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Whole-genome resequencing
reveals the genetic diversity,
population structure and
selection signatures in Chinese
indigenous Kele pigs

Yixuan Zhu'!, Xiaoyi Wang®, Ligang Lu?, Yongli Yang?,
Qiang Chen?, Chengliang Xu?, Jinhua Lai?, Lixing Wang?,
Shuyan Wang?, Mingli Li** and Shaoxiong Lu'*

Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China, 2Bijie
Academy of Agricultural Sciences, Bijie, China, *Yunnan Provincial Livestock Station, Kunming, China

Introduction: Kele pig (KLP) is a valuable Chinese indigenous pig breed, renowned
for its strong adaptability, high intramuscular fat content, and excellent meat
quality. However, the genomic characteristics of KLPs are still unknown. This study
aims to investigate the genetic diversity, population structure, and trait-related
selection signatures of KLPs based on whole-genome resequencing.

Methods: The genomes of 30 KLPs were resequenced and analyzed alongside
genomic data from 90 pigs of three commercial breeds, comprising 30 Duroc
(DUPs), 30 Landrace (LRPs), and 30 Yorkshire pigs (YRPs). To evaluate their genetic
diversity, we calculated the expected heterozygosity, observed heterozygosity,
polymorphic marker ratio, minor allele frequency, nucleotide diversity (x), runs of
homozygosity (ROH), and inbreeding coefficient (Fron). Meanwhile, a neighbor-joining
tree, principal component analysis, ADMIXTURE analysis, linkage disequilibrium
(LD) analysis, genetic distance and relationship matrices were constructed to
analyze the population structure. In addition, selection signatures between KLPs
and DUPs, LRPs, and YRPs were detected using fixation index (Fst) and = ratio
methods.

Results and Discussion: A total of 66,204,339 autosomal single nucleotide
polymorphisms (SNPs) were detected in the 120 pigs, and 21,738,497 SNPs were
retained for further analysis after filtering. The results showed that KLPs had higher
genetic diversity, along with the smallest FROH value compared to DUPs, LRPs,
and YRPs. Moreover, KLPs displayed a relatively unique genetic structure with a
higher LD decay, and the majority of individuals within the KLPs exhibited distant
genetic distances and relationships. Totals of 688 selected regions were identified,
including 723 published QTLs. Within the selected regions, 192 candidate genes
were annotated, and seven genes were found to be functionally involved in coat
color (KIT), immune response (JAK2 and SOCSI), heart development (NTRK3 and
SRF), muscle growth and development (VDR), and fat deposition (KDR). These
findings will provide valuable insights for the future conservation, breeding, and
utilization of KLPs.
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1 Introduction

China possesses one of the world’s richest diversities of indigenous
pig breeds, resulting from long-term domestication and selection
under diverse ecological-geographic conditions and traditional ethnic
cultures. These diverse breeds provide valuable germplasm resources
for the sustainable development of pig industry. Compared to
commercial pig breeds, Chinese indigenous pig breeds generally
exhibit advantages such as strong adaptability, resistance, and superior
meat quality, but also have some drawbacks, including slower growth
rates and higher carcass fat content (1). In pursuit of higher production
efficiency, extensive crossbreeding has been conducted between
introduced commercial pig breeds and Chinese indigenous breeds in
recent decades, posing severe threats to indigenous breeds and
resulting in a sharp decline in both breed number and population sizes
(2). Therefore, it is particularly urgent and necessary to strengthen the
protection, breeding, and utilization of the genetic resources of
Chinese indigenous pig breeds.

In recent years, the development of DNA sequencing technology
has facilitated the efficient detection of genomic variations, providing
a more accurate powerful tool for population genetic studies in pigs.
Some studies have investigated the genetic diversity, population
structure, and selection signatures using genomic variation in pigs
(3-5). These results have further revealed the evolutionary history and
population structure, and effectively identified many selected regions
and candidate genes associated with important economic traits in
different pig breeds. This is of great significance for promoting the
scientific conservation and optimized breeding of indigenous
pig breeds.

Kele pig (KLP) is a typical indigenous pig breed in southwest
China, primarily distributed in the high-altitude mountainous regions
of northwestern Guizhou Province, at elevations ranging from 1,700
to 2,400 meters. Due to the long-term local domestication, rearing,
and selection, KLPs have developed several distinctive characteristics,
including unique physical characteristics, strong adaptability and
resistance, as well as high intramuscular fat (IMF) content and
superior meat quality (6, 7). However, KLPs also exhibit some notable
limitations, such as slower growth rates and lower lean meat
percentages (8). Similar to other indigenous pig breeds, the population
size of KLPs has also been declining in recent years due to extensive
crossbreeding practices. Consequently, it is particularly imperative to
enhance the conservation and utilization of KLPs based on the
understanding of their population genetic characteristics. But to date,
research on KLPs remains scarce. The majority of available studies
have primarily focused on phenotypic traits and candidate gene
analyses, with only a few investigations employing DNA microarray
genotyping to examine population characteristics (4). Notably,
comprehensive assessments of their genetic diversity, population
structure, and selection signatures using genome-wide resequencing
approaches are still lacking.

Comparing the genomes of Chinese indigenous pig breeds with
those of commercial pig breeds can not only provides insights into the
genetic differences caused by their distinct selection histories but also
reveals potential genetic introgression resulting from the long-term
introduction of commercial breeds. In this study, we performed
whole-genome resequencing of KLPs and compared their genomic
data with those of three commercial pig breeds: Duroc (DUP),
Landrace (LRP), and Yorkshire (YRP). Using genome-wide single
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nucleotide polymorphisms (SNPs), a comprehensive analysis was
conducted to investigate the genetic diversity and population structure
of KLPs. Additionally, the fixation index (Fst) and nucleotide diversity
() ratio methods were employed to identify putative selection
signatures, including specific genomic regions and candidate genes
under selection in KLPs. The present study aims to further enhance
our understanding of the genomic characteristics of KLPs, thereby
providing valuable insights for future optimization of their
conservation and breeding.

2 Materials and methods

2.1 Sample collection, DNA extraction, and
sequencing

A total of 30 unrelated KLPs were selected and their ear tissue
samples were collected. Genomic DNA was extracted from the ear
tissues using the TTANamp Genomic DNA Kit (Tiangen, China). The
quality of the genomic DNA was evaluated using the Agilent 5400
analysis system (Agilent, United States) and 1% agarose gel
electrophoresis. DNA libraries (paired-end, 2 x 150 bp) were then
constructed for all samples and sequenced using the DNBSEQ-T7
platform (Novogene Bioinformatics Technology Co., Ltd., Beijing,
China). Genomic data from 90 pigs of three commercial breeds (30
DUPs, 30 LRPs, and 30 YRPs) were downloaded from the NCBI SRA
database.! The accession numbers are listed in Supplementary Table S1.
In total, genomic data from 120 pigs of four breeds were used in
this study.

2.2 SNP detection and annotation

Raw resequencing reads were initially filtered using fastp v0.23.2
(9) to obtain clean reads. Clean reads were then mapped to the
reference genome (Sus scrofa 11.1) using BWA v0.7.17 (10), and sorted
binary bam files were obtained using SAMtools v1.6 (11).
Subsequently, Picard tools were used to filter out possible duplicate
reads (REMOVE_DUPLICATES = true). SNP detection was
performed using the Genome Analysis Toolkit (GATK v4.4.0) (12).
Raw SNPs were detected wusing the “HaplotypeCaller,
“GenotypeGVCEFs,” and “SelectVariants” modules of GATK and then
filtered using the parameters “QD < 2.0, MQ <40.0, FS > 60.0,
SOR > 3.0, MQRankSum < —12.5 and ReadPosRankSum < —8.0”
SNPs were annotated based on the Sus scrofa 11.1 genome
(GCF_000003025.6) using ANNOVAR v2.0 (13) with the parameters
(—annotate_variation.pl. -dbtype refGene). Finally, VCFtools v0.1.16
(14) was used for further filtering with the following parameters:
“--min-alleles 2 --max-alleles 2 --maf 0.05 --max-missing 0.1,” and the
filtered SNPs were used for subsequent analysis.

1 https://www.ncbi.nlm.nih.gov/sra/?term
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2.3 Genetic diversity analysis

The expected heterozygosity (Hg), observed heterozygosity (Ho),
polymorphic marker ratio (Py), and minor allele frequency (MAF)
were calculated using PLINK v1.9 (15). The & value was calculated
using VCFtools v0.1.16 (14). Runs of homozygosity (ROH) were
calculated using PLINK v1.90 (15) with the following parameters:
“--homozyg-density 50 --homozyg-gap 1,000 --homozyg-kb 500
--homozyg-snp 50 --homozyg-window-het 1 --homozyg-
window-snp 50 --homozyg-window-threshold 0.05” The ROH of each
population was classified into five categories (0.5 ~ 1 Mb, 1 ~ 2 Mb,
2 ~3Mb, 3 ~ 4 Mb, and > 4 Mb). Besides, the genomic inbreeding
coefficient based on ROH (Fyox) was calculated for each population.

2.4 Population structure analysis

The distance matrix was calculated using VCF2Dis v1.50% and a
neighbor-joining (NJ) tree was constructed based on the matrix using
FastME 2.0° and visualized using the ggtree package (16). Principal
component analysis (PCA) was performed using PLINK v1.90 (14)
with the parameter (--pca 10), and the first two dimensions were used
to distinguish population structure. Population structure was analyzed
using ADMIXTURE v1.3.0 (17), and ancestral population number (K)
was set from 1 to 8. Visualization of the ancestry composition was
performed using the R package of Pophelper (18). Linkage
disequilibrium (LD) decay with physical distance between SNPs was
calculated and visualized using PopLDdecay v3.42 (19) with the
default parameters.

2.5 Genetic distance and relationship
analysis

An identity by state (IBS) matrix was constructed using PLINK
v1.9 (15) to analyze the genetic distance between individuals within
KLPs. Additionally, a genomic relationship (G) matrix was constructed
using GCTA v1.94 (20) to analyze the genetic relationship between
individuals within KLPs. To improve the intuitiveness of the numerical
distribution, the elements of the G matrix were normalized to the
range from —1 to 1 and visualized using the R package of pheatmap.

2.6 Selection signature analysis

The Fst and & ratio methods were used to detect the selection
signatures in KLPs compared to DUPs, LRPs, and YRPs. The four pig
populations were divided into three comparisons: KLPs vs. DUPs,
KLPs vs. LRPs, and KLPs vs. YRPs. Fst and & ratio values were
calculated for each comparison using 100 kb sliding windows with
10 kb steps in VCFtools v0.1.16 (14). The overlapping windows in the
top 5% threshold of the Fst and = ratio values for each comparison
were considered as the selected regions. Additionally, to identify the

2 https://github.com/BGI-shenzhen/VCF2Dis

3 http://www.atgc-montpellier.fr/fastme/
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overlap between the selected regions and published quantitative trait
loci (QTLs), a total of 55,688 QTLs from 407 different traits were
downloaded from the Pig QTL database (https://www.animalgenome.
org/cgi-bin/QTLdAb/SS/index, Release 54, 25 Aug 2024) for
comparison. Moreover, candidate genes in these selected regions were
annotated using the UCSC database.*

2.7 Functional enrichment analysis

To further explore the biological functions of the candidate genes,
GO and KEGG enrichment analyses were performed using
clusterProfiler (21) and Pathview (22) packages. The GO terms
included three categories: biological process (BP), cellular component
(CC), and molecular function (MF). Only those terms and pathways
with p value < 0.05 were considered significant.

3 Results

3.1 Summary statistics of genomic data and
SNPs

A total of 1073.30 Gb of raw data was obtained for the 30 KLPs
genome, and the average depth and mapping rate were 11.45 x and
98.29%, respectively. The genomic data from the 120 pigs generated
more than 50 billion raw reads, of which more than 48 billion were
clean reads (Supplementary Table S1). Totals of 66,204,339 autosomal
SNPs were detected in the 120 pigs, and the density distribution of
SNPs across the chromosomes was shown in Supplementary Figure S1.
The majority of SNPs were located in intergenic (44.51%) and intronic
(42.61%) regions, with a small percentage located in exonic regions
(0.87%) (Figure 1A). Most of the SNPs were synonymous (56.03%)
and nonsynonymous (40.34%) mutations (Figure 1B). After filtering,
21,738,497 SNPs were retained for analysis of the genetic diversity,
population structure, and selection signatures.

3.2 Genetic diversity of KLPs

In general, the Hg (0.3189), Ho (0.3046), Py (0.9425), MAF
(0.2381), and = (0.2696) of KLPs were higher than those of DUPs,
LRPs, and YRPs (Table 1). The H was lower than Hg, in the four pig
populations. Besides, a total of 40,321 ROHs were identified in 119
pigs, and no one was detected in one individual (K30). KLPs had the
minimum number of ROH among the four populations, and most of
the ROH were mainly concentrated in 0.5~ 1 Mb, followed by
1 ~ 2 Mb (Table 2). Besides, compared with the three commercial pig
breeds, KLPs had the shortest length of ROH per individual and the
smallest Froy value (Figures 2A,B). The Froy in KLPs was ranged from
0.0075 to 0.1262, and the average Froi was 0.0479.

4 http://genome.ucsc.edu/cgi-bin/hgTables
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TABLE 1 The genetic variation of the four pig populations.

Population \} He Ho Pn MAF T

KLPs 30 | 03189 | 03046 | 09425 = 02381 | 0.3243
DUPs 30 | 02008 01859 | 0.6829 = 0.1461 = 0.2042
LRPs 30 | 02260 | 01967 | 08022  0.1623 | 0.2298
YRPs 30 | 02344 | 02247 | 07670 = 0.1718 | 0.2384

N, number of samples; Hg, expected heterozygosity; Ho, observed heterozygosity; Py,
polymorphic marker ratio; MAF, minor allele frequency; 7, nucleotide diversity; KLPs, Kele
pigs; DUPs, Duroc; LRPs, Landrace; YRPs, Yorkshire.

3.3 Population structure of KLPs

The NJ tree showed that all KLP individuals formed a cluster,
while the DUPs, LRPs, and YRPs formed a large clade (Figure 3A).
However, there were multiple branches in the KLPs. The PCA also
clearly distinguished the KLPs from DUPs, LRPs, and YRPs
(Figure 3B). The first eigenvector (PC1) explained 42.38% of the total
genetic variation, and clearly distinguished the KLPs from DUPs,
LRPs, and YRPs. The second eigenvector (PC2) explained 18.79% of
the total genetic variation, and clearly separated the DUPs, LRPs, and
YRPs. In the KLPs, 80% of the individuals were tightly clustered
together, while the remaining ones were relatively scattered. Based on
the results of the ADMIXTURE analysis, K = 4 was found to be the
minimum cross-validation error (Supplementary Figure S2). At
K =4, KLPs and the three commercial pig breeds were clearly
distinguished, and KLPs were found to have a small amount of genetic
components from LRPs and YRPs (Figure 3C). Additionally, KLPs
showed a higher LD decay compared to DUPs, LRPs, and YRPs
(Figure 3D).

3.4 Genetic distance and relationship
among the individuals

Among the KLPs, pairwise genetic distances between individuals
ranged from 0.1188 to 0.3167, with a mean value of 0.2664. The results
of the IBS distance and G matrices indicated that most of the
individuals in KLPs were distant, and few individuals were close to
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each other (Figures 4A,B). Furthermore, all individuals were clustered
in multiple branches.

3.5 Selection signatures detection and
gene functional analysis

The Manhattan plots of the distribution of Fst and = ratio values
among autosomal chromosomes for the comparisons of KLPs with the
three commercial pig breeds are shown in Figure 5. In the comparisons
of KLPs with DUPs, LRPs, and YRPs, 276 (Fst > 0.5273 and = ratio >
1.0782), 306 (Fst > 0.4714 and = ratio > 1.0175), and 332 (Fst > 0.4865
and 7 ratio > 1.1188) windows were identified, respectively, covering
6.69 Mb, 8.41 Mb, and 10.73 Mb of the genome (Figure 6;
Supplementary Tables S2-54). Combining the three comparisons, a
total of 688 selected regions were identified, covering 19.03 Mb of the
genome (Supplementary Table S5). These selected regions were
unevenly distributed across chromosomes (chr), with the majority of
the regions were located on chr 8 and 1 (211 and 209 regions,
respectively), while no regions were found on chr 9, 17, and 18.
Moreover, totals of 723 published QTLs (Supplementary Table S6)
were identified as being within or overlapping with the 688 selected
regions. Among the 723 QTLs, 18 were associated with behavior and
morphological traits (such as coping behavior and ear area), 34 with
immune and health (such as basophil percentage, CD3- and
CD8-negative leukocyte percentage, and melanoma susceptibility), 14
with growth (such as average daily gain and feed conversion rate), 27
with reproduction (such as litter size, piglets born alive, and age at
puberty), 292 with carcass traits (such as lean cut percentage, number
of ribs, and longissimus muscle area), and 338 with fat deposition and
meat quality traits (such as IMF content and meat color).

A total of 192 candidate genes were annotated within these
selected regions (Supplementary Table S7), which covered 212
published QTLs associated with behavior and morphological, immune
and health, growth, reproduction, carcass, and fat deposition and meat
quality traits (Supplementary Table S8). Functional enrichment
analysis of the candidate genes showed that 35 genes were significantly
(p<0.05) in 127 BPs, 8 CCs, and 11 MFs
(Supplementary Table S9). In the GO analysis, 15 genes were enriched
in the top 10 GO terms with the smallest p values (Figure 7A),

enriched
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TABLE 2 The distribution of ROH in the four pig populations.

Population Number of different length of ROH

0.5~1Mb 1~2Mb 2~3Mb 3 ~4 Mb Total
KLPs 29 2,317 589 83 21 12 3,022
DUPs 30 7,766 4,065 1,287 474 508 14,099
LRPs 30 6,619 2,979 764 262 247 10,871
YRPs 30 6,963 3,803 1,022 317 224 12,329

N, number of samples; KLPs, Kele pigs; DUPs, Duroc; LRPs, Landrace; YRPs, Yorkshire.
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including actin cytoskeleton reorganization (GO:0031532), positive  signaling pathway via JAK-STAT (GO:0046427), positive regulation
regulation of kinase activity (GO:0033674), transmembrane receptor ~ of receptor signaling pathway via STAT (GO:1904894), positive
protein kinase activity (GO:0019199), positive regulation of receptor  regulation of transferase activity (GO:0051347), regulation of neuron
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the value ranges from 0 to 1 and O to —1, respectively.

The heat map of the IBS distance and G matrices of KLPs. (A) The IBS distance matrix of KLPs. Each small square represents the genetic distance
between the two individuals, which the color blue from light to dark indicates the genetic distance from low to high. (B) The G matrix of KLPs. Each
small square represents the value of the genetic relationship between the two individuals, which the colors blue and purple from light to dark represent

projection development (GO:0010975), transmembrane receptor
protein tyrosine kinase activity (GO:0004714), regulation of plasma
membrane bounded cell projection organization (GO:0120035), and
nucleoside metabolic process (GO:0009116). In the KEGG analysis,
26 genes were significantly enriched in 10 pathways (p < 0.05)
(Figure 7B; Supplementary Table S10), including growth hormone
synthesis, secretion and action (ssc04935), PI3K-Akt signaling
pathway (ssc04151), MAPK signaling pathway (ssc04010), Rapl
signaling pathway (ssc04015), ubiquitin mediated proteolysis
(ssc04120), pentose phosphate pathway (ssc00030), polycomb
repressive complex (ssc03083), ribosome (ssc03010), parathyroid
hormone synthesis, secretion and action (ssc04928), and kaposi
sarcoma-associated herpesvirus infection (ssc05167).

Among the significantly enriched genes, seven genes under
selection were shared between the top 10 GO terms and KEGG
pathways, including KIT, JAK2, SOCS1, NTRK3, SRF, VDR, and
KDR. These genes were potentially involved in coat color (KIT),
immune response (JAK2 and SOCS1), heart development (NTRK3
and SRF), muscle growth and development (VDR), and fat
deposition (KDR).

4 Discussion

4.1 Genetic diversity and population
structure of KLPs

Exploring the genetic diversity and population structures of
indigenous pig breeds can contribute to their scientific conservation
and sustainable development. KLP is a valuable pig resource in
southwest China, but its genetic diversity and population structure are
still unclear. In this study, a comprehensive analysis was performed by
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resequencing KLPs and comparing them with the genomic data of
DUPs, LRPs, and YRPs. The results showed that KLPs had the largest
Hg, Ho, Py, MAE and & values, indicating the relatively higher genetic
diversity than the other three commercial pig breeds. It is consistent
with previous findings from comparative studies between some
Chinese indigenous pig breeds and commercial pig breeds (3, 23).
This observation could potentially be attributed to the stronger
artificial selection pressure imposed on commercial pig breeds relative
to Chinese indigenous pig breeds. Compared to other Chinese
indigenous pig breeds, the H; and H,, values of KLPs (0.3189 and
0.3046) were higher than those of Diannan small-ear pigs (0.2893 and
0.2226) (24), Hechuan black (0.2751 and 0.2958) and Rongchang pigs
(0.3012 and 0.3044) (25), while lower than those of Tunchang (0.32
and 0.33) and Dingan pigs (0.32 and 0.34) (3), Pudong White,
Erhualian, Meishan, and Jinhua pigs (Hg ranged from 0.34 to 0.36, and
Ho, ranged from 0.35 to 0.38) (26). These results indicated that KLPs
had a relatively intermediate level of genetic diversity among Chinese
indigenous pig breeds. Furthermore, KLPs had the lower total number
of ROH and shorter length of ROH per individual among the four
breeds, which also reflected the higher genetic variation than DUPs,
LRPs, and YRPs. Notably, the length of ROH in KLPs was mainly
concentrated in 0.5 ~ 1 Mb (76.67%), and only a few ROHs were
larger than 4 Mb. It was speculated that there might have been a high
proportion of inbreeding behavior in the early generations of KLPs,
while the frequency of inbreeding in recent generations was relatively
low. Besides, KLPs had the smallest Froy value among the four
populations. Compared with the previous studies in other Chinese
indigenous pigs, the Frop value of KLPs (0.0479) was higher than that
of Liangshan pigs (0.026) (27) and Tunchang pigs (0.0304) (28), but
lower than that of Licha black pigs (0.11) (29), Anging six-end-white
pigs (0.17) (30), and Wannan black pigs (0.5234) (31). From the Frop,
KLPs exhibited a relatively intermediate level of inbreeding in Chinese
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FIGURE 5

Manhattan plots of selection signatures by Fst and = ratio methods among autosomal chromosomes. The red line represents the level of 0.05.
(A) Distribution of Fst and = ratio values in KLPs vs. DUPs comparison. (B) Distribution of Fst and = ratio values in KLPs vs. LRPs comparison.
(C) Distribution of Fst and & ratio values in KLPs vs. YRPs comparison.
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FIGURE 6

The Venn diagram of selected regions detected by the three comparisons. (A) Number of selected regions in KLPs vs. DUPs comparison. (B) Number of
selected regions in KLPs vs. LRPs comparison. (C) Number of selected regions in KLPs vs. YRPs comparison. Each colored circle represents the number

of selected regions using Fst or & ratio method.

indigenous pig breeds, suggesting that effective breeding stock
selection and mating strategies should be taken to avoid inbreeding
and maintain genetic diversity in KLPs.

The population structure of KLPs was revealed by NJ tree, PCA,
ADMIXTURE, IBS genetic distance and G matrices, and LD analysis.
According to the results of NJ tree and PCA, KLPs and the three
commercial pig breeds were divided into four independent
populations. Most individuals in KLPs formed a tight cluster, while a
minority were relatively scattered. Meanwhile, the IBS genetic distance
and G matrices further indicated that most individuals in KLPs had
the distant genetic distances and relationships, and all the individuals
were clustered in multiple branches. These results suggested that it was
necessary to further strengthen the selection of KLPs to improve the
genetic uniformity. Furthermore, the results of the ADMIXTURE
analysis were similar to those of the NJ tree and PCA. When K =4,
KLPs were effectively distinguished from DUPs, LRPs, and YRPs, and
there was a small amount of genetic components from LRPs and
YRPs. This phenomenon might be associated with the historical
introduction of LRPs and YRPs, which were subsequently used for
crossbreeding with KLPs in the 1950s (6). Based on LD analysis, KLPs
showed a higher LD decay, suggesting that KLPs were less affected by
selection than the other three breeds.

4.2 Selection signatures and candidate
genes of KLPs

As one of the unique indigenous pig breeds in China, KLPs have
many excellent characteristics owing to the local domestication and
selection over hundreds of years. Consequently, some selection
signatures likely remain in the genomes of KLPs as a result of
domestication. Based on the three comparisons of KLPs with DUPs,
LRPs, and YRPs, a total of 688 selected regions were identified, and
most of the regions were mainly distributed in chr 8 and 1, which was
consistent with the previous study in Anhui local pig breeds (5).
Within these selected regions, 723 published QTLs were identified, of
which 630 QTLs (87.14%) were associated with carcass traits, fat
deposition, and meat quality traits, such as lean cut percentage,
number of ribs, longissimus muscle area and depth, subcutaneous fat
thickness, meat color, and IMF content, etc. This suggested a strong
selection for carcass and meat quality traits during the domestication
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and breeding of KLPs. It is well known that KLPs exhibit superior
meat quality traits (e.g., higher IMF content and water-holding
capacity) and adaptability but relatively inferior growth and carcass
performance (e.g., lower growth rate, dressing percentage, and lean
meat percentage) compared to commercial pig breeds. The overlap of
QTLs within the selected regions may provide an explanation for the
genetic differences observed between KLPs and the commercial
pig breeds.

Within the identified selection regions, 192 candidate genes were
annotated. Functional enrichment analyses demonstrated that seven
of these candidate genes were consistently present in the top 10 GO
terms and KEGG pathways, which might be involved in coat color
(KIT), immune response (JAK2 and SOCSI), heart development
(NTRK3 and SRF), muscle growth and development (VDR), and fat
deposition (KDR).

KIT, also known as C-Kit, is a tyrosine kinase receptor that plays
a critical role in melanocyte physiology by influencing melanogenesis,
proliferation, migration, and survival of the pigment-producing cells
(32). Previous study demonstrated that the deletion of exon 17 of KIT
attenuated intracellular MAPK and PI3K signaling, impaired
migration of embryonic melanoblasts, reduced the number of mature
melanocytes, and resulted in a piebald coat color in C57/B6 mice (33).
A recent research also showed that KIT regulates the melanocyte
development and coat color in cat, and that deletion of exon 17 of KIT
could cause impaired melanoblast proliferation and differentiation
(34). In pigs, mutations in KIT gene have been shown to affect coat
color and color distribution (35), and the selection signatures were
also identified in the Chinese Rongchang (36), Taihu (37), and Lulai
pigs (38). Coat color is one of the most important characteristics of a
breed and used as an exploitable genetic marker. It is known that KLPs
predominantly exhibit solid black coat color, with occasional
occurrences of six-white (white markings on the head, tail tip, and
four hooves) and blond coats (6). The selection of KIT gene may
provide an explanation for the diversity of coat color phenotypes in
KLPs during the domestication.

JAK2 and SOCSI1 were found to be associated with immune
responses. JAK2 is a member of the Janus kinase family, which plays
arole in a wide variety of cytokine signaling pathways (39). Research
has shown that JAK2 regulated the development and maturation of
dendritic cells, and the secretion of inflammatory cytokines (40).
Furthermore, JAK2 has a crucial function in mammalian immune cell
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signaling and is associated with immune resistance and escape (41). It
was reported that JAK2 gene was associated with bovine mastitis
resistance (42). SOCS1 is a member of the SOCS family that regulates
diverse processes, including immune modulation and cell cycle
regulation (43). It plays a role in a classic negative feedback loop by
inhibiting signaling in response to interferon, interleukin-12, and
interleukin-2 family cytokines (44). Studies have shown that SOCS1
may be a putative candidate gene associated with porcine reproductive
and respiratory syndrome virus (PRRSV), and that it could
be co-opted to evade the host immune response and facilitate viral
replication (45, 46). Unfortunately, there is still a lack of direct and
strong evidence for the association between genes JAK2 and SOCS1
and disease resistance in pigs. As we know, KLPs have a stronger
adaptability and stress resistance than commercial pig breeds. It is
valuable to explore whether genes JAK2 and SOCSI are associated
with the strong adaptability of KLPs by regulating relative
immune processes.

NTRK3 and SRF genes were identified to be related to heart
development. NTRK3, also referred to as TRKC, is a neurotrophic
tyrosine receptor kinase involved in the nervous system and heart
development. NTRK3 gene encodes the high-affinity receptor
neurotrophin-3 (NT-3), which is essential for normal development of
the atria, ventricles, and cardiac outflow tracts in mammals (47). An
earlier study showed that the TRKC-deficient mice had severe cardiac
defects, such as atrial and ventricular septal defects, and valvular
defects including pulmonic stenosis (48). It was reported that TRKC
was expressed by cardiac myocytes and might be responsible for
ventricular trabeculation in the first week of chicken development
(49). Study has suggested that NTRK3 played an important role in
congenital heart defects, and mutations in NTRK3 may increase the
risk of ventricular septal defect (50). SRF is a critical transcription
factor required for the development of cardiomyocytes and plays a
central role in heart development and function by regulating genes for
cardiac contractile and regulatory proteins (51, 52). Moreover, it acts
as a homeostatic regulator between cardiomyocytes and fibroblasts in
heart, and dysregulation of SRF is deleterious for this balance (53, 54).
Precise regulation of SRF expression is critical for mesoderm and
cardiac crescent formation in the embryo, and altered SRF levels lead
to cardiomyopathies (55). However, no studies have addressed the
impact of the two genes on pig heart development. For hundreds of
years, KLPs have been raised and domesticated in the high-altitude
mountainous regions of Guizhou Province, China. NTRK3 and SRF
genes related to heart development was under selection in KLPs,
which provided indirect evidence for their better adaptation to the
high-altitude harsh environments.

Vitamin D receptor (VDR) plays a crucial role in calcium
homeostasis, growth, and differentiation of multiple cell types (56).
During skeletal muscle development, VDR plays a physiological role
by ensuring the precisely timed downregulation of myogenic
57). Study has shown that the
overexpression of VDR in skeletal muscle resulted in robust myofiber

transcriptional regulators

hypertrophy, alongside concurrent gains in protein content
synonymous with muscle growth, with increased protein synthesis
across muscle protein subfractions (58). It was reported that VDR
played a fundamental role in the regulation of myogenesis and muscle
mass, whereby it acted to maintain muscle mitochondrial function
and limit autophagy (59). Additionally, study in transgenic mice has
shown that overexpression of VDR in adipocytes resulted in
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significant increases in body weight gain, fat accumulation and serum
lipid levels (60). Research has shown that VDR played an important
role in adipogenesis in Iberian pigs (61). These results indicate that
VDR plays an important role in muscle growth and fat deposition.
KLPs exhibit relatively slow growth rate, low lean meat percentage (<
42%), and thick carcass backfat (> 45mm) (6, 8), which may
be related to VDR gene under selection during the domestication
and breeding.

KDR, also called VEGFR2, encodes a member of the VEGF
family that regulates endothelial uptake of fatty acids by controlling
the transcription of vascular fatty acid transport proteins (62). As
the primary receptor for VEGFA, VEGFR2 activates multiple
downstream signaling pathways to mediate angiogenesis (63). Given
the reciprocal regulation between adipogenesis and angiogenesis,
inhibition of VEGF-VEGFR?2 signaling can suppress adipose tissue
formation in vivo (64). KDR gene was reported to be highly
expressed in the prothorax and neck adipose tissue of Yanbian
yellow cattle (65). Earlier research showed that the mRNA level of
KDR was significantly correlated with IMF content in longissimus
dorsi muscle, and the ACA haplotype of genetic variants in the KDR
transcriptional regulatory region was associated with the higher IMF
content in Erhualian pigs (66). Transcriptomic analysis also revealed
that KDR was a potential candidate gene associated with IMF
content in Anqing Six-end-white pigs (67). We speculate that KDR
gene may be associated with the high IMF content and carcass fat
percentage in KLPs, but its exact effect requires further research
for confirmation.

5 Conclusion

This study revealed that KLPs exhibited higher genetic diversity,

a distinct population structure, and significant genetic
differentiation among individuals. A total of 688 selected regions
were identified, encompassing 723 published QTLs, with 192
candidate genes annotated. Seven genes under selection were found
to be involved in coat color (KIT), immune response (JAK2 and
SOCS1I), heart development (NTRK3 and SRF), muscle growth and
development (VDR), and fat deposition (KDR). These findings
enable a better understanding of the genomic characteristics and
provide valuable references for the conservation, breeding, and

utilization of KLPs.
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