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Introduction: Methane emissions from ruminants, driven by methanogenic 
archaea, are a major source of greenhouse gases. Current strategies often 
rely on metagenomic (MG) abundance as a proxy for methanogenic potential, 
despite evidence of a disconnect with in-situ activity.
Methods: We analyzed paired MG and meta-transcriptomic (MT) datasets 
from 48 bovine rumen samples. Comparative analyses were performed 
to assess microbial taxonomic abundance versus transcriptional activity. A 
Methanogenesis Pathway Expression Activity Index (MPEAI) was developed by 
integrating expression of four KEGG modules, and Random Forest modeling 
was applied to identify microbial taxa associated with MPEAI.
Results: MG and MT profiles showed incongruence in both microbial community 
composition and diversity, with MT revealing reduced archaeal transcriptional 
activity. Dominant archaeal genera (Methanobrevibacter, Methanocaldococcus) 
were transcriptionally suppressed relative to MG abundance (p < 0.001). In contrast, 
methanogenesis modules (M00356, M00567, M00357, M00563) exhibited higher 
expression in MT than MG (p < 0.0001), indicating pathway-level hyperactivity 
despite archaeal suppression. Random Forest analysis linked MPEAI variation to 
several Treponema species, which showed significant negative correlations with 
methanogenic pathway activity (r = −0.36 to −0.57, p < 0.01).
Conclusion: Rumen methanogenesis is regulated by functional pathway 
activity rather than archaeal abundance. The consistent negative associations 
of Treponema species with methanogenesis highlight their potential as 
probiotic candidates for methane mitigation and underscore bacterial-archaeal 
interactions in shaping rumen methane production.
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1 Introduction

Archaea represents a significant component of the gut microbiota, with established roles 
in, host health (1, 2), and nutrient metabolism (3, 4). Previous research demonstrates that 
archaea engage in dynamic interrelationships with bacteria and fungi within the intestinal 
ecosystem (5), and contribute to the stability of the gut environment. Rumen methanogenesis, 
such as Methanobrevibacter, Methanocaldococcus, and Methanosarcina, an essential microbial 
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process in ruminants, converts multiple substrates—including 
hydrogen (H₂), carbon dioxide (CO₂), acetate, methanol, and 
methylamines—into methane (CH₄) (6–8). This process not only 
supports anaerobic digestion but also contributes to global greenhouse 
gas emissions (9). Methane has global warming potential 28–36 times 
higher than CO₂ over a century (10, 11). Methane emissions from 
ruminant livestock constitute a substantial portion of anthropogenic 
greenhouse gases, acting as a major driver of climate change (12). 
Therefore, understanding and mitigating rumen methane production 
while maintaining animal productivity and health is critical research.

As a core method in current gut microbiome studies, metagenomic 
sequencing is widely used to reconstruct microbial genomes, microbial 
diversity and analyze functional diversity (13–15). Current methane 
mitigation strategies predominantly rely on methanogen abundance 
derived from metagenomic profiling as a proxy for methanogenic 
potential. However, emerging evidence reveals a fundamental disconnect 
between genomic abundance and in-situ functional activity (16, 17). For 
instance, in sheep with contrasting methane yield phenotypes, meta-
transcriptomic expression of hydrogenotrophic methanogenesis pathway 
genes was significantly higher in high-methane yield animals—even 
when the corresponding metagenomic abundance showed no significant 
differences (18). The extent to which MT of core methanogens and 
pathways align with their MG abundance in cattle rumen remains 
unresolved (16, 19). Recent studies have highlighted probiotics as 
promising agents for mitigating methane emissions in ruminants, 
focusing particularly on lactic acid bacteria (LAB) and propionate-
producing bacteria (PAB) (20, 21). Species such as Lactiplantibacillus 
plantarum, Ligilactobacillus ruminis, and Lactobacillus amylovorus have 
been explored due to their ability to alter fermentation patterns and 
reduce hydrogen availability to methanogenic archaea (22). Additionally, 
Megasphaera elsdenii, Selenomonas ruminantium, and 
Acidipropionibacterium thoenii demonstrate efficacy by promoting 
propionate pathways, thereby diverting hydrogen away from methane 
production (21). Despite promising in vitro results, in vivo applications 
remain inconsistent due to strain persistence issues, variable dosage 
efficacy, and interactions with host microbiota and diets (22). Meta-
analysis indicates multi-strain probiotics outperform single-strain 
supplements, but practical implementation continues to face significant 
challenges, including strain selection, dosage optimization, and context-
dependent effectiveness (23). Therefore, identifying novel probiotic 
candidates with targeted functions, such as fiber-degrading capacity and 
hydrogen-modulation potential, is crucial.

This study aims to reveal the relationship between rumen 
microbial community composition (taxonomic abundance) and the 
functional gene expression of core methanogenesis pathways, while 
identifying key microbial taxa associated with gene expression 
associating with active methane production. To address the critical 
gap in linking genomic potential to in-situ functional activity, 
we introduce the MPEAI, integrating the coordinated expression of 
four central KEGG modules: hydrogenotrophic (M00567), 
methylotrophic (M00356), acetoclastic (M00357), and cofactor 
synthesis (M00563) modules. Leveraging paired metagenomic (MG) 
and meta-transcriptomic (MT) datasets, our integrated analytical 
strategy: (1) quantifies taxonomic abundance and pathway expression; 
(2) compares genomic abundance versus transcriptional activity to 
identify functional discrepancies; and (3) applies Random Forest 
modeling to pinpoint microbial drivers of methanogenic 
pathway activity.

2 Materials and methods

2.1 Data collection and pre-processing

The study incorporated 48 bovine rumen microbial samples 
encompassing both metagenomic and meta-transcriptomic sequencing 
datasets (24). The raw sequencing dataset was obtained from the NCBI 
Sequence Read Archive (SRA) under accession number PRJNA393057. 
Raw sequencing data underwent preprocessing through the Kneaddata 
pipeline (v0.7.2) with three critical phases: Quality trimming and adapter 
removal were initially performed using Trimmomatic (v0.39) (25), 
followed by host-derived sequence elimination through alignment against 
the bovine reference genome (GenBank accession: GCF_002263795) via 
Bowtie 2 (Version 2.5.3) (26). To address elevated ribosomal RNA (rRNA) 
abundance in meta-transcriptomic profiles, SortMeRNA (v4.3.2) (27) 
paired with the SMR v4.3 refined database were used to remove rRNA 
sequences from both data types, thereby mitigating analytical bias in 
subsequent selected probiotic taxon expression quantification. The 
resultant high-fidelity cleaned reads served as the foundation for 
downstream bioinformatic exploration.

2.2 Quantification of methanogenic 
pathway activity

The gene abundance and expression were quantified using salmon 
(v1.3.2; option l A). Methanogenic pathway activity was quantified 
using a weighted Z-score approach based on metagenomic sequencing 
data. Genes with transcript per million (TPM) values > 1 in ≥ 10% of 
samples were retained to ensure robust expression detection. Core 
methanogenesis-related genes were identified through KEGG module 
annotation (M00567, M00357, M00356, M00563) using eggNOG 
database annotations and eggnog-mapper (28).

A dual normalization strategy was employed: gene expression 
levels were standardized across samples using Z-score transformation:
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Weighted pathway activity for each sample was then computed by 
integrating Z-scores and weights across all annotated genes in the 
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where   denotes the set of pathway-associated genes. Finally, 
cross-sample normalization was performed to ensure comparability:
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where µA  and σA  are the mean and standard deviation of raw 
activity scores across all samples. This approach integrates 
coordinated expression patterns of pathway-associated genes while 
enhancing statistical robustness through variance-
sensitive weighting.

2.3 Probiotic taxonomy profiling and 
diversity calculation

Taxonomic classification of metagenomic and meta-
transcriptomic data was performed using Kraken2 (v2.1.2) (29) with 
parameter of “--paired.” Clean reads were aligned against archaeal 
reference genomes from the Genome Taxonomy Database (GTDB 
release 207) (30) which was pre-processed via the Struo2 pipeline (31) 
with default parameters prior to analysis.

Taxonomic quantification data of archaeal and bacterial species were 
processed through the QIIME2 pipeline (2024.5) (32). Sequence reads 
underwent rarefaction to normalize sampling depth, followed by 
calculation of relative abundance for archaeal and bacterial communities. 
To assess archaeal diversity, a rarefied species-level count matrix was 
re-imported into QIIME2 for alpha diversity (Shannon Index).

2.4 Statistical validation

Random Forest Model for Identifying Key Microbes Associated 
with Methanogenic Pathway Activity with the following key 
parameters: mtry = 3, and ntree = 10,000. Between-group differences 
in diversity metrics were evaluated using the Kruskal-Wallis 
nonparametric test, while community structure variation was tested 
via Analysis of Similarities (ANOSIM). Statistical significance was 
defined at p ≤ 0.05 for all analyses. Data visualization was 
implemented with the ggplot2 package in R (v4.3.2).

3 Results

3.1 Incongruence between genomic 
abundance and transcriptional activity in 
rumen methanogens

To investigate the relationship between rumen microbial 
communities and methanogen expression activity in cattle, paired 
metagenomic and meta-transcriptomic datasets from 48 cattle in Li 
et  al.’s study were analyzed. Taxonomic profiling using Kraken2 
(v2.1.2) and the GTDB (release 207) database revealed incongruence 
between the relative abundance rankings of microbial species in MG 
and MT datasets (Figures 1a,b). The top five species by metagenomic 
relative abundance were Methanobrevibacter sp900314635 (3.14%), 
Prevotella sp900314935 (2.08%), Prevotella sp900316985 (1.36%), 
Succiniclasticum sp900315925 (1.29%), and Sodaliphilus sp900320055 

(1.20%). In contrast, the metatranscriptomic profiles prioritized 
Treponema D sp004554075 (1.97%), UBA2810 sp002351705 (1.78%), 
RUG023 sp900315435 (1.24%), Fibrobacter sp001603905 (1.24%), and 
Treponema D sp902789325 (1.19%). Notably, most highly abundant 
taxa were assigned GTDB-specific identifiers, indicative of uncultured 
microbial lineages, suggesting a substantial reservoir of uncultivated 
microorganisms in the bovine rumen.

Comparative analysis of species-level alpha diversity (Shannon index) 
demonstrated significantly higher diversity in MG compared to MT 
datasets (Wilcoxon rank-sum test, p < 0.05; Figure 1c). Previous studies, 
such as Peng et al., have identified archaeal taxa (e.g., Methanobrevibacter 
spp.) with high transcriptional activity in domesticated animals. However, 
the current findings suggest an overall transcriptional suppression state 
within the rumen microbial community of cattle.

Archaea, recognized as the primary methanogenic 
microorganisms, are dominated in the bovine gut by genera such as 
Methanobrevibacter and Methanocaldococcus according to prior 
studies. Comparative analysis of these genera revealed markedly 
higher relative abundances in metagenomic profiles compared to their 
transcriptional activity in meta-transcriptomic (MT) datasets 
(p < 0.001; Figures 1d,e). Specifically, Methanobrevibacter exhibited a 
metagenomic abundance of 5.91% (MG) versus 1.11% (MT; 
Figure 1d), while Methanocaldococcus showed 0.0019 (for MG) vs. 
0.00070% (for MT; Figure 1e). This pronounced disparity underscores 
a systemic transcriptional suppression of methanogenic archaea 
within the rumen microbial community, aligning with the observed 
overall reduction in microbial expression activity.

Based on meta-transcriptomic profiling, this study observed that 
although the overall functional gene expression of dominant 
methanogens was suppressed, significantly enhanced activity was 
detected in key methanogenesis-associated metabolic modules. 
Specifically, the total expression levels of four critical modules in 
meta-transcriptomes exhibited statistically higher values (p < 0.0001) 
than their relative abundance in metagenomes: M00356 [Methyl-
coenzyme M reductase, core methanogenesis; TPM (MT) = 528.16 vs. 
TPM (MG) = 174.71; Figure 1f], M00357 [Tetrahydromethanopterin 
S-methyltransferase, hydrogenotrophic pathway; TPM 
(MT) = 1647.40 vs. TPM (MG) = 746.32; Figure  1g], M00563 
(Acetyl-CoA decarbonylase synthase, acetoclastic pathway; TPM 
(MT) = 532.78 vs. TPM (MG) = 160.07; Figure  1h), and M00567 
(Coenzyme M biosynthesis, methanogen cofactor synthesis; TPM 
(MT) = 1940.07 vs. TPM (MG) = 808.02; Figure 1i).

3.2 Identification of potential 
methane-mitigating probiotics via 
functional gene expression profiling

Previous studies have often analyzed methanogen abundance as a 
proxy for methanogenic potential. However, our analysis revealed that 
methanogen abundance often appeared lower than, or did not consistently 
correlate with, the functional expression of methanogenesis pathways. 
Conversely, the expression of genes comprising key methanogenesis-
related metabolic modules demonstrated robust activity. Therefore, 
we established the Methanogenesis Pathway Expression Activity Index 
based on the gene expression levels of four key KEGG modules associated 
with methanogenesis (M00567, M00357, M00356, and M00563). This 
index was used to identify microbial species associated with the activity 
of these methanogenic pathways.
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Random Forest model was employed to identify microbial species 
explaining variance in MPEAI (Supplementary Figure S1). Among the 
top 30 species ranked by feature importance, only five corresponded 

to currently known cultivated species, while the remaining 25 were 
represented solely by Genome Taxonomy Database (GTDB) identifiers 
(indicating they are yet-uncultivated). Pearson correlation analysis 

FIGURE 1

Microbial community composition and functional comparisons between metagenomic (MG) and metatranscriptomic (MT) datasets. (a) boxplot 
displaying the top 15 microbial taxa ranked by mean relative abundance in metagenomic profiles. (b) Corresponding taxonomic distribution derived 
from metatranscriptomic data. (c) Comparative analysis of species-level alpha diversity (Shannon index) between MG and MT samples. (d) Differential 
abundance of the genus Methanobrevibacter across MG and MT datasets. (e) Relative abundance variations of Methanocaldococcus genus between 
MG and MT profiles. Abundance and expression of methanogenesis-associated modules was compared, including Module M00356 (f), M00357 (g), 
M00563 (h), and M00567 (i). Asterisks denote statistical significance determined by Wilcoxon (*p < 0.05, ***p < 0.001, ****p < 0.0001).
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revealed that 11 of these species exhibited significant negative 
correlations with MPEAI. These included UBA1240 sp016285185, 
Treponema D succinifaciens, and nine other yet-uncultivated 
Treponema species (Supplementary Figure S2).

Due to the prevalence of potentially taxonomically unresolved (as 
indicated by GTDB identifiers) and currently uncharacterized species 
among the uncultivated organisms identified, which precludes functional 
follow-up, we excluded uncultivated species and repeated the Random 
Forest analysis. Following the exclusion of uncultivated taxa, the Random 
Forest model identified the three species classified under the genus Evtepia 
as the top features positively associated with MPEAI (Figure 2a). Species 
exhibiting significant negative correlations with MPEAI included: 
Treponema D bryantii D (Figure 2b; R = − 0.449, p = 0.00137), Treponema 

D bryantii B (Figure 2c; R = − 0.441, p = 0.0013), and Treponema D bryantii 
A (Figure 2d; R= − 0.486, p < 0.001), Treponema D succinifaciens (Figure 2e; 
R = − 0.570, p < 0.001), Treponema D porcinum (Figure 2f; R = − 0.439, 
p = 0.0018), and Treponema D pectinovorum (Figure  2g; R = − 0.363, 
p = 0.0111). These results indicate a consistent negative association between 
members of the genus Treponema and MPEAI, suggesting their potential 
role as probiotics for mitigating methane production.

4 Discussion

Rapid global population growth necessitates a 73% increase in milk 
and meat production by 2050 to satisfy rising food demand (33). 

FIGURE 2

Identification of key rumen microorganisms associated with the methanogenesis index using a random forest model. (a) Top 30 important bacterial 
species identified by the random forest model based on lncNodepurity importance ranking. (b–g) Scatter plots demonstrate a significant negative 
correlation between the species Treponema spp. and the methanogenesis index. r represents the Pearson correlation coefficient. y-axis represents the 
relative abundance of corresponding species. x-axis represents the Methanogenesis Pathway Expression Activity Index (MPEAI).
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Simultaneously, humanity must urgently address the critical challenge of 
curbing escalating greenhouse gas emissions to mitigate climate change, 
especially for ruminants (34). Developing effective strategies to reduce 
livestock emissions requires a deeper understanding of the rumen 
microbes responsible for methane production. Our study, revealing a 
critical decoupling between metagenomic potential and functional 
activity in rumen methanogens, contributes to this understanding. While 
dominant archaeal genera (Methanobrevibacter, Methanocaldococcus) 
exhibited significantly higher metagenomic abundance than meta-
transcriptomic activity (p < 0.001), key methanogenesis KEGG modules 
(M00356, M00357, M00563 and M00567) showed 2–3 × higher relative 
abundance in MT versus MG (p < 0.0001; Figures 1d–i). Our results 
align partially with Peng et al.’s reports of variable archaeal activity in 
domesticated ruminants but extend beyond them by quantifying 
pathway-level resilience (35). This paradox—archaeal suppression 
coexisting with pathway hyperactivity—suggests two potential 
mechanisms: (1) functional redundancy in non-archaeal taxa expressing 
methanogenesis modules, such as Prevotella (36); and (2) During host-
microbe coevolution, methanogens enhance their energy acquisition 
efficiency by upregulating key methanogenesis pathway genes (e.g., 
mcrA, frhA) through adaptive evolutionary mechanisms, thereby 
optimizing the nutritional and metabolic adaptability of the host animal. 
However, our current dataset lacks the analytical resolution to 
differentiate the underlying causes of this phenomenon.

Here, Random Forest modeling identified Treponema species 
(e.g., T. succinifaciens, r = −0.570, p < 0.001) as consistent negative 
correlation of MPEAI. Here, we extend this observation to the 
cattle rumen, providing the evidence of such an association in this 
host system. Treponema, identified as significant rumen 
spirochetes in previous studies (37), participates in fiber 
degradation through interactions with fibrolytic bacteria (38). Li 
et al.’s research revealed a significant negative correlation between 
methanogenic archaea (order Methanoplasmatales) and Treponema 
species in the rumen of sika deer (39). Comparable negative 
correlations between Treponema species and methanogenic 
archaea have been documented in human oral microbiome studies 
(40). Here, we identified a significant negative correlation between 
abundant Treponema species and methanogenesis-related 
metabolic modules. The underlying mechanism involves 
Treponema species employing hydrogen-dependent CO₂ fixation 
to synthesize acetate via the acetyl-CoA pathway, thereby 
suppressing methanogenic pathway activity through substrate 
competition (41). Thus, Treponema species represent promising 
microbial agents for targeted methane mitigation in the bovine 
rumen. Notably, our findings revealed that not all Treponema 
species exhibited significant inverse correlations with the MPEAI, 
while uncultured lineages (e.g., GTDB-classified Treponema sp. D) 
dominated the top MPEAI-correlated taxa (25/30 species). Future 
isolation and cultivation of these Treponema species are essential 
for experimental validation.

This study quantified relative abundance and gene expression using 
metagenomic and meta-transcriptomic data. However, quantification 
inaccuracies arose from ambiguous alignments among highly 
homologous genomes (42), such as those of Treponema species, 
representing a key methodological limitation. Subsequent efforts 
should prioritize functional screening of the 30 methanogenesis-
modulating Treponema species identified herein, aiming to isolate 
empirically validated probiotic strains or identify variants with 
enhanced efficacy.

5 Conclusion

This study demonstrates that rumen methanogenesis is driven by 
functional pathway activity rather than archaeal abundance, as 
evidenced by significant transcriptional suppression of dominant 
methanogens alongside hyperactivity of core methanogenesis 
pathways. We  identified Treponema species as robust negative 
correlates of pathway activity. These findings redefine methane 
production as a community-regulated trait mediated by bacterial-
archaeal synergy, challenging archaeal-centric mitigation paradigms.
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