03 0.17

Perturbed C 0.27 0.17 0.05 0.18 0.43

T 1.41 0.49 0.04 0.76 0.21

Cohen’s d was calculated to assess the magnitude of change between time points. Effect sizes were interpreted as follows: negligible (<0.2), slight (0.2–0.5), moderate (0.5–0.8), and clear (>0.8) 
(26). Values are presented separately for the training group (group T) and the control group (group C).
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4.1 Effect of measurement conditions

As previously reported in human studies (9), standing downhill 
on a 20° slope resulted in significant changes of PS compared to 
standing in a neutral position. Notably, in humans this effect was 
found in L% and AS, whereas in our study CCD%, SS%, and MLD% 

were significantly affected. Further, standing uphill showed no 
significant effect on COP parameters in humans (9, 36) whereas dogs 
exhibited significant increases CCD% and SS% when standing uphill 
compared to neutral standing.

These differences may be partly due to measurement techniques, 
concerning measurement duration and repetitions, but also reflect 
anatomical and neuromuscular variations between both species. Dogs 

FIGURE 2

Illustration of the significant results of the pairwise comparison between control group C (dotted-grey column) and training group T (blue, solid 
column) for both measurement timepoints baseline (T0) and 5 weeks later (T1) for the conditions: (A) craniocaudal center of pressure (COP) 
displacement (CCD%) uphill standing, (B) craniocaudal COP displacement (CCD%) perturbed standing, (C) mediolateral COP displacement (MLD%) for 
downhill standing and (D) support surface (SS%) for uphill standing. Significant differences between T0 and T1 are marked with a black arrow and 
significant differences between groups C and T are marked with a grey dotted arrow (p < 0.05). These plots display the median as the measure of 
central tendency, along with the interquartile range (IQR) to represent the spread of the data. Whiskers indicate the range excluding outliers, and 
individual data points outside 1.5 × IQR are displayed as outliers.

TABLE 8 Mean values ± standard deviation and p-values of the inter-group comparison of the percentage change of craniocaudal (CCD%) and 
mediolateral (MLD%) center of pressure displacement, the statokinesiogram length (L%), the support surface (SS%) and average speed (AS) of the 
measurement conditions.

Condition Group ΔCCD% ΔMLD% ΔL% ΔSS% ΔAS

Neutral C 2.79 ± 25.53 6.78 ± 27.65 25.20 ± 48.31 30.30 ± 61.93 25.20 ± 48.31

T −12.09 ± 18.99 −8.22 ± 26.57 4.35 ± 31.63 −13.26 ± 40.68 4.35 ± 31.63

p-value 0.156 0.232 0.269 0.079 0.269

Downhill C −3.21 ± 16.84 −3.39 ± 16.07 6.31 ± 38.12 −12.41 ± 24.23 5.74 ± 37.81

T −10.35 ± 17.49 −22.18 ± 19.71 7.33 ± 40.41 −25.74 ± 21.10 7.33 ± 40.41

p-value 0.364 0.031 0.954 0.206 0.928

Uphill C 6.90 ± 19.46 7.30 ± 33.95 −0.25 ± 37.72 15.21 ± 28.65 −0.25 ± 37.72

T −5.71 ± 29.30 −8.80 ± 33.60 22.35 ± 60.28 −11.74 ± 56.28 22.35 ± 60.28

p-value 0.272 0.301 0.328 0.194 0.328

Perturbed C −2.32 ± 16.75 −4.88 ± 11.74 13.60 ± 31.60 −4.10 ± 38.25 11.61 ± 28.51

T −19.36 ± 12.98 −11.33 ± 22.73 10.70 ± 38.43 −18.23 ± 41.11 1.28 ± 29.84

p-value 0.020 0.435 0.856 0.437 0.439

Numbers in bold represent p < 0.05.
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have a considerably greater ROM in their carpal and tarsal joints than 
humans in their ankle joint (37–39). This limited ROM in humans 
may increase passive joint stability, e.g., through tendons, reducing the 
demand on neuromuscular control. In contrast, the larger ROM in 
canine distal joints may require more active stabilization under 
dynamic and unstable standing conditions.

Further species-specific differences arise in the musculotendinous 
architecture of the lower limb. In humans, the triceps surae complex 
(gastrocnemius and soleus) acts via the Achilles tendon to stabilize the 
ankle. The soleus plays a key role in postural regulation (40). In dogs, 
which lack a soleus muscle, the common calcaneal tendon (tendo 
calcaneus communis) consists of several muscle contributions (41), 
potentially influencing both stability and energy storage. These 
structural and functional differences between species highlight the 
importance of considering both joint architecture and neuromuscular 
organization when interpreting PS and control mechanisms across 
quadrupeds and bipeds. Given the current paucity of comparative 
studies (42), drawing definitive conclusions about different 
mechanisms of PS between humans and animals remain challenging.

Compared to standing in a neutral position, standing downhill 
resulted in significant increases in 3 out of 5 COP parameters in dogs 
(CCD%, SS%, MLD%), while standing uphill only affected CCD% and 
SS%. Looking at these results, it can be argued that standing downhill 
resulted in a greater challenge for PS compared to standing uphill. Given 
that mediolateral stability is largely attributed to hip mechanisms in 
humans (43), in dogs the bony connection of the pelvis to the hindlimb 
may allow for more effective mediolateral control when compared to the 
soft tissue-only connection of the forelimb via synsarcosis (41). 
Therefore, increased hindlimb loading when standing uphill may 
be better compensated than forelimb loading when standing downhill.

As expected, external perturbations induced by the motorized 
training platform resulted in a significant increase in all COP 
parameters compared to all other standing conditions, confirming its 
value in challenging PS mechanisms. This contrasts with previous 
studies in which the same training platform did not significantly 
increase AS or L compared to a neutral stance (4). Methodological 
differences likely account for this discrepancy, including the duration 
and number of measurements, data filtering, and normalization to the 
BOS. This underlines the importance of consistent methodology to 
ensure study comparability (32).

4.2 Effect of the training program

No significant differences were found between time points T0 and 
T1 in the neutral standing condition in both groups C and T. This 
highlights the need to incorporate biomechanically challenging 
conditions such as external perturbations or sloped surfaces when 
evaluating group differences or certain training effects. Similar 
findings were reported in a study investigating the effects of ageing on 
PS in dogs, where no differences were found when standing in a 
neutral position, but healthy senile dogs showed increased COP 
excursions compared to young dogs when the visual system was 
challenged when blindfolded (3).

No significant differences were found between time points T0 and 
T1 in group C across condition. Similar to the results of our group C, 
a recent study reported small to moderate changes in COP parameters 
after repeated testing (twice within 2 weeks) when Cohen’s d was used 

as a measure of effect size, although no significant differences in COP 
parameters were found when a linear mixed effect model was used 
(26). We propose that these negligible (d < 0.2) and small (d < 0.5) 
changes likely reflect minimal adaptation due to repeated 
measurements rather than clinically relevant training effects. This is 
supported by our finding in group T; Cohen’s d revealed large training 
effects (d > 0.8) for all parameters that showed a significant reduction 
following the 4-week proprioceptive training program. Given the 
absence of any moderate or large effects in group C, these effect sizes 
further support the relevance of the observed changes and highlight 
the clinical value of proprioceptive training in improving PS.

As anticipated, group T showed significant reductions in COP 
parameters 1-week post-intervention: CCD% during perturbed 
standing, MLD% during downhill standing, and SS% during uphill 
standing. Compared to group C, these reductions remained significant 
for SS% when standing uphill and MLD% when standing downhill. 
These findings support the expected efficacy of proprioceptive training 
in dogs and are in line with previous survey-based results (44) and 
functional tests such as the three-legged standing test (27).

Furthermore, Cohen’s d revealed large training effects (d > 0.8) in 
group T for all parameters that showed a significant reduction 
following the 4-week proprioceptive training program. Given the 
absence of moderate or large effects in Group C, these effect sizes 
further support the relevance of the observed changes and highlight 
the clinical value of proprioceptive training in improving PS.

However, it is important to note that COP analysis, although the 
most commonly used method for assessing PS in dogs (10), has not 
previously been applied to evaluate training effects. In contrast, equine 
research has long used COP parameters to assess the impact of 
physical exercises on PS (24, 25).

Each challenging condition revealed significant effects between 
groups and/or time points, with reduced COP excursions in the 
trained dogs. MLD% was significantly reduced in group T when 
standing downhill, while no such effect was found when standing 
uphill. Further, the proprioceptive training program resulted in a 
significantly greater percentage change between T0 and T1 in MLD% 
for group T compared to group C. No significant difference between 
percentage change in MLD% was found when standing uphill.

When comparing all conditions, standing downhill challenged 
mediolateral excursion, but standing uphill had no effect on this 
parameter. Therefore, we suggest that while the synsarcosis between 
the forelimbs and the thorax might result in a decreased stability in 
mediolateral direction compared to the bony connection of the 
hindlimbs (41), mediolateral stability can be  increased using 
proprioceptive exercises.

This finding is of particular interest for sport dogs. Injuries of the 
proximal forelimb are commonly described in agility with 15.80% (45) 
to 30.10% (46) of injuries affecting the shoulder joint or shoulder 
girdle musculature. The “medial shoulder syndrome,” an instability of 
the synsarcosis between shoulder and thorax, represent 12.70% 
(75/589) of injuries reported (46). Based on the observed 
improvements in mediolateral stability, it is conceivable that 
proprioceptive exercise as applied in this study may contribute to 
injury prevention, particularly for proximal limb injuries in sport 
dogs. While this was not directly assessed in our study, and our sample 
did not specifically include individuals with musculoskeletal disorders, 
the findings suggest a potential preventive role that warrants 
further investigation.
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The proprioceptive training program resulted in no significant 
effect during external perturbations in mediolateral stability but 
resulted in a significant decrease in CCD% between T0 and T1. 
Accordingly, group T showed a significantly greater percentage change 
from T0 to T1 compared to group C. Therefore, we propose that the 
proprioceptive training program used in this study resulted in a 
significant improvement of craniocaudal stability during perturbed 
standing on a motorized training platform.

Previous research suggested that mechanical perturbations 
represent a stronger challenge on mediolateral stability compared to 
craniocaudal (4). Therefore, it could be suspected that a proprioceptive 
training on such devices should increase mediolateral stability. 
However, a 4-week training program might not be enough to increase 
mediolateral stability in the most challenging condition used in this 
study. However, as previously mentioned, the comparison of results 
based on different measurement techniques and data analysis should 
be performed with caution.

The main limitation of this study is the relatively small sample size 
(10 dogs per group), which is common phenomenon in clinical 
research (3, 4). To control for a low sample size, we  aimed at 
minimizing variability by selecting dogs of similar age and body 
conformation (groups controlled for weight, height and length). Since 
the mat only measures vertical forces, the sensitivity decreases when 
tilted by a factor of the direction cosine. Due to the limited number of 
repeated measurements, standard error of measurement was not 
calculated. However, the absence of change in the control group, the 
statistically significant differences and large training effects (d > 0.8) 
in the training group suggest that measurement error is unlikely to 
explain the observed effects.

Future studies should focus on the effects of PS training in 
orthopedically or neurologically affected animals. Based on our 
results, we recommend the inclusion of biomechanically challenging 
conditions such as standing on inclined and declined slopes and under 
external perturbations when assessing PS across groups or evaluating 
therapeutic outcomes. In addition, previous studies have suggested 
that blindfolded stance may further challenge postural control and 
could be considered in future protocols (3).

5 Conclusion

This study demonstrated that a 4-week proprioceptive training 
program improved PS in dogs, particularly under biomechanically 
challenging conditions such as standing uphill, standing downhill, and 
perturbed standing. The reductions in COP excursions in the trained 
group, especially when standing uphill and standing downhill, indicate 
improved postural control after the intervention. The findings 
underline the importance of including biomechanical challenges when 
assessing PS. This research is among the first to apply COP analysis to 
evaluate training effects in dogs, revealing condition-specific 
improvements. While standing uphill primarily challenged 
craniocaudal displacement, standing downhill and external 
perturbations impacted both axes. Despite a limited sample size, the 
results provide a basis for further studies, particularly in clinical 
populations. Incorporating inclined and declined slopes and external 
perturbation-based tasks into assessment protocols may enhance the 
detection of PS impairments and training effects in both healthy and 
affected animals.
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