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The establishment of a pregnancy in cattle relies on crosstalk between an embryo 
with high developmental competence and a responsive uterus. This often fails 
and the pregnancy rate in cattle is around 60–70% with natural mating and 
50–60% for embryo transfer, with pregnancies typically higher in beef than high 
performing dairy. These pregnancy rates are primarily due to the loss of embryos 
in the 21-day window from fertilization to the initiation of attachment of the 
conceptus to the uterus. Considerable research has been devoted to defining 
high quality embryos; however, embryonic mortality remains a major cause of 
pregnancy failure. The latter highlights the critical importance of uterine receptivity 
in establishing a pregnancy. The uterus must be responsive to signals from the 
developing embryo to undergo a major structural and functional transformation 
to prepare for attachment of the conceptus and establishment of pregnancy. The 
chemokine CXCL12 and its receptor CXCR4 are expressed across somatic and 
neural tissues and are associated with tissue remodeling including angiogenesis. 
These are features of the change the uterus undergoes as it develops receptivity to 
the conceptus. The developing embryo produces CXCL12 and CXCR4 is present 
in uterine tissue, and a role for the CXCL12-CXCR4 axis have been demonstrated 
in early pregnancy. Chemokines including CXCL12 are likely to be important in 
embryonic survival and pregnancy in cattle.
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1 Background

Pregnancy rates in cattle following natural mating or with assisted reproductive technology 
have remained relatively constant at around 60–70% with natural mating and 50–60% for 
embryo transfer, with pregnancies typically higher in beef than high performing dairy (1–3). 
The primary reason why pregnancy rates have not improved as might have been expected is 
the failure to overcome the large embryonic loss that occurs in the period before and during 
the attachment of an embryo to the uterus to establish a pregnancy (2, 4–6). The period of 
early embryonic development involves continuous crosstalk between the embryo and uterus 
(7, 8). The embryo initiates this crosstalk by secreting interferon tau (IFNτ) which prevents 
the uterus from generating an immune response against the allogeneic embryo (9–12). 
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Interferon tau-stimulated gene expression in blood mononuclear cells 
was evaluated as a biomarker of early pregnancy in cattle (13–16). The 
developing embryo also secretes factors that induce changes in the 
structure and function of the uterus, which prepares the uterus for 
embryonic attachment (16–20). The preparation of the uterus for 
attachment confers uterine receptivity (21, 22). Chemokines and their 
receptors have an important role in this process and an example is the 
embryonic chemokine ligand stromal-derived factor 1α (CXCL12) 
which binds to its uterine receptor CXCR4 (23). As noted below, 
CXCL12 and CXCR4 are expressed across somatic and neural tissues 
and are associated with tissue remodeling including angiogenesis. 
These are features of changes the uterus undergoes as it develops 
receptivity to the conceptus. The present review draws on information 
for cytokines and their receptors and in particular CXCL12-CXCR4 in 
female reproduction in several species to highlight the need for 
further research in cattle. A potential outcome of further research 
could be the identification of CXCL12-CXCR4 gene polymorphisms 
that are linked to uterine receptivity and fertility in cattle (24). This 
would require the collection of phenotypic information on large 
cohorts of cattle to achieve statistical power to identify meaningful 
polymorphisms. Given fertilization and formation of a zygote in cattle 
is typically greater than 75%, we have argued that the next step change 
in reproductive success in cattle will require a reduction in embryonic 
loss with both natural mating and assisted reproductive technology 
(10, 20, 25, 26).

2 Female effect on fertility in cattle

The capacity of female cattle to conceive and wean a calf on an 
annual basis is the primary driver of profitability in cattle enterprises 
(27). As noted above, fertilization rates in cattle are typically greater 
than 75% with both natural mating and artificial insemination (25). 
Fertilization per se is therefore not the major reason for reproductive 
failure in cattle. The main cause of reproductive failure in cattle, and 
indeed females of other species, is the large loss of embryos that occurs 
in the 21-day window from fertilization to the initiation of attachment 
of the embryo to the uterus (20, 25, 28, 29). Embryonic survival was 
identified early as arguably the most important factor in determining 
pregnancy outcome in cattle (30–32). In one study, a significant 
recipient effect was observed in pregnancy rate when Hereford x 
Friesian heifers received six cycles of embryo transfer (31). Heifers 
retrospectively classified as ‘high fertility’ had an overall pregnancy rate 
of 76% and heifers classified as ‘low fertility’ had a pregnancy rate of 
11% (31). At day 14 after embryo transfer, more embryos had 
undergone elongation in ‘high fertility’ heifers (67%) compared with 
‘low fertility’ heifers (14%) (31). The heifer effect was noticeable during 
the period of embryonic attachment and pregnancy establishment, 
with no apparent effect after day 60 when the determination of the 
effect was diminished (31, 32). In another study also involving serial 
embryo transfer, beef heifers classified ‘high fertile’ showed a pregnancy 
rate of 71% compared with a pregnancy rate of 20% for heifers classified 
‘infertile’ (33). Similar with the earlier study in dairy heifers, elongating 
conceptuses were longer in ‘high fertile’ beef heifers compared with 
‘infertile’ heifers (33). ‘High fertile’ heifers showed greater uterine 
expression of genes associated with conceptus-uterus crosstalk which 
was interpreted to indicate that ‘high fertile’ heifers had a greater 
capacity to support conceptus growth, attachment and pregnancy (33). 

Studies in Holstein cows led to the conclusion that the difference in 
fertility between ‘high fertile’ (Fert+) and ‘low fertile’ (Fert-) cows was 
related to embryonic and uterine events after day 7, which likely 
included the capacity of cows to support ongoing embryonic 
development, attachment and pregnancy (34). In the above studies, 
oocytes and embryos from high and low fertile females did not differ 
in gene expression and other functional parameters providing further 
evidence of the importance of the uterine response to the embryo in 
pregnancy (4, 33, 34). Pregnancy does, however, rely on the 
combination of a good quality embryo with high developmental 
competence and a responsive uterus (4).

3 Uterine (endometrial) receptivity

The capacity of the uterus to support attachment of the conceptus, 
followed by the events that establish a pregnancy, relies on uterine 
(endometrial) receptivity irrespective of the type of placentation. The 
change from a non-receptive to receptive uterus occurs in response 
to the conceptus and involves major changes in uterine structure and 
function (16–18, 35, 36). The endometrium in cattle undergoes a 
major change in preparation for embryonic attachment and 
pregnancy (8, 20). The ovarian steroids oestradiol and progesterone 
induce initial changes in the uterine endometrium in cattle and 
further change is a result of ‘mutual reprogramming’ between the 
conceptus and uterus (21, 22). Changes in endometrial gene 
expression around day 15 in cattle are induced by embryonic IFNτ 
(16). The application of machine learning identified endometrial 
transcriptomic biomarkers that predicted uterine receptivity with 
around 95% accuracy in cattle (37, 38). The latter suggested that 
establishing uterine receptivity through a uterine biopsy could 
potentially be used as a fertility trait in cattle (38, 39). Embryos also 
induce changes in uterine fluid microRNAs and exosomes in cattle 
(40, 41). Uterine receptivity has been extensively studied in women 
to more precisely define the ‘implantation window’ in conjunction 
with efforts to increase the efficiency of IVF and embryo transfer 
(42–46). In Mediterranean buffaloes, the period of implantation is 
associated with changes in blood flow and capillary permeability of 
uterine caruncles (47, 48).

4 Chemokines and their receptors

Chemokines are a family of chemoattractant cytokines that have 
important roles in cell migration and angiogenesis (49–51). Cell 
differentiation and migration, and angiogenesis, are central to tumor 
metastasis and a large body of literature describes the role of 
CXCL12 in conditioning stromal cells for invasion by cancer cells 
(52–58). Stromal-derived factor 1α (CXCL12) is an important 
chemokine that is expressed in both somatic and neural tissues (52, 
59–61). The receptor for CXCL12, CXCR4, is also widely distributed 
in somatic and neural tissues (53, 55, 62). Most studies on CXCR4 
have been in cancer biology and other diseases (50, 52–55, 61, 63–66). 
CXCL12 can also bind to the orphan receptor CXCR7 (ACKR3) which 
functions as a scavenger and could have a role in the local actions of 
CXCL12 (56).

Both CXCL12 and CXCR4 have been characterized at the genomic 
and protein level. In cattle, the gene CXCL12 is identified as 
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ENSBTAG00000005077 (primary assembly Bos taurus genome, 
ARS-UCD2.0) and is located at base-pair position 28:45021867–
450525521. The gene has two variants each of which contains four 
exons. ENSEMBL identifiers for the transcripts are 
ENSBTAT00000015300.1 (CXCL12-201) and 
ENSBTAT00000031279.5 (CXCL12-202). Cattle CXCR4 is tagged 
ENSBTAG00000001060, is located at 2:612249996–61254590, and has 
three transcripts and also splice variants2. The human CXCL12 gene is 
located at 10q11.1 and the promoter region has binding sites for the 
transcription factors SP1 and CTF (52, 60, 66). CXCL12 is unique 
among CXC chemokines in that it has differential mRNA splicing with 
six splice variants which give rise to six different isoforms in humans, 
with three isoforms in mice (60). Both the CXCL12 gene and protein 
show high (90%) homology between humans and mice (60). Typical 
CXCL12 protein is relatively small with 68 amino acids (52). The 
CXCR4 gene is located at human 2q21 and the CXCR4 protein has 352 
amino acids (64, 65). CXCR4 is a G protein-coupled receptor and 
signaling/transducing pathways include mammalian target of 
rapamycin (mTOR), phosphoinositol 3 kinase/protein kinase B and 
Janus kinase/signal transducers and activators of transcription (JAK/
STAT), among other pathways (52, 64, 65).

5 CXCL12 and CXCR4 in uterine 
remodeling and receptivity

The uterine epithelium and stroma undergo major cellular 
reorganization in response to the presence of an embryo and in 
preparation for attachment, implantation, and the establishment 
of a pregnancy (7, 21, 36, 45, 46). Chemokines are now recognized 
as having an important role in the changes that occur in the 
uterine endometrium during the period before attachment of the 
conceptus (23, 67–69). The C-C and CXC-motif chemokines were 
shown to influence endometrial epithelial cell function, 
implantation and embryo survival in cattle (70–76). In humans, 
CXCL12 is produced by embryonic trophoblast cells and induces 
uterine stromal cells to express its receptor CXCR4 (77, 78). Both 
CXCL12 and CXCR4 are expressed in uterine endometrial 
epithelial cells and stromal cells and are considered to have an 
important autocrine role in remodeling of the epithelium in 
preparation for attachment of the conceptus (Figure 1) (23, 67–
69). CXCL12-CXCR4 facilitated infiltration of the uterus by 
natural killer (NK) cells which is part of the immune cell 
remodeling of the epithelium and stroma mice (79). CXCR4 
knock-out mice had reduced NK cells and increased fetal 
resorption and significantly reduced implantation (78). CXCL12 
obtained from pre- and peri-implanting mice increased 
angiogenesis and embryo attachment in in vitro cultures of mouse 
tissues (80). Treatment with CXCL12 induced CXCR4+ Treg cells 
to infiltrate the uterus and create a supportive environment for 
attachment and pregnancy in a diabetic mouse model (81). The 

1  https://asia.ensembl.org/Bos_taurus/Location/View?r=28%3A45021867-

45052552;www.cattlegeneatlas.roslin.ed.ac.uk

2  https://asia.ensembl.org/Bos_taurus/Gene/Splice?db=core;g=ENSBTAG0

0000001060;r=2:61250084-61254502

CXC chemokines have been implicated in the pathology of 
endometritis in women but this field is outside the scope of the 
present article (82, 83).

Ewes treated with the CXCR4 antagonist AMD3100 from day 
12 to day 20 after breeding had diminished uterine levels of 
angiogenic factors which demonstrated the role of CXCL12-
CXCR4  in vascularisation of the utero-placental unit (84). In a 
second study of similar design in sheep, treatment with the 
antagonist AMD3100 from day 12 to day 35 after breeding was 
associated with increased autophagy induction at the fetal-placental 
unit (85). Also in sheep, intra-uterine treatment with antagonist 
AMD3100 from day 7 to day 14 after mating resulted in abnormal 
placental function (86). In a further study in sheep, expression of 
CXCL12 and CXCR4 were increased in conceptus and uterus around 
the time of attachment and placentation (87). CXCL12 expression 
in trophoblast and endometrial stroma of sheep was greater in 
natural mated ewes compared with ewes that received IVF embryos 
(88). The expression of CXCL12 in endometrial stroma was 
interpreted to indicate that CXCL12 can have a paracrine and/or 
autocrine action (88). CXCL12 and CXCR4 were reported to 
be associated with luminal epithelial cell remodeling in pigs (69, 89). 
In cattle, CXCR4 mRNA in endometrium did not change from day 
14 to day 50 in pregnant cows (90). CXCR4 mRNA was, however, 
increased in blood on day 20 to day 32 which coincided with the 
period of implantation in cattle. A secondary increased in blood 
CXCR4 mRNA from day 30 coincided with caruncular-cotyledonary 
placentome development in cattle. mRNA for immune cells CD8, 
TCR-β and TCR-γ was increased in blood and mRNA for CD8 and 
TCR-β was increased in endometrium on day 19 (90). It was 
proposed that blood-derived immune cells that express CXCR4 
populate the uterus and are involved in uterine inflammation 
associated with embryo attachment, vascularisation and placentome 
formation in cattle (90).

6 Summary

Fertilization rates in female cattle are typically greater than 75% 
with both natural mating and artificial insemination. The lack of 
fertilization per se is therefore not the major reason for reproductive 
failure in cattle. The main cause of reproductive failure in cattle, 
and indeed females of other species, is the large loss of embryos 
which occurs in the 21-day window from fertilization to attachment 
of the embryo to the uterus. As noted above, the establishment of 
a pregnancy relies on the combination of a good quality embryo 
with high developmental competence and a responsive uterus. This 
mini review has brought together information which highlights the 
important role of uterine receptivity in embryonic survival. A 
greater understanding of uterine receptivity is necessary for a 
meaningful step change in reproductive success in cattle. This 
could include studies involving endometrial biopsies in early stages 
of pregnancy for transcriptomic and proteomic profiling, linked 
with genotyping. This approach would however require significant 
resources. MicroRNAs are now known to regulate pathways 
associated with uterine receptivity and the interaction with 
CXCL12-CXCR4 is a further area of research (91). In a recent 
study, polymorphism in a region in proximity to the CXCR4 gene 
was suggested as a putative causal variant for fertility in highly 
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fertile Brahman cattle (24). This was consistent with a role for 
CXCL12-CXCR4 in uterine receptivity and fertility in cattle. There 
is a clear need to undertake mechanistic studies to demonstrate a 
role for the CXCL12-CXCR4 axis in uterine receptivity in cattle. 
There is also a need for large phenotype-genome/proteome studies 
to identify additional polymorphisms in the CXCL12-CXCR4 genes 
and other genes associated with uterine receptivity and fertility 
in cattle.
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FIGURE 1

Conceptual diagram on role of CXCL12-CXCR4 in crosstalk between the conceptus and uterus during the period when the uterine endometrium 
undergoes major structural and functional change in preparation for embryo attachment to the epithelium, implantation and pregnancy. CXCL12 
secreted by the conceptus acts at its CXCR4 receptor to induce changes at the uterus. CXCL12 additionally acts at CXCR4 receptors on immune cells 
(CD8, TCR-β, TCR-γ) recruited from blood and which are involved in inflammatory processes associated with the establishment of uterine receptivity. 
Support for the model of CXCL12-CXCR4 is in the cited literature.
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