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The genetic evaluation of Murrah buffaloes can be optimized by associating milk 
production, genetic value of sires, and age at first calving. Therefore, the aim of 
this study was to compare the Linear Mixed Model with the Threshold Model 
and their genetic association with milk production and the genetic evaluation of 
sires in the estimation of variance components of age at first calving in Murrah 
buffalo. The dataset comprised information on total milk production and age 
at first calving of Murrah buffaloes. The mixed linear animal model, designated 
as Model 1, was employed to estimate variance components. In a subsequent 
analysis, designated as Model 2, the age at first calving was examined in conjunction 
with the milk production. The variance components were obtained by Bayesian 
inference, using the Gibbs sampler to obtain posterior means. The t-test was 
then applied in order to compare the means of two samples. The additive genetic 
correlations between milk production and age at first calving were low in both 
models, with values equal to 0.11 and 0.17 for Models 1 and 2, respectively. The 
descriptive analysis of the predicted breeding values revealed that, irrespective 
of the model, the values for milk production exhibited minimal variation. In a 
separate analysis, Model 2 exhibited a reduced amplitude for age at first calving 
and enhanced prediction accuracy, particularly for sires with negative breeding 
values for this trait. Consequently, the Threshold Model strategy for analyzing age 
at first calving variance components is more efficient than a Linear Mixed Model. 
It provides more accurate genetic value estimates for sires without affecting milk 
production predictions.
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1 Introduction

Research on Murrah buffaloes is justified by their importance as 
a dairy breed, entailing physiological and management complexities 
inherent to dairy buffalo farming. The relentless pursuit of high milk 
yields in Murrah buffaloes often is associated with specific 
reproductive challenges, such as prolonged anestrus, silent estrus, and 
reduced conception rates. These challenges directly affect overall 
productivity by prolonging calving intervals and decreasing lifetime 
production. Consequently, it is essential to focus jointly on 
reproductive disorders, along with the nutritional and management 
demands specific to the productive and reproductive needs of Murrah 
buffaloes. This joint approach can significantly increase reproductive 
efficiency and overall productivity in this specific breed. This, in turn, 
has the potential to generate substantial benefits for this segment of 
the buffalo agribusiness.

It is imperative to underscore certain limitations, including the 
occurrence of calving in buffaloes. As in cattle, challenges often arise, 
primarily dystocia due to fetal-maternal disproportion and 
nutritional deficiencies that lead to conditions such as placental 
retention or puerperal paresis (1, 2). These complications result in 
increased intervals between calving, compromised subsequent 
fertility, and high calf mortality (3, 4). Effective peripartum nutrition 
management and meticulous prepartum assessment are crucial (5, 6). 
Such difficulties can have a significant impact on herd productivity 
and economic viability, necessitating proactive clinical 
management (7).

Strategic supplementation with specific feed additives critically 
enhances buffalo reproductive health (8). Essential trace minerals 
(e.g., Se, Cu, Zn, Mn), vital vitamins (e.g., A, E, D), and omega-3 fatty 
acids optimize ovarian function and conception rates (5, 9). These 
nutrients bolster immune response, mitigate postpartum disorders, 
and improve overall reproductive efficiency (6, 10). By correcting 
nutritional deficiencies, these additives support the high metabolic 
demands of reproduction, making their precise dietary integration 
paramount for sustainable breeding success (4, 6).

During late gestation, particularly the final trimester, buffaloes are 
susceptible to prevalent metabolic diseases, including ketosis, 
hypocalcemia, and acidosis (4, 11). These conditions arise from 
metabolic imbalances like energy deficits, calcium dysregulation, or 
altered ruminal pH (8, 11, 12). Such disorders severely compromise 
maternal health, impair immune function, and jeopardize fetal 
viability. Consequently, parturition success, subsequent lactation, and 
reproductive performance are critically impacted, necessitating 
proactive nutritional and management interventions to mitigate 
adverse outcomes (13).

These interventions can and should benefit from promising 
research results in dairy farming. For example, it has been 
demonstrated in dairy calf breeds (14) that organic mineral 
supplementation is an effective strategy for improving mineral 
bioavailability and supporting the health of these animals during their 
first years of life. In another analysis, a feed additive mixture of 
condensed and hydrolysable tannins (15) improved reproductive 

efficiency in lactating cows, reducing the number of services 
per conception.

Other favorable results include the use of new methodologies, 
such as mid-infrared spectroscopy (16), to predict blood metabolic 
indicators in Holstein cow milk, which has proven to be an alternative 
for identifying cows at risk of negative energy balance and subclinical 
ketosis. Similarly, feed additives with immunomodulatory capabilities 
(17) are also emerging as strategies to improve metabolic and 
immunological responses to subacute ruminal acidosis in dairy cows.

Beyond these immediate clinical and nutritional interventions, 
the long-term genetic progress of a herd critically relies on the 
rigorous genetic evaluation of breeding animals, such as buffalo bulls 
(18, 19). It allows the selection of the best animals, resulting in 
superior productivity and quality (20).

By analyzing performance data and, with increasing frequency, 
genomic information, the genetic value of breeding animals can 
be estimated, reflecting their capacity to enhance characteristics such 
as milk production and age at first calving (21–23).

Consequently, selection for increased milk production is predicted to 
have a positive effect on the age at first calving, as demonstrated in Nili-
Ravi (24) and Murrah (25) buffaloes. In other analyses, Tamboli et al. (26), 
Seno et al. (25), Mathur and RoyChoudhury (27), and Calanni Macchio 
et al. (28) evaluated data from Murrah buffaloes and Italian buffaloes. 
These analyses demonstrated that the opposite is also true; that is, 
selection by age at first calving showed improvement in milk production 
and other characteristics. This was evidenced by a negative association 
between age at first calving and standard milk production in the first 
lactation, productive life, total milk production throughout life, standard 
milk production throughout life, and reproductive efficiency. The findings 
of these studies indicate that decreasing the age at first calving would 
enhance various performance traits throughout the animal’s lifespan, 
extending beyond merely milk production.

It is imperative to note that this genetic evaluation is predicated 
on the precise quantification of genetic and environmental influences. 
Consequently, the estimation of variance components is essential. This 
approach enables precise measurement of additive genetic variance, 
as well as other crucial factors such as environmental variance and 
genotype-Environment interaction, as emphasized by Ranjan et al. 
(29) and Zhang et al. (30).

In addition to variance components, environmental factors, including 
calving period and season (31, 32) and age at first calving (32), were 
identified as significant determinants of performance. Furthermore, 
advanced evaluations consider direct, maternal, and permanent maternal 
effects (33) and employ methods such as Principal Component Analysis 
(33) to assess genetic trends and relationships between genetic values.

Among the widely used methods for estimating these components, 
the Linear Mixed Model and Threshold Models stand out. These are 
statistical tools used to analyze dependent data, i.e., data where 
observations are related or influence one another (34, 35). The aim 
was to compare the Linear Mixed Model with the Threshold Model 
and their genetic association with milk production and the genetic 
evaluation of sires in the estimation of variance components of age at 
first calving in Murrah buffalo.
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2 Materials and methods

The analysis was based on a dataset comprising 2,866 records of 
total milk production and 661 records of age at first calving for 1,122 
Murrah buffaloes participating in the Brazilian Buffalo Improvement 
Program (PROMEBULL).

Total milk production (TMP) was regressed as a function of 
lactation length (LL). Subsequently, the TMP was corrected for 
305 days of lactation using the expression: MP305 = TMP + (5.42705) 
(305 − LL). This expression, referred to as “total milk yield,” offers a 
succinct representation of the relationship between TMP and 
LL. Consequently, MP305 is regarded as the rectified value for total 
milk yield, which will be utilized for subsequent analysis. This value is 
here in after referred to as milk production (MP).

Direct heterozygosity effect (HTZ) was estimated using breed 
information, defined as the deviation from the Murrah breed, which 
varies from zero (0) to one (1) (36).

The heterozygosity value (HTZ) was calculated using the equation 
(37) as follows:

	 ( ) ( )= × + ×HTZ MS OM MM OS

Where:
MS is the degree of racial composition of the Murrah breed from 

the sire’s contribution.
OM is the degree of racial composition of the other breed from 

the dam’s contribution.
MM is the degree of racial composition of the Murrah breed from 

the dam’s contribution.
OS is the degree of racial composition of the other breed from the 

sire’s contribution.
The calving months were grouped into four calving seasons (CS) 

to adapt the analysis to regional climatic adversities, considered as 
follows: CS = 1 the period from January to March; CS = 2 the period 
from April to June; CS = 3 the period from July to September; and 
CS = 4 the period from October to December.

Contemporary groups were a combination of the fixed effects of 
herd, year, and CS. Contemporary group information with at least 
three observations was included.

The mixed linear animal model, designated as Model 1, was 
employed to estimate variance components. Subsequently, the method 
was employed to forecast breeding values, which are denoted as:

	 β= + +y X Za e

Where:
𝑦 is a vector of observations.
𝛽 is a vector of fixed effects (group of contemporaries and linear 

effect of the heterosis covariate).
𝑎 is the vector of direct additive genetic effect.
𝑒 is the vector of residual effect.
𝑋 is the incidence matrix that associates 𝛽 with 𝑦.
𝑍 is the incidence matrix of the direct genetic effect.
The age at first calving (AFC) was subsequently categorized into 

two classes. Class 1 encompassed values below the median, defined as 
less than or equal to 36.32 months of age. Class 2 comprised values 
greater than or equal to the median. In a subsequent analysis, 

designated as Model 2, the AFC was examined in conjunction with 
the MP. The AFC was conceptualized as a dichotomous variable, while 
the MP was considered a continuous variable within a Threshold 
Model. It was hypothesized that the scale underlying the AFC 
exhibited a continuous normal distribution and was represented as:

	 θ σ′ 2~ , eU NW I∣

Where:
U is the base scale vector; θ′ is the vector of location parameters 

(the true ‘unobserved’ breeding values); W  is the incidence matrix; I  
is the identity matrix, σ 2

e  is the residual variance.
The (co)variance components were obtained by Bayesian 

inference, using the Gibbs sampler with the GIBBS1F90 program (38) 
to obtain posterior means. A chain size of 600,000 cycles was used, 
with cycles saved every 20 cycles and a discard period of 60,000 initial 
cycles. The Geweke criterion (39) was employed to assess the quality 
of the chains, with a 5% probability level set as the cutoff.

In order to compare the posterior heritability means between the 
models, 30 sub-samples of 2,700 cycles were randomly obtained from 
the Gibbs chains for each model. The Gibbs chains were used to 
generate the posterior heritability means. The heritability averages 
were obtained from these subsamples, resulting in 30 values for each 
model. The t-test was then applied to compare the means of two 
samples, with a significance level of 0.05.

Subsequent to acquiring the predicted breeding values for MP and 
AFC for the sires, the Spearman correlations were calculated in three 
distinct scenarios and for each model. In the initial scenario, the 
sample was comprised of all sires with progenies exhibiting 
production. In the second scenario, the consideration was limited to 
sires with positive progenies for MP. Finally, the third scenario 
encompassed sires with progeny that were negative for AFC.

The estimated means and standard deviations of the minimum 
and maximum values observed for MP and AFC are shown in Table 1.

3 Results and discussion

The estimation of the additive and residual genetic variance 
components for milk production (MP) and age at first calving (AFC) 
was demonstrated to be statistically robust using Bayesian inference 
with Markov chains via Monte Carlo (MCMC). The convergence of 
the chains was assessed by the Geweke test, whose values were found 
to be close to zero and with associated p-values exceeding 0.05 for all 
parameters. This indicates satisfactory convergence at the 5% 
significance level (see Table 2 for details).

In Model 1, an additive genetic variance of 817.48 was observed 
for MP and 7.35 for AFC, with residual variances of 1694.51 and 

TABLE 1  Number of observations (N), estimates of means and standard 
deviation (SD), minimum (Min) and maximum (Max) values for MP and 
AFC.

Trait N Mean SD Min Max

MP 2,866 2281.97 570.47 868.20 4162.80

AFC 661 37.39 5.42 25.00 67.00

MP = milk production and AFC = age at first calving.
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19.47, respectively. In a separate analysis, Model 2 revealed that MP 
maintained comparable estimates for genetic (820.33) and residual 
(1694.5) variance, while AFC exhibited a substantial reduction in the 
genetic (0.68) and residual (1.01) components.

As demonstrated in Table 3, the posterior means for heritabilities are 
consistent across models for milk production, with a mean of 0.32 ± 0.03. 
However, for AFC, the estimates exhibited greater variability. The mean 
values obtained for Models 1 and 2 were 0.27 ± 0.09 and 0.37 ± 0.13, 
respectively. A t-test performed with independent subsamples of the 
Gibbs chain demonstrated a statistically significant discrepancy between 
the models for AFC (t = 187.53; p < 0.0001).

The additive genetic correlations between MP and AFC were low 
in both models, with values equal to 0.11 and 0.17 for Models 1 and 2, 
respectively. Spearman correlations between the estimated breeding 
values (see Table 4) provide further evidence for this pattern, with 
values ranging from 0.24 (Model 1) to 0.38 (Model 2). There is also 
high consistency between models in the ordering of the sires within 
each trait (ρ = 0.99 for MP and 0.72 for AFC).

The descriptive analysis presented in Table 5 revealed the descriptive 
analysis of the predicted breeding values revealed that, irrespective of 
the model, the values for MP demonstrated minimal variation. In a 
separate analysis, Model 2 exhibited a reduced amplitude for AFC and 
enhanced prediction accuracy, particularly for sires with negative 
breeding values for this trait. In all situations analyzed, the accuracy for 
MP remained constant (0.70–0.72), in contrast to the increase observed 
for AFC, which rose in Model 2 from 0.49 to 0.55.

The results demonstrated the robustness of the Bayesian approach 
in the inference of genetic components, as observed in other surveys (40, 
41), particularly with regard to MP in cattle and buffaloes (42–45). In 
other words, the direct comparison made in this study between Linear 
Mixed Model and Threshold Models for the age at first calving in Murrah 
buffaloes, highlighting the Threshold Model as the best for evaluating the 
sires, represents a significant methodological contribution.

This assertion aligns with the conclusions of Colonia et al. (43), 
who previously corroborated the efficacy of Threshold Models in the 
analysis of non-normally distributed characteristics in dairy cattle, 
notwithstanding divergent prior specifications. While Camargo Júnior 
et al. (42), Kumar et al. (44), and Mendes-Malhado et al. (45) also 
employed Bayesian inference to estimate genetic parameters in dairy 
cattle (milk and growth traits), their focus differs, as they did not make 
this specific comparison between Linear Mixed Model and Threshold 
Models for discrete traits.

The low genetic correlations (0.11–0.17) observed between milk 
production and age at first calving in this study offer specific insights 
into Murrah reproduction. These insights are contextualized by the 
broader utility of Bayesian methodologies highlighted by Sun et al. 
(40) and van de Schoot et al. (41) for complex genetic analyses. The 
stability observed in the estimates of additive genetic variance and 
heritability between the two models evaluated suggests that this trait 
has a robust and well-defined genetic basis.

This consistency, even with different residual structures and 
parameterizations, indicates that MP is less susceptible to variations 
in the statistical model. This finding provides substantial credibility to 
genetic predictions for milk production (MP) and underscores its 
viability as a selection criterion in genetic enhancement programs for 
dairy buffalo farming (30, 46–48).

By contrast, AFC was highly sensitive to model specification. 
There was a marked reduction in additive genetic variance in Model 
2, and the heritability estimates differed significantly. This discrepancy 
can be attributed to the trait’s lower heritability, its intrinsic biological 
complexity, and the greater influence of environmental and 
non-genetic factors (20, 26, 49, 50).

The greater accuracy of the Threshold Model for AFC possibly 
derives from its inherent ability to more effectively capture the 
underlying distribution of the characteristic when treated categorically, 
even though it is a biologically continuous trait. By dichotomizing 
AFC (below or above the median), the Threshold Model can effectively 
map crucial biological or management thresholds that a Linear Mixed 
Model would disregard. This approach makes the Threshold Model TABLE 2  The posterior means, along with their respective SD, are 

presented for the variance components of additive genetic and residual 
effects.

Mean SD CI (95%) Geweke

Model 1

Additive genetic variance

MP 817.4838 99.24689 619.6 1,005 0.03

AFC 7.3456 2.755 2.251 12.59 −0.02

Residual variance

MP 1694.51 58.7792 1813.0 2363.8 −0.02

AFC 19.4667 2.4177 14.8 24.24 0.02

Model 2

Additive genetic variance

MP 820.33 99.697 624.93 1015.70 0.01

AFC 0.6845 0.4948 −0.2852 1.6543 −0.04

Residual variance

MP 1694.5 58.957 1578.9 1810 −0.01

AFC 1.0077 0.0364 0.9363 1.079 0.01

The component credibility interval (CI) and Geweke’s test, along with the associated 
probability for MP and AFC, are also included.

TABLE 3  The posterior means of heritability, with respective standard 
deviations, are presented on the diagonal for Model 1 and Model 2 (in 
parentheses), with the posterior means of additive genetic correlation for 
the Model 1 (above the diagonal) and Model 2 (below the diagonal) for 
milk production (MP) and age at first calving (AFC).

Trait MP AFC

MP 0.32 ± 0.03 (0.32 ± 0.03) 0.11 (0.17)

AFC 0.19 (0.18) 0.27 ± 0.09 (0.37 ± 0.13)

MP = milk production and AFC = age at first calving.

TABLE 4  Estimates of Spearman’s correlations between the breeding 
values of sires for MP and AFC are presented for Models 1 and 2, 
respectively, with the correlations between models illustrated on the 
diagonal and those between models on the above and below the diagonal.

Trait Trait

MP AFC

MP 0.99 0.24

AFC 0.38 0.72

MP = milk production and AFC = age at first calving.
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less sensitive to noise and nonlinearities often present in complex 
reproductive traits that are strongly influenced by environmental and 
non-genetic factors.

According to the results obtained, in the case of AFC, noise could 
come from several sources, such as small variations in nutritional 
management between animals, seasonal climatic differences not fully 
captured, data recording errors, or even small individual biological 
fluctuations that do not have a significant genetic component. By treating 
AFC as a categorical variable (e.g., early or late using the median as the 
threshold), the Threshold Model focuses on the classification that is most 
robust to random disturbances, filtering out the noise and highlighting 
the most important signal of precocity. Consequently, the model refines 
the signal-to-noise ratio, focusing on the qualitative outcome of early 
versus late calving, which has great practical relevance in buffalo selection.

Despite the similarity in the ratio between the standard deviation 
and the mean of heritability across models, indicating relative 
consistency in variability, the magnitude of the differences in means 
underscores the substantial impact of model alterations on genetic 
estimates for AFC. The present findings highlight the imperative for 
judiciousness in statistical modeling of reproductive traits, which 
characteristically manifest elevated environmental variability and 
diminished direct genetic control (44, 51, 52).

Additionally, it was evident that Model 2 showed a substantial 
reduction in genetic and residual variances for AFC. This suggests that 
the Threshold Model was more efficient in discriminating the true 
sources of variation, resulting in more accurate estimates of additive 
genetic effects and, consequently, greater predictive accuracy. This is 
because the Threshold Model deals with non-linearities by assuming 
that there is a continuous latent variable (not directly observable) – the 
predisposition or liability to AFC, which follows a normal distribution 
but manifests itself in observable categories when a certain threshold 
is exceeded.

By dichotomizing AFC, the Threshold Model implicitly recognizes 
that genetic impact can be better understood in terms of crossing a 
threshold. It can therefore better capture the idea that each additional 

day in AFC can change significantly once certain critical points (the 
thresholds) are reached, offering a more realistic representation of the 
biological complexity of this trait. The threshold model design assumes 
a continuous underlying predisposition or liability, but observes a 
categorical outcome, proving more suitable for addressing the 
biological complexity and low heritability typical of reproductive traits.

The estimates of additive genetic and Spearman rank-order 
correlations between MP and AFC were low. This finding indicates 
that there is a weak genetic association between these two traits. In 
practice, this indicates that ranking sires based on genetic merit for 
one trait does not serve as a reliable predictor of performance for the 
other (53, 54). Therefore, it is imperative to adopt selection indices 
that consider both traits jointly and in balance, to avoid limited or 
even undesirable gains in non-target traits (55–57).

The almost perfect consistency in the ranking of sires for MP 
between models (ρ = 0.99) confirms the robustness of genetic inference 
for this trait. This finding indicates that the selection of superior animals 
remains consistent, even when the model is modified. In another 
analysis for AFC, although the Spearman correlation between models 
was moderately high (ρ = 0.72), greater sensitivity to the adopted 
specifications was evident, indicating that minor changes to the model 
can alter the genetic ranking of individuals. This is particularly salient 
in the context of reproductive traits, where variations in the residual 
structure or the incorporation of supplementary effects can markedly 
enhance the precision of estimates (58–60).

Another salient point pertains to the analysis of the accuracy of 
genetic predictions. While the accuracy of MP remained stable for both 
models and the different sire subsets evaluated, Model 2 demonstrated 
significant enhancement in AFC accuracy. This finding indicates that 
the careful selection of the appropriate residual structure can facilitate 
the extraction of more valuable information from the database and 
improve the reliability of estimates for traits that are difficult to measure 
or have low heritability. Additionally, the diminished range of breeding 
values observed in Model 2 may suggest a more conservative yet 
precise modeling approach, a strategy that is particularly advantageous 

TABLE 5  Descriptive analysis of the Number of observations (N), minimum (Min) and maximum (Max) predicted breeding values of sires for MP and AFC 
are presented for Models 1 and 2, respectively.

Position Trait N Breeding values Accuracy

Mean SD Min. Max. SD/Mean

Model 1

1

MP 81 −3.1260 19.4845 −48.0932 45.6233 −6.2330 0.72

AFC 81 −0.0382 1.4435 −2.6844 5.9047 −37.7880 0.49

2

MP 33 15.3209 11.8880 0.2522 45.6233 0.7759 0.72

AFC 33 0.1875 1.5855 −2.4968 5.9047 8.4560 0.47

3

MP 44 −8.1503 19.3613 −48.0932 33.7785 −2.3755 0.70

AFC 44 −1.0384 0.7131 −2.6844 −0.0698 −0.6867 0.48

Model 2

1

MP 81 −3.2645 19.6075 −48.2807 45.9139 −6.0063 0.72

AFC 81 −0.0129 0.2172 −0.4491 0.7339 −16.8372 0.55

2

MP 33 15.1039 12.1405 −48.2807 45.9139 0.8038 0.72

AFC 33 0.0611 0.2160 −0.4491 0.7339 3.5352 0.54

3

MP 42 −9.3460 16.8426 −48.2800 16.7867 −1.8021 0.70

AFC 42 −0.1680 0.1157 −0.4490 −0.0077 −0.6887 0.54
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in selection contexts where there is a risk of overestimating 
genetic merit.

Consequently, the necessity of meticulous statistical modeling 
tailored to the biological characteristics of the studied traits is evident. 
While MP is a highly stable trait from a genetic point of view, AFC 
requires more refined analytical strategies that may include environmental, 
genomic, or management information to better capture its complexity 
(19, 61). In this sense, the utilization of Bayesian inference in conjunction 
with convergence verification and the implementation of statistical tests 
on Gibbs chain samples has been demonstrated to be  a potent and 
adaptable approach (62–66). This approach has been demonstrated to 
produce reliable point estimates, thereby facilitating more informed 
decisions in the context of selection programs.

4 Conclusion

Overall, the Threshold Model strategy demonstrated superior 
efficiency in extracting variance components for AFC when directly 
compared to its treatment as a continuous variable within a Linear Mixed 
Model. The Threshold Model provided more accurate genetic value 
estimates for sires without affecting MP predictions.

The heritability estimates for MP indicate the possibility of 
substantial genetic progress through selective breeding. However, sires 
that demonstrated favorable genetic merit for precocity do not 
necessarily exhibit the greatest merit for MP.

In the pursuit of furthering the modeling of AFC, prospective 
investigations could entail the incorporation of more intricate 
environmental data, including temperature-humidity indices, 
precipitation, and variations in pasture quality or nutritional 
management during pivotal phases of animal development. This 
approach would facilitate the capture of environmental changes that 
exert a significant influence on AFC.

At the genomic level, the application of high-density SNP arrays 
or whole-genome sequencing would enable the identification of 
specific genes or Quantitative Trait Loci (QTLs) associated with 
precocity in buffaloes. The integration of these genomic data with 
advanced statistical methodologies, such as single-step genomic 
best linear unbiased prediction (ssGBLUP), holds considerable 
promise in enhancing the precision of genetic value predictions for 
AFC in buffalo. This approach would serve to reinforce and 
complement the advancements already demonstrated by the 
threshold model.
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