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Introduction: Mycoplasma agassizii is a well-recognized etiologic agent of

upper respiratory tract disease in tortoises. Although frequently reported in both

captive and wild populations across Europe, its occurrence in Portugal had not

been previously documented. This study aimed to investigate the presence of

M. agassizii in apparently healthy captive tortoises in mainland Portugal and

to evaluate potential host- and management-related factors associated with

infection.

Methods: Oral swabs were collected from 84 tortoises of 13 species across

3 geographic regions. DNA extraction success and sample integrity were

confirmed by partial amplification of the tortoise mitochondrial 12S rRNA gene

in 92.9% of cases (78/84), which were then screened for M. agassizii using a

species-specific PCR targeting the 16S rRNA gene.

Results and discussion: The pathogen DNA was detected in 66.7% (52/78)

of individuals. Phylogenetic analysis confirmed species identification, with all

sequences forming a strongly supported monophyletic cluster together with M.

agassizii reference sequences. A significant association was observed between

tortoise genus and M. agassizii infection (p = 0.021), with Chelonoidis exhibiting

a significantly lower infection frequency than Testudo (p= 0.029). No statistically

significant associations were observed regarding geographic region, housing

origin, or group size. These results reveal a high frequency of M. agassizii

infection in apparently healthy captive tortoises in Portugal, emphasizing its

potential for silent transmission in group or mixed-species settings. Our findings

support the inclusion of this pathogen in the di�erential diagnosis of respiratory

disease in tortoises, even when clinical signs are absent and underscore the

need for routine molecular surveillance and strengthened biosecurity practices

to mitigate transmission risks and foster chelonian conservation e�orts.
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1 Introduction

Some Mycoplasma species are considered commensals in

chelonians, while others can cause severe upper respiratory tract

disease (URTD), leading to significant morbidity and mortality

in tortoises (1–4). Mycoplasma agassizii is the most commonly

reported etiologic agent of URTD in both free-ranging and captive

tortoises in the United States and Europe (3–9).

Mycoplasma agassizii infections may persist in chronic or

subclinical forms, with intermittent recurrence of clinical signs

such as rhinitis (ranging from mild to severe), nasal and ocular

discharges, periocular edema, and conjunctivitis (7–10). Lesions are

primarily localized to the nasal cavity, impairing their sense of smell

and consequently their ability to forage (8, 11).

Although high pathogen loads are often required to induce

disease, subclinically infected tortoises can serve as long-term

carriers (8, 12–15). This persistence is likely associated with

innate immune responses that reduce but do not eliminate

infection, allowing recrudescence under stress conditions (13, 16–

18). Persistent infection, combined with pathogen transmission

among individuals, contributes to the maintenance and spread of

M. agassizii within populations (12, 13).

Transmission occurs mainly through direct contact, especially

during courtship, mating, or aggressive interactions. Although

individuals exhibiting clinical signs are more likely to transmit

the pathogen, asymptomatic carriers also play a role in its spread

(8, 19, 20). Infection and clinical signs are more frequently

reported in captive tortoises, such as those in zoos, rescue

centers, breeding facilities, and private collections, likely reflecting

increased surveillance and more frequent health assessments.

Nevertheless, the close and prolonged contact characteristic of

captive settingsmay also play a significant role in transmission. This

has implications for both animal welfare and disease management,

with considerable treatment costs (12, 21–25).

Importantly, M. agassizii poses a threat to the conservation of

wild tortoise populations, particularly those already impacted by

anthropogenic pressures (7, 8, 23, 26). Tortoises living near human

settlements show higher prevalence compared to those in remote

areas with minimal human contact (22, 27), suggesting that the

escape or intentional release of captive tortoises may introduce

M. agassizii and other pathogens, such as herpesvirus, into naïve

wild populations (8, 21, 22, 28, 29). Habitat degradation due to

agriculture, forestry, mining, urban development, and pollution

may further disrupt natural behavior and cause physiological stress,

increasing the risk of URTD outbreaks (8, 22, 27, 30). Other

stressors include handling, translocations, interactions or injuries

involving domestic animals or vehicles, and exposure to waste

materials (16, 30–32).

Pathogen surveillance in wildlife is particularly challenging in

long-lived hosts and for persistent infections (13). M. agassizii is

not host-specific and has been detected in several species of free-

ranging and captive tortoises (4, 7, 8, 25, 26, 33), raising concerns

about interspecies transmission (4, 33). Effective diagnosis and

monitoring are therefore crucial, especially in captive populations,

to prevent further spread. This is particularly important in the

pet trade and conservation programs involving reintroductions,

where undetected infections could compromise wild populations.

Surveillance of captive tortoises can yield valuable data on the

epidemiology of M. agassizii and help clarify disease mechanisms,

ultimately supporting the prevention and control of URTD in both

captive and wild animals (7, 16, 34, 35).

While M. agassizii has been reported in both wild and captive

tortoises across Europe, no data are currently available on its

occurrence in Portugal. This study aimed to investigate the

presence of M. agassizii in apparently healthy captive tortoises

in mainland Portugal and to evaluate potential host- and

management-related factors associated with infection.

2 Materials and methods

2.1 Sample collection

A cross-sectional survey was conducted between March 2022

and June 2023 in private households (not for commercial or

breeding purposes), breeding facilities, and animal parks located

in the North, Lisbon and Tagus Valley, and South regions of

mainland Portugal (Figure 1). Sterile flocked oral swabs were

collected from 84 apparently healthy captive adult tortoises (i.e.,

no clinical signs compatible with respiratory or other infections

were observed during clinical evaluation) of 13 different species,

including Aldabrachelys gigantea (n = 3), Astrochelys radiata (n =

4), Centrochelys sulcata (n = 14), Chelonoidis carbonarius (n = 8),

Geochelone elegans (n = 1), Indotestudo elongata (n = 2), Kinixys

belliana (n = 1), Malacochersus tornieri (n = 3), Stigmochelys

pardalis (n = 7), Testudo graeca (n = 26), Testudo hermanni (n

= 4), Testudo horsfieldii (n = 3), and Testudo marginata (n = 2).

These animals were distributed across 23 enclosures belonging to

10 different households or facilities. Animals were selected based

on availability and accessibility, following a convenience sampling

strategy. Immediately after collection, each swab was placed dry

(i.e., without transport medium) in a sterile 2ml microtube.

Samples were kept refrigerated (4◦C) for a maximum of 24 h after

collection and then stored at−80 ◦C until DNA extraction.

Additionally, each animal caretaker completed a questionnaire

designed to gather information on the general health status of the

animals, and relevant housing and husbandry practices.

The study was approved by the Ethics and Animal Welfare

Committee (CEBEA) of the Faculty of Veterinary Medicine,

Lusófona University—Lisbon University Centre (approval number

5/2022). Written informed consent was obtained from all owners

or legal detainers prior to sampling.

2.2 DNA extraction and chelonian
housekeeping gene PCR

DNA was extracted from oral swabs using the Invisorb R© Spin

Universal Kit (Invitek Molecular, Berlin, Germany), according to

the manufacturer’s instructions.

Tortoise nucleic acid was detected using primers targeting a

conserved region of the mitochondrial 12S rRNA gene (Table 1), as

previously described (36). PCR reactions were performed in a total

volume of 25 µl, containing 12.5 µl of NZYTaq II 2x Green Master
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FIGURE 1

Geographic regions of sample collection.

TABLE 1 Primers used to amplify tortoise andMycoplasma agassizii DNA.

Target Primer sequences (5′-3′) Amplicon size References

mt 12S rRNA gene Fw: AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT 386 bp (36)

Rev: TGACTGCAGAGGGTGACGGGCGGTGTGT

16S rRNA gene Fw: CCTATATTATGACGGTACTG 576 bp (5)

Rev: TGCACCATCTGTCACTCTGTTAACCTC
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Mix (NZYTech R©, Lisbon, Portugal), 15 pmol of each primer, 5

µl of total DNA, and sterile ultrapure water to complete the final

volume. Non-template controls (NTC) containing water instead of

DNA were included in each run. Amplification was carried out

on a T100TM Thermal Cycler (Bio-Rad, Hercules, CA, USA) with

the following conditions: initial denaturation at 94◦C for 5min;

43 cycles of 94◦C for 30 s, 52◦C for 45 s, and 72◦C for 1min;

followed by a final extension at 72◦C for 6min. PCR products

were visualized by electrophoresis on 1.5% (w/v) agarose gels under

UV illumination.

2.3 Molecular detection of M. agassizii

Only DNA samples in which amplification of the 12S rRNA

gene fragment was successfully achieved were screened for M.

agassizii by PCR targeting the 16S rRNA gene, using species-specific

primers previously described by Brown et al. (5) (Table 1).

Reactions were performed in a final volume of 25µl, containing

12.5 µl of NZYTaq II 2x Green Master Mix (NZYTech R©), 10

pmol of each primer, 5 µl of DNA, and sterile ultrapure water

to complete the final volume. NTC and positive controls (DNA

from a confirmed M. agassizii sample) were included in each run.

Amplification was carried out on a T100TM Thermal Cycler (Bio-

Rad) using the following conditions: initial denaturation at 94◦C

for 5min; 50 cycles at 94◦C for 45 s, 55◦C for 1min, and 72◦C for

45 s; followed by a final extension at 72◦C for 10min. Amplicons

were visualized by electrophoresis on 1.5% (w/v) agarose gels under

UV illumination.

All PCR products with amplicons of the expected size were

purified using the Jetquick PCR Product Purification Spin Kit

(Genomed GmbH, Bad Oeynhausen, Germany), following the

manufacturer’s instructions. Purified products were submitted for

Sanger sequencing at STABVida R© (Caparica, Portugal). Sequence

data were analyzed using the FinchTV software (Geospiza R©),

and nucleotide sequence similarity searches were performed with

the BLASTn tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (37). The

nucleotide sequences obtained during this study were deposited in

the DDBJ/ENA/GenBank under the accession numbers LC878613-

LC878662.

2.4 Phylogenetic inference

Multiple sequence alignments were generated using the G-INS-

i iterative refinement method implemented in MAFFT v7 (38). The

resulting alignments were treated with Gblocks (39), via SeaView

v5.0.5, using default parameters. Phylogenetic reconstruction was

performed using the maximum likelihood method implemented

in IQ-TREE v1.6.12, with the best-fit substitution model selected

according to the Bayesian Information Criterion. Branch support

was assessed using the bootstrap method with 1,000 replicates,

with values ≥75% considered indicative of strong topological

support. Trees were visualized and edited for display using

iTOL v6 (40). A list of all Mycoplasma spp. sequences included

in the phylogenetic analysis, along with associated metadata

(i.e., strain name or molecular ID, host, country of origin,

GenBank accession number, and type strain status), is provided

in Supplementary Table 1.

2.5 Statistical analysis

Data were compiled in Microsoft Excel v365 and analyzed

using IBM SPSS Statistics v25. Exploratory and descriptive analyses

were conducted to characterize the dataset. Relative frequencies

of M. agassizii-positive cases were calculated, and 95% confidence

intervals (CI) were obtained using Wilson’s method via the

OpenEpi online tool (41).

Associations between categorical variables (i.e., tortoise species,

geographic region, origin, and housing type) and M. agassizii

infection status were explored using the Chi-square (χ2) test,

Fisher’s exact test (for 2× 2 tables), or the Fisher–Freeman–Halton

exact test (for larger contingency tables), as appropriate. Adjusted

standardized residuals (ASR) were determined to identify cells

with significant contributions to the overall test result, with ASR

values exceeding ±1.96 considered statistically significant (α =

0.05). Pairwise comparisons were conducted between categories of

variables that showed significant overall differences.

The Mann–Whitney U test was used to evaluate differences

in the number of animals per enclosure between groups defined

by M. agassizii infection status. A p-value < 0.05 was considered

statistically significant for all analyses.

3 Results

Partial amplification of the mitochondrial 12S rRNA gene,

employed as a host-specific internal control, was successful in

92.9% (78/84) of the sampled tortoises. These 78 samples were

considered suitable for further molecular screening ofM. agassizii.

Mycoplasma agassizii 16S rRNA gene fragment was detected

in 66.7% (52/78) of the screened individuals (Table 2). BLASTn

analysis of the obtained sequences showed 100% identity and 99%

query cover withM. agassizii reference sequences available in public

databases (e.g., GenBank accession no. KY212532).

Phylogenetic analysis revealed that all 16S rRNA sequences

obtained in this study segregated into a well-supported

monophyletic cluster, exclusively composed of M. agassizii

reference sequences (Figure 2).

Infection frequencies across species ranged from 0.0% in K.

belliana (n = 1) to 100% in several species, including A. radiata (n

= 4), I. elongata (n= 2),M. tornieri (n= 3), G. elegans (n= 1), and

T. horsfieldii (n= 3). Although these species had small sample sizes,

T. graeca had the highest number of individuals testing positive for

M. agassizii DNA (19/26).

Among genera with at least three sampled individuals,

Testudo showed the highest detection frequency (74.3%; 26/35). A

statistically significant association was observed between tortoise

genus and the presence of M. agassizii DNA (p = 0.021; Table 2).

Pairwise comparison showed that Chelonoidis had a significantly (p

= 0.029) lower frequency (25.0%, 2/8; ASR=−2.6,) ofM. agassizii

infection compared to other genera, particularly in contrast to

Testudo (74.3%, 26/35).

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2025.1652362
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Louro et al. 10.3389/fvets.2025.1652362

TABLE 2 Molecular frequency ofMycoplasma agassizii infection in captive chelonians by species, origin, region, and housing conditions.

Variables/categories Tested Positive 95% CI p-value/ASR

Genus/species, n (%) p= 0.021

Aldabrachelys 3 (3.8) 1 (33.3) 6.2–79.2 −1.2

A. gigantea 3 (100) 1 (33.3) 6.2–79.2

Astrochelys 4 (5.1) 4 (100) 51.0–100 1.5

Astrochelys radiata 4 (100) 4 (100) 51.0–100

Centrochelys 14 (17.9) 7 (50.0) 26.8–73.2 −1.5

C. sulcata 14 (100) 7 (50.0) 26.8–73.2

Chelonoidis 8 (10.3) 2 (25.0)a 7.1–59.1 −2.6

C. carbonarius 8 (100) 2 (25.0) 7.1–59.1

Geochelone 1 (1.3) 1 (100) 20.7–100 0.7

G. elegans 1 (100) 1 (100) 20.7–100

Indotestudo 2 (2.6) 2 (100) 34.2–100 1.0

I. elongata 2 (100) 2 (100) 34.2–100

Kinixys 1 (1.3) 0 (0.0) 0.0–79.3 −1.4

K. belliana 1 (100) 0 (0.0) 0.0–79.3

Malacochersus 3 (3.8) 3 (100) 43.9–100 1.2

M. tornieri 3 (100) 3 (100) 43.9–100

Stimochelys 7 (9.0) 6 (85.7) 48.7–97.4 1.1

S. pardalis 7 (100) 6 (85.7) 48.7–97.4

Testudo 35 (44.9) 26 (74.3)a 57.9–85.9 1.3

T. graeca 26 (74.3) 19 (73.1) 53.9–86.3

T. hermanni 4 (11.4) 3 (75.0) 30.1–95.4

T. horsfieldii 3 (8.6) 3 (100) 43.9–100

T. marginata 2 (5.7) 1 (50.0) 9.5–90.6

Geographic region, n (%) p= 0.145

North 10 (12.8) 4 (40.0) 16.8–68.7 −1.9

Lisbon and Tagus Valley 37 (47.4) 27 (73.0) 57.0–84.6 1.1

South 31 (39.7) 21 (67.7) 50.1–81.4 0.2

Origin, n (%) p= 0.651

Animal park 31 (39.7) 21 (67.7) 50.1–81-4 0.2

Breeder 28 (35.9) 17 (60.7) 42.4–76.4 −0.8

Private owner 19 (24.4) 14 (73.7) 51.2–88.2 0.7

Individual housing, n (%) p= 0.342

No 72 (92.3) 47 (65.3) 53.8–75.3 0.9

Yes 6 (7.7) 5 (83.3) 43.7–97.0 −0.9

Enclosure group size, median

(IQR)

4.0 4.0 (4.8) p= 0.801

Total 78 52 (66.7) 55.5–76.1

ap= 0.029.

ASR, Adjusted standardized residuals; CI: 95%, Confidence interval.

Positive cases were detected across all sampled regions in

mainland Portugal. The Lisbon and Tagus Valley region recorded

the highest number of infected tortoises (73.0%, 27/37), followed

by the South (67.7%, 21/31) and the North (40.0%, 4/10).

However, these regional differences were not statistically significant

(p= 0.145).
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FIGURE 2

Maximum likelihood phylogenetic tree inferred from Mycoplasma spp. 16S rRNA gene sequences (509 bp). Tree reconstruction was performed in

IQ-TREE using the TVMe+I+G4 substitution model, selected as the best-fitting model based on the Bayesian Information Criterion. Node support

was assessed using 1,000 bootstrap replicates, and values ≥75% are shown at the corresponding nodes. The tree was rooted using a Ureaplasma

urealyticum sequence (GenBank accession number: L08642). Sequences retrieved from public databases are labeled with species name and

GenBank accession number; type strains are indicated with a superscript “T” following the species name. Sequences obtained in this study are

marked with an asterisk and include the tortoise identifier and GenBank accession numbers LC878613–LC878662. Branch lengths are proportional

to the number of nucleotide substitutions per site, as indicated by the internal scale bar.

Mycoplasma agassizii DNA was detected in tortoises from all

housing origins: 73.7% (14/19) of private households, 67.7% (21/31)

of animal parks, and 60.7% (17/28) of breeders. No statistically

significant association was found between housing origin and

infection status (p= 0.651).

Regarding housing conditions, no association was found

between M. agassizii DNA detection and enclosure group size or

individual housing. The median number of animals per enclosure

did not differ significantly between infected and uninfected

tortoises (p = 0.801), nor was any association found with being

housed individually (p= 0.342).

4 Discussion

While M. agassizii has been previously reported in both wild

and captive tortoises across Europe, this is the first comprehensive

study to assess its presence in captive tortoises kept under

diverse housing origins and conditions in mainland Portugal. The

high detection frequency (66.7%; 52/78) aligns with M. agassizii

transmission dynamics, which rely on prolonged direct contact

(typically >24–48 h) for successful spread (12). Such conditions

are frequently met in captive settings due to co-housing and

group management practices (12, 21–25). However, this percentage
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is higher than those reported in both free-ranging and captive

tortoises in other European countries, where prevalence ranged

from 0 to 42% (4, 7, 25, 42, 43). Notably, unlike previous studies,

none of the animals tested in this study exhibited clinical signs of

URTD, suggesting subclinical or chronic infections. By acting as

reservoirs, these individuals can contribute to pathogen persistence

and spread, complicating sanitary control, especially given the

lower pathogen loads often observed in subclinical cases (8, 12–15).

This highlights the importance of molecular screening, even in the

absence of clinical signs, particularly during quarantine, relocation,

or introduction into new enclosures.

Although quarantine periods of 12–18 months are

recommended (8, 44), they are often impractical or omitted

altogether, especially in illicit trade contexts. Furthermore,

subclinical infections may remain undetected throughout

quarantine. Therefore, rapid molecular screening at intake, using

oral swabs (a non-invasive method compatible with the epithelial

tropism of mycoplasmas) offers a practical approach for M.

agassizii routine testing.

Most animals in this study were not housed individually,

increasing the risk of horizontal transmission. This raises the

possibility that some individuals may have become infected only

after being introduced in mixed enclosures, thereby underlining

the risk of within-collection transmission. Longitudinal follow-up

of the six enclosures where both positive and negative individuals

were detected could provide further insight into transmission

dynamics and infection timelines.

Interestingly, in this study, tortoises of the genus Testudo

exhibited a significantly higher infection frequency than those of

the genus Chelonoidis. Although tortoises are not autochthonous to

Portugal, Testudo species are native to neighboring Mediterranean

countries, such as Spain, France, Italy, and Greece (45). The

decline of wild Testudo populations is well documented, with IUCN

conservation statuses ranging from Near Threatened to Critically

Endangered (3, 43). These populations face numerous threats

including habitat loss and fragmentation, urban development,

predation, delayed maturity, low fecundity, illegal pet trade and

movement of exotic animals, competition with exotic tortoise

species, and infectious diseases such as URTD (7, 8, 23, 46, 47).

The international pet trade exacerbates conservation challenges

by enabling long-distance movement of infected individuals

with limited or no sanitary oversight (35, 48). These flows of

individuals result in open routes for the expansion of emerging

infectious pathogens, such asM. agassizii. Given its high prevalence

in captive animals, the introduction of infected individuals

into the wild, whether intentional or accidental, could have

devastating consequences for naïve wild populations. Studies have

shown higher M. agassizii prevalence in tortoises associated with

proximity to human settlements, likely reflecting contacts with

captive or released individuals (22, 27). Ballouard et al. (42)

reported high M. agassizii infection rates in captive and vagrant

exotic tortoises co-occurring with native T. h. hermanni in urban

or peri-urban areas in southeastern France. These findings raise

concerns about the uncontrolled introduction of exotic pet tortoises

and the potential transmission from captive to free-ranging

tortoises. Conversely, the illegally harvesting of wild tortoises can

also introduce M. agassizii into captive settings, thus perpetuating

the transmission cycle.

Cross-species transmission of M. agassizii has been

documented (4, 33), and many positive animals in this study

were housed in mixed-species enclosures, supporting the

likelihood of interspecies transmission. The fact that M. agassizii

was detected in 12 different tortoise species, including C. sulcata,

C. carbonarius, I. elongata, and M. tornieri, confirms that this

pathogen is not species-specific. This contrasts with recent

findings from Galosi et al. (7), who did not detect the pathogen

in these species in Italy. Further research on both mixed-species

and species-specific enclosures may provide new insights into

cross-species transmission dynamics.

Several studies have reported URTD-like syndromes in

mycoplasma-positive turtles of the family Emydidae (2, 25, 49–

52). Although M. agassizii primarily affects tortoises, its full host

range and transmission dynamics remain incompletely understood.

There is some indication of Mycoplasma spp. being detected in

freshwater turtles, including unpublished data suggesting PCR

detection of M. agassizii in Trachemys scripta elegans (8). Further

studies are needed to assess the susceptibility of other chelonian

species and to evaluate potential risks associated with interspecific

contact in shared environments. Given the ecological overlap

between tortoises and freshwater turtle populations, investigating

the potential for cross-species transmission remains an important

area for future research.

Despite the absence of clinical signs in the tortoises sampled for

this study,M. agassizii is recognized as the primary etiological agent

of URTD in tortoises (3–9). This infection, even when subclinical,

has the potential to progress to overt disease under certain

stressors or immunosuppressive conditions (7–10, 13, 16–18).

The high frequency observed here reinforces the need to include

M. agassizii in differential diagnoses of respiratory conditions

in tortoises, particularly in captive settings, new acquisitions, or

individuals with recent chelonian contact. This study provides

valuable epidemiological evidence to inform clinical decision-

making and improve biosecurity protocols in both private and

institutional collections.

5 Conclusion

This study provides the first evidence of widespread M.

agassizii infection among captive tortoises in mainland Portugal.

The pathogen was detected in multiple tortoise species, including

species native to the Mediterranean region, yet none exhibited

clinical signs at the time of sampling. This highlights the potential

role of subclinical carriers in maintaining and spreading the

infection, especially in settings with group housing or mixed-

species enclosures. The international reptile trade, coupled with

insufficient sanitary oversight, remains a driver of pathogen

dissemination, posing significant risks to both native and non-

native chelonian populations.

Given M. agassizii’s established role in URTD and its potential

to cause clinical illness under stress or immunosuppression, the

results presented here support its inclusion in the differential

diagnosis of respiratory disease in tortoises, even in the absence

of clinical signs. Furthermore, our results underscore the

importance of incorporating molecular diagnostics as a standard

practice in routine veterinary care and tortoise collection

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2025.1652362
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Louro et al. 10.3389/fvets.2025.1652362

management. This study offers valuable insights for guiding

effective strategies to prevent pathogen transmission and protect

vulnerable tortoise populations.
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