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Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma 
(NHL) in humans, accounting for about 30–40% of NHL cases worldwide. Canine 
diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype 
in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, 
current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert 
histopathological assessment, which is time-consuming and requires specialist 
expertise. Therefore, there is an urgent need to develop tools to support and 
improve veterinary diagnostic workflows. Advances in molecular and computational 
approaches have opened new avenues for morphological analysis. This study 
explores the use of convolutional neural networks (CNNs) to differentiate cDLBCL 
from non-neoplastic lymph nodes, specifically reactive lymphoid hyperplasia (RLH). 
Whole slide images (WSIs) of haematoxylin-eosin stained lymph node slides were 
digitised at 20 × magnification and pre-processed using a modified Aachen protocol. 
Extracted images were split at the patient level into training (60%), validation (30%), 
and testing (10%) datasets. Here, we introduce HawksheadNet, a novel lightweight 
CNN architecture for cancer image classification and highlight the critical role of 
stain normalisation in CNN training. Once fine-tuned, HawksheadNet demonstrated 
strong generalisation performance in differentiating cDLBCL from RLH, achieving 
an area under the receiver operating characteristic (AUROC) of up to 0.9691 using 
fine-tuned parameters on StainNet-normalised images, outperforming pre-trained 
CNNs such as EfficientNet (up to 0.9492), Inception (up to 0.9311), and MobileNet 
(up to 0.9498). Additionally, WSI segmentation was achieved by overlaying the 
tile-wise predictions onto the original slide, providing a visual representation of 
the diagnosis that closely aligned with pathologist interpretation. Overall, this 
study highlights the potential of CNNs in cancer image analysis, offering promising 
advancements for clinical pathology workflows, patient care, and prognostication.
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1 Introduction

Canine diffuse large B-cell lymphoma (cDLBCL) is the most common subtype of 
lymphoma in dogs, typically arising in a multicentric form, and is characterised by an 
aggressive biological behaviour (1–3). The current gold standard treatment for cDLBCL is 
multi-agent maximum tolerated dose chemotherapy; the CHOP protocol (cyclophosphamide, 
doxorubicin, vincristine, and prednisolone) currently confers 1-, 2-, and 3-year survival rates 
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of 20, 13, and 8%, respectively. Accurate diagnosis is important to 
inform effective therapeutic intervention, which directly impacts 
prognostic outcomes. While fine-needle aspirate cytological screening 
and biopsy analysis are commonly used for investigating enlarged 
lymph nodes, lymphoma diagnosis can be  a challenging task for 
pathologists due to the similarity in appearance of neoplastic and 
normal lymphocytes and the complex classification of canine 
lymphomas (2). Therefore, there remains an urgent and unmet need 
to develop better and cost-effective tools to better diagnose and 
prognosticate cDLBCL patients.

A convolutional neural network (CNN) is a category of deep 
learning (DL) architecture that effectively detects important features 
without human supervision. One effective application of CNN 
models is computer vision tasks [reviewed in (4)], including the 
analysis of histological images for human (5–9) and veterinary 
sciences (10, 11). Different applications of CNN models have been 
developed for veterinary settings as reviewed in (12, 13). In human 
DLBCL (hDLBCL), Li et al. (14) developed a CNN platform that 
resulted in a near-perfect diagnostic accuracy across three different 
hospitals, outperforming experienced pathologists. Ferrandez et al. 
(15) developed a model that infers time-to-progression of hDLBCL 
patient from positron emission tomography images within 2 years 
compared to international guidelines (15). Recently, Lee et al. (16) 
and colleagues showcased a model that predicts hDLBCL prognosis 
in patients treated with immunochemotherapy (rituximab + 
CHOP). In the veterinary field, CNN models were developed to 
differentiate different types of canine lymphomas (10) and infer diet-
versus steroid-based treatment response of dogs affected with 
protein-losing enteropathy (11). Although niche studies exist, there 
remains a need to develop better computer vision models for 
morphological analysis in underrepresented fields like veterinary 
science, which lags behind human pathology in adoption of 
such tools.

Training reliable and robust CNN models for morphological 
analysis can be computationally demanding, requiring effective image 
pre-processing and careful hyperparameter fine-tuning. Many 
pre-trained CNNs previously used to develop morphological models 
involve complex architectures, extensive fine-tuning (5–9), and often 
require high-performance computing (HPC) systems for training. 
Moreover, whole slide images (WSIs) are commonly used to train 
models for histological slide analysis. Although WSIs provide an 
abundant source of data for CNN training, they can be challenging to 
pre-process due to their large size and inconsistent staining. Image 
processing workflows, such as the Aachen protocol, offer a potential 
standardisation method for image pre-processing in DL, as 
demonstrated in various studies (9, 17–20). However, such workflows 
may not be optimal for all types of tissue, particularly regarding the 
stain normalisation step (21). There is a need to develop a more 
dynamic workflow that can be applied to different data types for image 
pre-processing, along with a lightweight CNN capable of generating 
reliable models for morphological analysis.

The primary purpose of this study is to determine whether CNN 
models can be  trained to differentiate between cDLBCL and 
non-neoplastic canine lymph nodes. Additionally, this paper 
introduces a new lightweight CNN architecture, HawksheadNet, for 
training computer vision models. Finally, this paper highlights 
alternative methods for pre-processing lymph node slide images for 
DL applications.

2 Materials and methods

2.1 Patient cohort

The study cohort consisted of lymph node histopathology samples 
from 127 cases definitively diagnosed with either cDLBCL or reactive 
lymphoid hyperplasia (RLH), collected between 1st July 2021 and 31st 
December 2022. Haematoxylin-eosin (HE)-stained slides were collected 
from IDEXX Laboratories, United Kingdom. Of these, 59 were cDLBCL 
and 68 were RLH. Aside from malignancies, one of the key clinical 
differential diagnose of canine lymphadenopathy is RLH (10). RLH is 
characterised by non-neoplastic polyclonal lymphocytes that often 
resolves after antigen clearance (22). In contrary to RLH, cDLBCL 
consists of an uncontrollable monoclonal neoplastic expansion. 
Therefore, RLH was used as the contrasting control to cDLBCL to 
represent non-neoplastic lymphocyte proliferation. cDLBCL or RLH 
diagnosis was performed by board-certified anatomic pathologists 
(IDEXX) based on the combination of cellular morphology, 
immunohistochemistry (IHC), and/or PCR for antigen receptor 
rearrangements (PARR). For cDLBCL samples without follow-up IHC 
or PARR, the morphology of the neoplasm was additionally corroborated 
as large cell lymphoma consistent with presumptive cDLBCL by a board-
certified pathologist (JW). For all cases used in model development and 
testing, the 12 patients with cDLBCL had results for CD79a and CD3 
IHC, and one had CD3 plus CD20, while among the RLH cases, one had 
PARR testing to exclude neoplasia where morphology alone was not 
definitive. This study primarily focused on patients with enlarged 
peripheral lymph nodes; therefore, cases with only visceral lymph node 
involvement were excluded from downstream analysis.

2.2 Whole slide image scanning

HE-stained slides were digitised at 20 × magnification using a 
Zeiss AxioScan. Z1 Slide Scanner (Carl Zeiss Microscopy, 
Oberkochen, Germany). All whole slide images (WSIs) are exported 
in Carl Zeiss Image (CZI) file.

2.3 Whole slide image pre-processing for 
deep learning

Due to the data and pixel size of a typical WSI, it is challenging to 
use an entire WSI to take advantage of the entire scan for DL. For this 
study, we employed a modified Aachen Protocol to extract smaller 
tiles from WSIs for DL. The Aachen protocol was employed to 
pre-process WSI for training computer vision DL models for 
histopathology, as previously described (11, 17, 18, 20, 23). Based on 
this protocol, QuPath (v0.5.1 ×64) (24) was employed to tesselate 
WSIs into non-overlapping 512 × 512 pixels tiles at 0.22 μm per pixel 
resolution using an in-house groovy file (see Data and code statement). 
Regions of interests (ROIs) were selected in Qupath that included 
relevant lymph node tissue exhibiting lymphoid hyperplasia or 
lymphoid neoplasia with generated tiles occasionally also containing 
adjacent non-diagnostic tissue (e.g., adipose, blood vessels) (2, 25). 
Exclusion criteria included any non-lymphoid tissue encountered 
within WSIs such as muscle, mammary tissue, necrotic areas, 
haemorrhages, glands and other histological artefacts.
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2.4 Haematoxylin-eosin stain normalisation

While histopathology laboratories usually apply a standardised 
HE-staining process, variable factors such as reagents, staining 
intensity, age of slides, and light exposure can alter staining quality and 
introduce inconsistencies (26). Statistics-based stain normalisation 
algorithms including Macenko, Reinhard, Ruifrok, and Vahadane 
were implemented using TIAToolbox (v1.5.1) (27), as well as a 
generative adversarial network (GAN)-based normaliser StainGAN 
(28) and StainNet (29) (Figure 1). The pre-trained models used for 
normalisation with StainGAN and StainNet were developed by Kang 
et al. (29), which were both trained on HE-stained human metastatic 
lymph node WSIs from breast cancer patients (CAMELYON16) to 
address stain inconsistencies across all samples. The speed of the stain 
normaliser algorithm was calculated based on the average number of 
images processed per second across three runs using 100 
non-normalised images.

2.5 Data pre-processing for supervised 
machine learning

Patient overrepresentation was prevented by limiting the 
maximum number of tiles per case to the median tile count. For cases 
with more extracted tiles than the median value, a number of images 
equal to median were randomly selected, while all the tiles from cases 
with fewer tiles than the median were included. A patient-level data 
split was performed to ensure that tiles from a single case were not 
represented in more than one data set. Assigning adjacent tiles into 
training/validation set and another for testing can introduce data 
leakage. Data leakage can lead to overly optimistic results in CNN 
models, which is the process referred to as the incidence in which 
information is used during model training that is not expected to 
be available until testing (30). In this study, a patient-level data split 
ensured that all images from a single clinical case to only appear in 
one dataset. For example, if a patient was set in training set, their 
images were excluded from validation or testing set and vice versa. 
Patients were randomly assigned into training, validation and testing 
sets in a 60:30:10 ratio, respectively. To preserve the class ratios based 
on the original data, a stratified data split was applied using the 
Scikit-learn (v1.1.3) function StratifiedShuffleSplit(). Class 
information was retained for the supervised machine learning (SML) 
approach.

2.6 Deep learning model training, data 
properties, and hyperparameters

DL models were developed using training and validation sets. 
The testing set was reserved until performance testing and was 
treated as ‘unseen’ or ‘never-seen’ data, representing real world data. 
The term ‘unseen’ or ‘never-seen’ indicates that the test data was not 
involved in model training or optimisations, but was subjected to the 
same preprocessing steps, including stain normalisation, as the 
training data prior to evaluation. For the supervise machine learning 
approach, the data were represented as ( ) = …[ , | 1 ]i j iX x y I N . Here, 
N indicates the total number of tiles, iX  represents the WSI that was 
being tiled into smaller images jx  which carries a label iy  ∈ [0, 1] 
inherited from iX  (e.g., 0 = RHL, 1 = cDLBCL). Training and testing 
performances were completed using TensorFlow (v2.10.0). Tiles jx  
were fed into our custom convolutional neural network (CNN), 
we referred to as HawksheadNet (Figure 2). HawksheadNet features 
a relatively lightweight architecture, starting with an input layer of 
128 pixels in width and height, with three colour channels—Red, 
Green, and Blue (RGB)—resulting in dimensions of 128 × 128 × 3, 
followed by two convolutional blocks with progressively decreasing 
filters (from 128 to 64), interspersed with max-pooling layers. A 
global average pooling layer is subsequently applied, followed by 
dropout regularisation set to randomly drop 25% of neurons. The 
output is then passed through three consecutive dense layers, with 
the final layer used for classification (Figure 2). The hyperparameters 
were configured as follows: an initial learning rate of 0.0001, a batch 
size of 512, Adaptive Moment Estimation (AdAM) optimiser, a loss 
function based on binary cross-entropy, and models were trained for 
100 epochs.

2.7 Model optimisation and fine-tuning

The number of tiles per class within each dataset were equalised by 
randomly removing tiles from the class with a higher number of 
images. See Supplementary method 1 for fine-tuning steps. 
Additionally, L1 and L2 regularisation penalties were applied to 
HawkheadNet to determine whether they can improve generalisation 
and limit overfitting. L1 regularisation reduces overfitting by shrinking 
some weights to zero, enabling feature selection, while L2 regularisation 
minimises overfitting by shrinking weights to small values without 
eliminating them (31).

FIGURE 1

Visual comparison of different stain normalisation methods and normalisation speed. Visual comparison of different stain normalisations. (A) Target 
image used as references for stain transfer-based algorithms, (B) source or sample image being normalised, stain transfer-based normalisers 
(C) Macenko, (D) Reinhard, (E) Ruifrok, and (F) Vahadane as well as convolutional neural network (CNN)-based stain normalisers such as (G) StainNet 
and (H) StainGAN. The speed of the stain normalisation algorithm is shown on below the normalised images as image/s.
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2.8 Transfer learning

The use of transfer learning (TL) was explored to determine if 
pre-trained CNN architectures can outperform models generated 
using HawksheadNet. Pre-trained models such as EfficientNet (7), 
Inception (5, 6), and MobileNet (8) were previously demonstrated to 
be  viable CNNs to classify cancer tissues. Various versions of 
EfficientNet, Inception, and MobileNet were explored (Figure  3). 
Some of the pre-trained CNNs required specific input size, the input 
layer was set to 224 pixels in width and height, with RGB channels, 
resulting in dimensions of 224 × 224 × 3 to maintain comparability 
with all the downstream layer set to non-trainable. The penultimate 
dense layer was set as the flatten layer which exports varying sizes of 
DL feature vectors followed by a dropout layer to randomly drop 25% 
of the connections which was subsequently fed into three consecutive 
dense layers, with the final layer set as classifier. The hyperparameters 
were configured as follows: an initial learning rate of 0.0005 with 
exponential decay using default settings, a batch size of 512, the 
AdAM optimiser, a loss function based on binary cross-entropy, and 
maximum epochs of 100. Early stopping checkpoint was applied with 
for all pre-trained CNN with patience set to three epochs, which 
terminates training when validation accuracy does not 
meaningfully improve.

2.9 Whole slide image segmentation 
overlay

For WSI segmentation, ROIs from individual WSIs from each 
patient assigned to the testing data set were used. ROIs were tiled into 

non-overlapping 512 × 512 pixels tiles at 0.22 μm per pixel resolution 
using QuPath (v0.5.1 ×64) and stain normalised. During the 
classification, the coordinates and predicted value ŷ of a tile were 
recorded, where the probability of a tile being classified as cDLBCL or 
RLH was calculated, with ŷ ∈ [0, 1]. The threshold for the prediction 
was set such that values closer to 0 are more likely to be RLH, while 
those nearer to 1 more likely to indicate cDLBCL. A Groovy script was 
used to overlay predictions on the original WSI in QuPath (v0.5.1 ×64; 
See Data availability statement).

2.10 Computational hardware

Model development and generalisation testing were performed on 
two machines including: (1) A HPC with AMD Ryzen Threadripper 
2,950× 16-Core Processor and (2) Apple MacBook Pro M1 Pro with 
16 GB of unified memory. The HPC was used for GAN-based stain 
normalisation, as well as for training and testing with pre-trained CNNs 
models. MacBook Pro was employed for stain transfer normalisation 
and for local training and testing of HawksheadNet models.

2.11 Statistical analysis

To assess the training performance, loss and accuracy curves per 
epoch during training and validation were used. To evaluate the 
predictive performance of the models, the number of tiles in the 
testing set was not altered to simulate a real-world setting with 
imbalanced data. Metrics were used to assess generalisation including 
accuracy (Equation 1), precision (Equation 2), sensitivity (Equation 

FIGURE 2

Baseline HawksheadNet architecture. The proposed custom CNN architecture referred to as HawksheadNet showcases a compact build. The baseline 
HawksheadNet has an input later of 128 × 128 × 3, followed by two sequential convolutional layers with decreasing filters starting with 128 to 64, each 
convolutional block is interspersed with maxpooling 2-dimentional layers to downsample the feature maps. A global average pooling layer is applied to 
reduce spatial dimensions, followed by a dropout layer with a 10% dropout rate for regularisation. Finally, the extracted features pass through three fully 
connected dense layers (128, 64, and 1 neuron, respectively), with the last layer employing a sigmoid activation function for binary classification.
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3), specificity (Equation 4), F1 score (Equation 5) and area under the 
receiver operating characteristic (AUROC), which measures the 
ability of the model to distinguish between classes across all 
classification thresholds—values closer to 1 indicate better 
performance (11).

To determine if there is significant difference between AUROC 
of two models for binary classification, we applied DeLong’s Test. It 
is a non-parametric method of comparing AUROCs by accounting 
their variance and covariance (32). To compare the classification 
performance of two binary models, McNemar’s test was used. 
McNemar’s test is a non-parametric method that evaluates whether 
the number of images misclassified by one model but correctly 
classified by another is significantly different, and vice versa. In this 
study, we used the term McNemar b which counts misclassified 
images by Model A but correctly classified by the Model B, and 
McNemar c is the sum for correctly classified images by the Model 
A but misclassified by the Model B (32). For DeLong’s and 
McNemar tests, we  calculated the AUROCs, McNemar b, and 
McNemar c by testing the models on their respective stain-
normalised test images, rather than using only a single dataset. 
DeLong’s test was implemented using code from https://github.
com/yandexdataschool/roc_comparison (Accessed June 17, 2025), 
while McNemar’s test was calculated using the mcnemar() function 
from the Python package statsmodels (v0.14.4). The significance 
threshold was set at α = 0.05.

3 Equations

3.1 Equation 1
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4 Results

4.1 Patient cohort

For the entire cohort of 127 samples, there were 67 unique breeds, 
with the top three being Crossbreed (N = 10, 7.87%), Cocker Spaniel 
(N = 8, 6.30%), and Labrador Retriever (N = 8, 6.30%). In the cDLBCL 

FIGURE 3

Convolutional neural network (CNN) configuration for transfer learning. To accommodate the default input image sizes of certain pre-trained CNNs, 
the input image was set to 224 × 224 × 3, ensuring compatibility across all tested architectures. All layers capable of updating weights were set as 
frozen (i.e., set to non-trainable). The penultimate layer of each CNN was configured to flatten the data, exporting DL feature vectors of varying sizes. A 
dropout layer with a 10% dropout rate was applied for regularisation, followed by three fully connected dense layers with 32, 16, and 1 neuron, 
respectively, with the final neuron used for classification.
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group, there were 45 unique breeds, with the most represented being 
Crossbreed (N = 6, 6.78%), followed by 11 breeds tied with two 
samples each (N = 2, 3.39%). In the RLH group, there were 31 unique 
breeds, with the most represented being Cocker Spaniel (N = 8, 
11.76%), Labrador Retriever (N = 7, 10.29%), and Crossbreed (N = 6, 
8.83%; Figure 4). The median age at diagnosis for the entire cohort was 
8 years (range 1–14), with a median of 9 years (range 3–14) for 
cDLBCL and 8 years (range 1–13) for RLH. One patient from each 
class had an undisclosed birth date and age and therefore were 
excluded from the age ranges (Figure 5).

4.2 Tiles for deep learning training

A total of 244,670 and 117,018 images from cDLBCL and RLH 
cohorts were extracted, respectively, with an overall total of 361,688 
pooled tiles. The number of tiles extracted per case had a median of 
1,584 (range 29–16,234) for the entire cohort. After limiting the 
number of tiles per patient based on the median, and ensuring 
splitting occurred at the patient level, the dataset was divided as 
follows: 110,603 images for training (DLBCL = 59,395; RLH = 51,208), 
28,689 for validation (DLBCL = 16,914; RLH = 11,775), and 16,541 
for testing (DLBCL = 7,730; RLH = 8,811).

4.3 Stain normalisation speed

The speed of the stain normalisation algorithm depends on the 
complexity of the calculations and the size of the source image. To 
determine the processing speeds of each stain normaliser, the average 

number of processed images/s was calculated. Macenko, Reinhard, 
Ruifrok, Vahadane, StainNet, and StainGAN achieved average 
normalisation speeds of 11.58, 109.55, 1.70, 19.31, 48.55, and 0.55 
images/s, respectively (Figure 1).

4.4 Benchmarking for different stain 
normalisation protocols using 
HawksheadNet

While HE-staining of slides in this study was standardised using 
automatic processes, storage environment (and particularly light 
exposure) and elapsed time since post-slide preparation (i.e., slide 
age) are two primary factors that contribute towards HE-stain fading 
(33, 34). To assess whether different stain normalisation protocols 
impact DL training performance and downstream generalisation, 
models were trained on different stain normalisers based on stain 
transfer and CNN. Models were trained using HawksheadNet to 
maintain comparability. All models reached a learning plateau at ~80 
epochs, except StainGAN and StainNet (Figures 6B,C). The predictive 
performance was assessed using the test set which was, respectively, 
stain-normalised (i.e., the model trained on Macenko-adjusted 
images tested on Macenko-adjusted testing dataset). Models achieved 
AUROC values between 0.8299 and 0.9685 (Figure 6A). Among stain 
transfer-based normalisation methods, Reinhard showed the best 
performance (AUROC = 0.9518), while StainNet demonstrated best 
performance for GAN-based normalisers (AUROC = 0.9685; 
Figure  6A). Additional metrics including accuracy, precision, 
sensitivity (also referred to as recall), specificity, and F1 score were 
calculated to further evaluate the predictive performance of each 

FIGURE 4

Breed frequency in cDLBCL and RLH cohorts post-filtering. Bar plots showing the frequency of unique breeds post-filtering of images and patients 
across (A) all samples, (B) in canine diffuse large B-cell lymphoma (cDLBCL) cases, and in (C) reactive lymphoid hyperplasia (RLH) samples. The x-axis 
indicates the occurrence per breed, while the y-axis lists the breeds from most (top) to least (bottom) represented.
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model. Reinhard normalisation achieved the highest accuracy of 
87.66%, precision of 86.31%, and F1 score of 0.887 among the stain 
transfer protocols. For GAN-based normalisation, StainGAN 
achieved superior accuracy of 89.40%, precision of 90.25%, specificity 
87.48%, and slightly higher F1 score of 0.9101 compared to StainNet, 
which only outperformed StainGAN in sensitivity with 98.91% 
(Table 1).

4.5 Fine-tuning data properties and 
hyperparameter improved generalisation

To evaluate the impact of dataset properties, such as balance class 
distribution, and to assess whether hyperparameter fine-tuning can 
improve generalisation, class balancing and fine-tuning were explored 
on HawksheadNet models trained using Reinhard-and StainNet-
normalised images, which initially demonstrated the highest AUROC 
scores. Using a normalised test set, the model trained on Reinhard-
corrected images showed an increase in AUROC from 0.9518 to 0.9608 
when the number of images per class were balanced, however, fine-
tuning and the application of L1 and L2 regularisers reduced the AUROC 
to 0.9299 and 0.9288, respectively (Figures 7A–C). Similarly, the AUROC 
for the model trained on StainNet-normalised images achieved slight 
improvement, increasing to 0.9691 for the balanced class and 0.9678 with 
fine-tuning, while L1 and L2 regularisation reduced it to 0.9619 
(Figures 7D–F). Notably, using the fine-tuned parameters resulted in a 
notable increase in F1 score from 0.9052 to 0.9213 (Table 1).

4.6 HawksheadNet outperformed 
established pre-trained CNNs

TL was employed to determine whether HawksheadNet can 
achieve comparable generalisation performance to deeper  and 
wider pre-trained CNNs previously used in morphological studies 
such as EfficientNet (7), Inception (5, 6), and MobileNet (8). 
Reinhard and StainNet normaliser were employed for the TL model 
training with balanced classes. For pre-trained CNNs trained on 
Reinhard-normalised images, the AUROC values ranged from 

0.9348 to 0.9492 for EfficientNet (Figures 8A–C), 0.9220 to 0.9302 
for Inception (Figures 8D–F), and 0.9319 to 0.9495 for MobileNet 
(Figures 8G–I). The overall poorest-performing architecture was 
Inception, with InceptionV3 demonstrating the lowest predictive 
performance, achieving an AUROC of 0.9220 with F1 score of 
0.8664 (Table 1). The mean F1 scores for EfficientNet, Inception and 
MobileNet architectures were 0.8887, 0.8653, and 0.8814, 
respectively. MobileNetV3-Small and EfficientNetB7 achieved the 
highest AUROCs of 0.9495 and 0.9492, respectively (Figure  8). 
While MobileNetV3-Small had a negligibly higher AUROC, 
EfficientNetB7 achieved a notably better F1 score of 0.901 compared 
to 0.875 for MobileNetV3-Small (Table 1).

Moreover, for TL trained StainNet-adjusted images the AUROC 
values ranged from 0.9307 to 0.9448 for EfficientNet, 0.9236 to 0.9311 
for Inception, and 0.9266 to 0.9498 for MobileNet (Figure 9). Similar 
to TL with Reinhard, the worst-preforming CNN in StainNet-
normalised images was Inception, with InceptionV3 demonstrating 
the lowest predictive performance and achieving an AUROC of 
0.9236. The mean F1 scores for EfficientNet, Inception and MobileNet 
architectures were 0.8806, 0.8625, and 0.8767 (Table  1). The best 
overall CNN architecture based on AUROC was MobileNetV2 with 
AUROC of 0.9498 and F1 score of 0.8872, while EfficientNetB7 with 
AUROC of 0.9448 and F1 score of 0.8888 was slightly better when 
considering the F1 score (Figure 9; Table 1).

The model size generated by EfficientNetB7 was 258.3 MB, with 
an approximate prediction rate of ~67.45 images/s, compared to 
MobileNetV2, which resulted in a 9.8 MB model with a rate of ~449.58 
images/s (Table  2). Due to the more streamlined and relatively 
lightweight architecture of MobileNetV2 compared to EfficientNetB7, 
it was deemed the better TL model for StainNet.

4.7 Model prediction agreement

DeLong’s test revealed no significant difference between the 
AUROCs of HawksheadNet models trained with different stain 
normalisers. The AUROCs of the top-performing and optimised 
HawksheadNet models trained using Reinhard-and StainNet-
normalised images were statistically equivalent to those of 
EfficientNetB7 and MobileNetV2, respectively (Table 3). McNemar’s 
test suggested significant difference in classification outcomes, 
indicating that actual prediction per individual images is different. 
Model trained on Reinhard-adjusted images was able to correctly 
classify more images than models trained on other stain transfer-
based algorithms (Table 3). Ruifrok model appeared to be the worst 
performing compared to other models. GAN-based normalisers, 
StainGAN and StainNet both outperformed all stain transfer-based 
algorithms. When comparing StainGAN and StainNet, StainNet made 
more classification errors compared to StainGAN (McNemar b = 954 
vs. c = 630, p < 0.001), which corresponds to a maximum of 5.77% of 
the total testing set. Among the top-performing models using 
Reinhard-normalised images, EfficientNetB7 correctly predicted more 
images than HawksheadNet with balanced classes (McNemar 
p < 0.001; b = 669, c = 1,171), comprising up to 7.08% of the total 
testing set. For the top-performing StainNet models, fine-tuned 
HawksheadNet made more correct predictions than MobileNetV2 
b = 1,359, c = 762 accounting for up to 8.22% of the total testing set 
(Table 3).

FIGURE 5

Distribution of age on diagnosis. Raincloud plot showing the age 
distribution of patients with canine diffuse large B-cell lymphoma 
(cDLBCL; red) and reactive lymphoid hyperplasia (RLH; blue). Dashed 
black line indicates the median age for all cases. The raincloud plot 
integrates half of a violin plot (“cloud”), a boxplot, and jittered raw 
data points (“rain”). Red dots within the boxplot whiskers denote 
outliers.
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4.8 Model prediction provides spatial 
context via whole slide image 
segmentation

To understand whether the model prediction can provide better 
spatial context in addition to tile-level prediction, WSI segmentation 
was conducted by overlaying tile-level predictions on the original 
HE-stained image. The best performing models generated using 
HawksheadNet and pre-CNN were used, with their respective stain 
normalisers from both stain transfer-and GAN-based methods, 
respectively. In both true cDLBCL and RLH cases, all models appeared 
to provide predictive visual representation of the WSI status with 
spatial context (Figure  10). It was notable that some tiles were 
predicted as more likely to be cDLBCL in RLH WSI, and vice versa. 
Additionally, all the models seemed to assign higher probability scores 
when predicting tiles as cDLBCL rather than RLH, as indicated by the 
darker red shade for cDLBCL and the lighter blue shade for RLH 
(Figure 10). However, this pattern does not apply to the HawkheadNet 
+ StainNet (fine-tuned) model, which also assigns a higher probability 
to RLH tiles.

5 Discussion

Accurate cDLBCL diagnosis is critical for the timely and guided 
treatment of patients, directly impacting prognosis and quality of life. 
While cytological testing may provide a rapid preliminary assessment, 
confirmatory diagnosis still relies on manual histopathological 
evaluation, which can be time-consuming and costly. The development 
of supplementary tools to help veterinary pathologists is urgently 
needed to help improve diagnostic speed and consistency, improving 
welfare through better-informed and timely diagnosis.

This study highlights the potential of using CNN models in 
differentiating cDLBCL from RLH cases. Our results also examined 
the impact of stain normalisation, various pre-trained CNNs and 
hyperparameter optimisations on DL computer vision models. Our 
findings indicate that HawksheadNet is a promising lightweight CNN 

architecture for binary classification of neoplastic and non-neoplastic 
lymph nodes. Without fine-tuning, it outperformed different 
pre-trained CNNs. Its training and predictive performance are further 
enhanced through appropriate fine-tuning and proper application of 
stain normalisation.

Stain normalisation of WSIs is crucial for addressing stain 
inconsistencies prior to DL training, which can introduce image 
discrepancies and hinder predictive capacity. A plethora of stain 
normalisation methods are available to standardise histological 
images for both morphological analysis and DL pre-processing (21, 
29). Application of stain normalisation in histological images 
mitigates these variations, enabling trained models to focus on key 
features and patterns (35). Madusanka et al. (35), suggested that the 
impact of stain normalisation is more pronounced in less complex 
CNN architectures, (i.e., a smaller number of training parameters) as 
observed in GAN-based normalisers. The number of parameters in 
the feature extractor layers of pre-trained CNNs varies, with 
EfficientNet ranging from 4.0 to 64.0 M, Inception from 5.6 to 21.8 M, 
and MobileNet from approximately 1.5 to 4.2 M, whereas 
HawksheadNet has only 20,256 parameters. In line with this, the fine-
tuned Hawkshead CNN with StainNet performs better than 
pre-trained CNNs based on AUROC, which also holds true for 
Reinhard. However, the effect reported by Madusanka et al. (35) does 
not apply to the pre-trained CNNs we used. This is evident since 
EfficientNetB7, which has the most parameters (i.e., the largest 
model), performs best with Reinhard, while MobileNetV2 with the 
second smallest number of parameters performs best with StainNet, 
despite their contrasting parameter sizes. Despite the usage of stain 
normalisation, Hameed et  al. (5) demonstrated that the use of 
non-normalised datasets can result in comparable or better models 
when trained using stain transfer-based normalisers. While 
Madusanka et al. (35) and Hameed et al. (5) both focused on breast 
cancer using GAN-based or stain transfer-based normalisers, 
we suggest a dynamic and dataset-driven approach in choosing a stain 
normaliser. This approach would likely involve the retrainable 
GAN-based architecture designed for stain normalistion like StainNet 
(29) and StainGAN (28). Future prospects for GAN-based normalisers 

FIGURE 6

Performance of HawksheadNet trained on different stain normalisers. Overall performance of HawksheadNet using stain transfer-based and generative 
adversarial network (GAN)-based stain normalisers. Training and testing performances are shown from left to right: (A) overall predictive performance 
was assessed used area under the receiver operating characteristic (AUROC) curve scores, (B) training loss (solid line) versus validation loss (dashed 
line), and (C) training accuracy (solid line) versus validation accuracy (dashed line).
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TABLE 1  Model prediction performance metrics.

Normaliser CNN Optimisation Accuracy Precision Sensitivity Specficity F1 score

Original hyperparameters

Macenko HawksheadNet None 86.62% 85.44% 90.25% 82.47% 0.8778

Reinhard HawksheadNet None 87.66% 86.31% 91.32% 83.49% 0.8874

Ruifrok HawksheadNet None 58.30% 56.15% 99.10% 11.79% 0.7169

Vahadane HawksheadNet None 86.70% 85.89% 89.79% 83.18% 0.8779

StainGAN HawksheadNet None 89.40% 90.25% 92.68% 87.48% 0.9101

StainNet HawksheadNet None 88.97% 83.45% 98.91% 77.63% 0.9052

Optimisations

Reinhard

HawksheadNet Balanced classes 88.65% 87.45% 91.89% 84.97% 0.8961

HawksheadNet Balanced classes and fine-tuning 86.50% 82.80% 94.22% 77.70% 0.8815

HawksheadNet Balanced class and regularisers 83.70% 77.27% 98.33% 67.02% 0.8654

StainNet

HawksheadNet Balanced classes 88.88% 94.19% 84.32% 94.08% 0.8898

HawksheadNet Balanced classes and fine-tuning 91.59% 91.88% 92.37% 90.70% 0.9213

HawksheadNet Balanced class and regularisers 88.48% 85.20% 94.85% 81.22% 0.8976

Transfer learning

Reinhard

EffcientNetB0 None 87.15% 87.81% 88.11% 86.05% 0.8796

EffcientNetB1 None 87.53% 84.23% 94.22% 79.90% 0.8895

EffcientNetB2 None 88.81% 85.69% 94.82% 81.95% 0.9003

EffcientNetB3 None 87.92% 86.97% 90.94% 84.48% 0.8891

EffcientNetB4 None 87.15% 84.32% 93.20% 80.25% 0.8854

EffcientNetB5 None 85.97% 81.23% 95.81% 74.76% 0.8792

EffcientNetB6 None 86.92% 83.10% 94.70% 78.05% 0.8852

EffcientNetB7 None 88.98% 86.40% 94.13% 83.12% 0.901

InceptionV1 None 84.13% 81.94% 90.06% 77.37% 0.8581

InceptionV2 None 85.96% 85.03% 89.37% 82.07% 0.8715

InceptionV3 None 85.19% 83.41% 90.14% 79.56% 0.8664

MobileNetV1 None 86.34% 84.14% 91.61% 80.32% 0.8772

MobileNetV2 None 87.30% 86.50% 90.24% 83.95% 0.8833

MobileNetV3-Large None 86.60% 86.86% 88.19% 84.80% 0.8752

MobileNetV3-Small None 88.19% 88.19% 89.86% 86.29% 0.8902

StainNet

EffcientNetB0 None 86.94% 84.61% 92.27% 80.87% 0.8827

EffcientNetB1 None 86.99% 84.55% 92.48% 80.74% 0.8833

EffcientNetB2 None 87.43% 87.25% 89.48% 85.10% 0.8835

EffcientNetB3 None 86.61% 85.13% 90.70% 81.94% 0.8783

EffcientNetB4 None 86.12% 84.81% 90.07% 81.62% 0.8736

EffcientNetB5 None 86.12% 83.94% 91.43% 80.06% 0.8753

EffcientNetB6 None 86.86% 86.00% 89.99% 83.30% 0.8795

EffcientNetB7 None 87.90% 87.04% 90.80% 84.59% 0.8888

InceptionV1 None 85.01% 85.85% 86.04% 83.83% 0.8594

InceptionV2 None 85.76% 84.90% 89.13% 81.93% 0.8696

InceptionV3 None 84.85% 85.36% 86.37% 83.12% 0.8586

MobileNetV1 None 84.99% 84.86% 87.44% 82.21% 0.8613

MobileNetV2 None 87.66% 86.49% 91.06% 83.79% 0.8872

MobileNetV3-Large None 86.62% 86.99% 88.05% 84.99% 0.8752

MobileNetV3-Small None 87.05% 84.91% 92.04% 81.36% 0.8833
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would ideally require only a small subset of H&E slide patches for 
robust training, a lightweight architecture requiring less computational 
resources, fast stain normalisation speed, and user-friendly interfaces. 
To maintain comparability between stain normaliser, we used ‘stock’ 
or ‘default’ models from Kang et al. (29). Future research could benefit 
from retraining StainNet and StainGAN on our own dataset and 
comparing the outcomes with the stock GAN-based normalisers. 
Overall, GAN-based normaliser can be  adaptively trained 
independently of reference images, they may offer a more 
effective option.

In both HawksheadNet with Reinhard and StainNet, class 
balancing results in a slight improvement in AUROC, while 
hyperparameter fine-tuning and regularisation negatively affect 
performance. However, for HawksheadNet with StainNet, although 
hyperparameter fine-tuning slightly reduced AUROC, it resulted in a 
significant improvement in the F1 score. These findings highlight that 
a CNN architecture can respond differently to identical optimisation 
strategies depending on the stain normaliser used during training. 
This suggests that stain normalisation influences the sensitivity of 
CNNs to optimisations. Further investigation is needed to explore 
whether a broader grid-search for fine-tuning (i.e., more options), 
including more L1/L2 regularisation values, and longer training epoch 
per trial could lead to a more robust fine-tuned HawksheadNet CNN.

Pre-trained CNNs like EfficientNet, Inception, and MobileNet 
present appealing options for morphological analysis. However, to 
maximise their predictive potential in real-world applications where 
computational resources are often limited, it is important to factor in 
performance and computational efficiency when selecting CNN 
architectures. While our study explores a relatively simple task of 
distinguishing the most common subtype of canine lymphoma from 
a reactive lymph node, our findings align with previous studies that 
pre-trained CNNs are capable of recognising cancer-related 
morphology. It is worth noting that Inception underperformed 
compared to all models. While MobileNet and EfficientNet 
demonstrated comparable results, MobileNet is computationally 
cheaper and would have more real-world applications. However, our 
data indicates that the fine-tuned HawksheadNet outperforms all 
pre-trained CNN we investigated. This highlights the importance of 
prioritising computational-efficiency and overall generalisation 
performance when selecting CNN architecture for model training. 
Further testing on different morphological datasets is required to 
validate its applicability across varying data types and 
problem domains.

This is the first study on cDLBCL to demonstrate the application 
of CNN models for WSI segmentation. A limitation of tile-level 
classification is its inability to assess larger regions of WSIs. Our results 

FIGURE 7

Optimisation of HawksheadNet with the best stain normaliser from stain transfer-based (Reinhard) and generative adversarial network (GAN)-based 
(StainNet) protocols. Optimisation performance during training and testing for Reinhard and StainNet using HawksheadNet. Metrics are shown for 
Reinhard in panels A–C: (A) overall predictive performance assessed using area under the receiver operating characteristic (AUROC) curve scores, 
(B) loss curves, and (C) accuracy curves. Corresponding metrics for StainNet are shown in panels D–F: (D) AUROC curve scores, (E) loss curves, and 
(F) accuracy curves. In the loss and accuracy plots, training data are represented with solid lines, and validation data with dashed lines.
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show that model predictions can inform ROI-wide segmentation by 
superimposing predicted values per patch onto the original 
HE-stained slide. This approach provides a holistic visual tool to 
differentiate cDLBCL from RLH, enabling a more comprehensive 
analysis of the lymph node. WSI segmentation is more pronounced in 

true cDLBCL cases, displaying a higher concentration of ‘red’ tiles. On 
the contrary, while RLH cases still exhibit distinguishable 
segmentation compared to cDLBCL, they contain a greater number 
of tiles with reduced ‘blue’ intensity, compared to the Hawkshead 
model with StainNet. While the morphological segmentation achieved 

FIGURE 8

Transfer learning performance using Reinhard normaliser. Training and testing performances for EfficientNet (top row), Inception (middle row), and 
MobileNet (bottom row) using Reinhard-normalised images. Metrics for EfficientNet are shown in panels A–C: (A) overall predictive performance 
assessed using area under the receiver operating characteristic (AUROC) curve scores, (B) loss curves, and (C) accuracy curves. Metrics for Inception 
are shown in panels D–F: (D) AUROC curve scores, (E) loss curves, and (F) accuracy curves. Metrics for MobileNet are shown in panels G–I: (G) AUROC 
curve scores, (H) loss curves, and (I) accuracy curves. In the loss and accuracy plots, training data are represented with solid lines, and validation data 
with dashed lines.
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by each model varies in the prediction values, the overall visualisation 
remains consistent with the true diagnosis. Moreover, this highlights 
the potential to infer additional information from the WSI 
segmentation, such as immunological hot spots or ‘hot’ tumours. A 
study by Song et al. (36) on the hDLBCL tumour microenvironment 
(TME) demonstrated that patients with a ‘hot’ tumour, characterised 

by a higher infiltration of T-cells and cytokines, experience an 
increased inflammatory response that helps combat cancerous cells, 
leading to a better prognosis. In contrast, patients with a ‘cold’ tumour, 
which have low immune cell infiltration, are associated with immune 
evasion and a poorer prognosis. Although our current models are not 
trained to distinguish tumour ‘hotness’ or detect hot spots, they 

FIGURE 9

Transfer learning performance using StainNet normaliser. Training and testing performances for EfficientNet (top row), Inception (middle row), and 
MobileNet (bottom row) using StainNet-normalised images. Metrics for EfficientNet are shown in panels A–C: (A) overall predictive performance 
assessed using area under the receiver operating characteristic (AUROC) curve scores, (B) loss curves, and (C) accuracy curves. Metrics for Inception 
are shown in panels D–F: (D) AUROC curve scores, (E) loss curves, and (F) accuracy curves. Metrics for MobileNet are shown in panels G–I: (G) AUROC 
curve scores, (H) loss curves, and (I) accuracy curves. In the loss and accuracy plots, training data are represented with solid lines, and validation data 
with dashed lines.
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provide rough estimations of regions that are more likely to 
be cancerous. Future studies could explore inferring ‘hot’ versus ‘cold’ 
tumour characteristics in WSI-level context rather than tile-level 
might offer a more comprehensive understanding into tumour 
heterogeneity, tumour microenvironment patterns and immune 
responses in canine cancers. This approach could also be extended to 
infer other ‘-omics’ information, as demonstrated in human studies 
involving genomic mutations (23, 37) and aberrant genetic expressions 
(38), which could help in patient stratification and potentially lead to 
better-informed targeted interventions. This could lead to the 
development of WSI segmentation models capable of inferring spatial 
‘-omics’ data (e.g., transcriptomics and proteomics) directly from 
HE-stained slides, which could be  particularly useful in research 
settings. Overall, this opens new avenues for using and training CNN 
models to extract additional prognostic information from HE-stained 
slides and its application in WSI segmentation context.

We acknowledge that the number of patients which underwent 
additional IHC and PARR testing does not represent the majority of the 
cohort in this study. While morphology is reliable in diagnosis of large 
cell lymphoma and establishing a presumptive diagnosis of cDLBCL, 
with this lymphoma subtype representing the most commonly diagnosed 
subtype in dogs, in a minority of cases large cell lymphomas may be later 
shown to be of T-cell rather than B-cell origin where IHC is possible. 
Future studies would therefore benefit from a more consistent and 
complete inclusion of IHC and PARR testing across the entire cohort. 
However, achieving this is particularly challenging in large-scale 
retrospective clinical studies like ours, where original FFPE tissue is not 
available for further testing as it is only retained for a clinically relevant 

limited time scale post-diagnosis. This lack of further diagnostic 
information is common in clinical cases and may be due to various 
factors, such as further alternative diagnostics being conducted by the 
referring clinician, the presumptive diagnosis being considered sufficient 
when additional chemotherapy is not pursued, or financial limitations 
preventing owners from seeking further testing.

With regards to the statistics utilised in our study, Rainio et al. 
(32) previously assessed various tests for DL models, including 
DeLong’s and McNemar’s test for binary classification models. 
Typically, DeLong’s and McNemar’s tests are applied to compare 
different models, often trained using different CNN architectures or 
classifiers, evaluated on the same testing dataset. However, 
we employed these tests to compare models based on the same CNN 
architecture (HawksheadNet) but trained and tested using different 
stain normalisation methods. This modified approach may not be the 
most appropriate, however, there is no current consensus on a superior 
statistical method for this specific scenario. An alternative is to use a 
non-normalised test set, however, this can negatively impact predictive 
performance. This underscores the need for robust statistical methods 
to evaluate deep learning predictions when comparing stain 
normalisation techniques for a given CNN architecture. DeLong’s test 
did not detect a significant difference between the performances of all 
the model, suggesting that the models exhibit comparable predictive 
performance. Furthermore, while the discordant classifications among 
the top models used for WSI segmentation were significant, the 
number of discordant images accounted for less than 10% of the total 
testing set. Despite this, the WSI segmentation remained largely 
consistent with the true diagnosis.

TABLE 2  Different convolutional neural network architectures.

CNNs Parameters 
(feature 

extractor 
layers)

Final 
model 

size (mb)

Images 
processed 
per second

Source

HawksheadNet 20,256 0.32–13.5 ~6114.18 In-house CNN

EfficientNetB0 4,049,564 17.0 ~ 393.57 https://www.kaggle.com/models/tensorflow/efficientnet/TensorFlow2/b0-feature-vector/1

EfficientNetB1 6,575,232 27.2 ~300.04 https://www.kaggle.com/models/tensorflow/efficientnet/TensorFlow2/b1-feature-vector/1

EfficientNetB2 7,768,562 32 ~260.03 https://www.kaggle.com/models/tensorflow/efficientnet/TensorFlow2/b2-feature-vector/1

EfficientNetB3 10,783,528 44.2 ~207.55 https://www.kaggle.com/models/tensorflow/efficientnet/TensorFlow2/b3-feature-vector/1

EfficientNetB4 17,673,816 72–72.4 ~162.91 https://www.kaggle.com/models/tensorflow/efficientnet/TensorFlow2/b4-feature-vector/1

EfficientNetB5 28,513,520 115.5 ~113.87 https://www.kaggle.com/models/tensorflow/efficientnet/TensorFlow2/b5-feature-vector/1

EfficientNetB6 40,960,136 165.5 ~81.37 https://www.kaggle.com/models/tensorflow/efficientnet/TensorFlow2/b6-feature-vector/1

EfficientNetB7 64,097,680 258.3 ~67.45 https://www.kaggle.com/models/tensorflow/efficientnet/TensorFlow2/b7-feature-vector/1

InceptionV1 5,607,184 23.1 ~572.10 https://www.kaggle.com/models/google/inception-v1/TensorFlow2/feature-vector/2

InceptionV2 10,173,112 41.4 ~449.58 https://www.kaggle.com/models/google/inception-v2/TensorFlow2/feature-vector/2

InceptionV3 21,802,784 88.4 ~379.57 https://www.kaggle.com/models/google/inception-v3/TensorFlow2/feature-vector/2

MobileNetV1 

(1.0 × depth)

3,228,864 13.5 ~811.90 https://www.kaggle.com/models/google/mobilenet-v1/TensorFlow2/100-224-feature-

vector/2

MobileNetV2 

(1.0 × depth)

2,257,984 9.8 ~678.21 https://www.kaggle.com/models/google/mobilenet-v2/TensorFlow2/100-224-feature-

vector/2

MobileNetV3-

Large (1.0 × depth)

1,529,968 17.7 ~629.59 https://www.kaggle.com/models/google/mobilenet-v3/TensorFlow2/large-100-224-

feature-vector/1

MobileNetV3-

Small (1.0 × depth)

4,226,432 6.7 ~1251.15 https://www.kaggle.com/models/google/mobilenet-v3/TensorFlow2/small-100-224-

feature-vector/1
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Compared to the only previous study on use of CNN for 
diagnosing canine lymphoma by Hubbard-Perez et al. (10), which 
only trained on 1,530 images, our study includes a much larger 
(images = 155,833) dataset for training and testing from a cohort 
with more diverse breed representation. Hubbard-Perez et al. (10) 

worked with considerably fewer whole-slide images and tiles, which 
allowed them to manually review each extracted tile and select only 
those most clearly corresponding to disease. This approach would 
be excessively labour-intensive to do on our dataset. Their method 
may risk excluding images with borderline diagnoses that CNN 

TABLE 3  DeLong and McNemar tests for HawksheadNet using stain normalisers and top transfer learning architectures.

CNN 1 CNN 2 Stain 
normaliser 1

Stain 
normaliser 2

DeLong 
p-value

McNemar 
p-value

McNemar b McNemar c

HawksheadNet N/A Macenko Reinhard 1 0.00469 783 900

HawksheadNet N/A Macenko Ruifrok 1 <0.001 5,227 749

HawksheadNet N/A Macenko Vahadane 1 <0.001 1,044 682

HawksheadNet N/A Macenko StainGAN 1 <0.001 452 1,100

HawksheadNet N/A Macenko StainNet 1 <0.001 725 1,049

HawksheadNet N/A Reinhard Ruifrok 1 <0.001 5,280 685

HawksheadNet N/A Reinhard Vahadane 1 <0.001 1,166 687

HawksheadNet N/A Reinhard StainGAN 1 <0.001 490 1,021

HawksheadNet N/A Reinhard StainNet 1 <0.001 816 1,023

HawksheadNet N/A Ruifrok Vahadane 1 <0.001 422 4,538

HawksheadNet N/A Ruifrok StainGAN 1 <0.001 537 5,663

HawksheadNet N/A Ruifrok StainNet 1 <0.001 91 4,893

HawksheadNet N/A Vahadane StainGAN 1 <0.001 477 1,487

HawksheadNet N/A Vahadane StainNet 1 <0.001 550 1,236

HawksheadNet N/A StainGAN StainNet 1 <0.001 954 630

HawksheadNet 

(Balanced Class)

EfficientNetB7 Reinhard N/A 1 <0.001 669 1,171

HawksheadNet (Fine-tuned) MobileNetV2 StainNet N/A 1 <0.001 1,359 762

FIGURE 10

Whole Slide Image (WSI) segmentation. Tile-level predictions were overlaid on the regions of interest within the WSI. Predictions were made using the 
best-performing models of HawksheadNet and the top networks in transfer learning. The top row shows a true canine diffuse large B-cell lymphoma 
(cDLBCL) case, while the bottom row shows a true reactive lymphoid hyperplasia (RLH) case. Prediction values closer to 0 (indicated in blue) represent 
a higher likelihood of non-cancerous or RLH tiles, while values closer to 1 (indicated in red) suggest a higher probability of cDLBCL tiles.
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models must be able to handle in real-world applications. Moreover, 
unlike our study, which also focuses on WSI segmentation, theirs 
prioritised tile-level classification. Their dataset  also covered 
multiple lymphoma subtypes, demonstrating potential for 
subtyping (10). Nevertheless, our dataset remains smaller than 
those used in the largest CNN studies on human cases (9, 17, 18, 
20, 23, 39, 40). Future research should expand the dataset to include 
a larger cohort and a wider diversity of canine lymphoma 
immunophenotypes and histological subtypes, particularly those 
that are challenging to differentiate (e.g., borderline cases). This will 
improve model robustness and its applicability in 
veterinary pathology.

In conclusion, our study demonstrates the effectiveness of 
HawksheadNet, a lightweight CNN architecture, in cDLBCL image 
classification, particularly in differentiating from RLH using 
HE-stained slides. The results underscore the significant role of stain 
normalisation in CNN training as well as the impact of different 
optimisation techniques to optimise model training. HawksheadNet 
achieves generalisation performance comparable to well-established 
pre-trained CNNs, such as EfficientNet, Inception, and MobileNet. 
Furthermore, our study confirms that WSI segmentation can 
be performed by overlaying tile-level predictions onto the original 
WSI, with WSI-level segmentation closely aligning with true 
diagnoses. Although DL algorithms, including CNNs, have not yet 
been formally adopted for veterinary pathology diagnostics, ongoing 
development and training are essential to improve their performance 
and facilitate future clinical integration. Special attention should 
be  given to creating user-friendly interfaces and improving 
workflows, especially in underrepresented fields like veterinary 
science, which lags behind human pathology in adoption of these 
technologies. Overall, CNN models including those based on 
inference approaches, demonstrate significant potential for improving 
cancer patient diagnosis and stratification, and may ultimately guide 
treatment decisions and prognostication.
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