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Mechanism and application of 
yeast and its culture in regulating 
intestinal antioxidant defense in 
ruminants
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In intensive farming mode, oxidative stress is caused by excessive production of 
reactive oxygen species in ruminants, which seriously threaten animal health and 
production performance by disrupting intestinal barrier integrity, damaging nutritional 
metabolism, and inducing inflammatory reactions. Research indicates that yeast 
supplementation can enhance ruminant health and production performance, while 
alleviating oxidative stress. Compared to traditional synthetic antioxidants, yeast and 
its cultures have emerged as preferred solutions due to their multi-target regulatory 
actions and inherent biosafety. This article focuses on ruminants and integrates 
recent research findings to systematically review the mechanisms underlying 
oxidative stress responses in animal organisms, the antioxidant defense system 
of animals, and the role of yeast and its cultures in enhancing animal antioxidant 
capacity, to provide ideas for analyzing effective strategies for regulating animal 
oxidative stress response.
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1 Introduction

Ruminants constitute a vital component of global agricultural production, where their 
health status, production performance, and food safety are intrinsically linked to the 
sustainability of the industry. Under intensive farming systems characterized by high-density 
rearing and precision nutritional management, environmental stressors exacerbate oxidative 
damage in these animals (1). Oxidative stress is a cellular damage caused by the accumulation 
of large amounts of reactive oxygen species, which can lead to dysfunction of the intestinal 
barrier in ruminants and cause disruption of the gut microbiota, resulting in a significant 
decrease in nutritional metabolism efficiency and production performance (2). The intestine, 
as an important organ with both metabolic center and immune barrier functions, enhancing 
its antioxidant capacity has become an important strategy for improving the health 
of ruminants.

To alleviate oxidative stress commonly present in ruminant production and ensure animal 
health, various types of antioxidants have been widely used, including vitamins, trace elements, 
plant polyphenols, and artificially synthesized antioxidants. Among them, yeast and its 
metabolites have become a hot research and application topic with their excellent effects.

Yeast and its metabolites have shown significant potential in the field of oxidative stress 
intervention due to their multi-target regulatory properties. Saccharomyces cerevisiae can 
alleviate damage caused by oxidative stress by directly clearing reactive oxygen species, 
activating antioxidant enzyme systems (superoxide dismutase, SOD; glutathione peroxidase, 
GSH-Px, etc.), and regulating gut microbiota (3). The bioactive components such as β - glucan 
and mannan oligosaccharides contained in yeast cultures can not only enhance the antioxidant 
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defense of intestinal epithelium, but also improve cellular stress 
adaptation by regulating signaling pathways such as Nrf2 and MAPK 
(4). Research has shown that yeast intervention can simultaneously 
improve milk production performance and rumen fiber degradation 
efficiency in dairy cows (5, 6), demonstrating its dual value in 
metabolic regulation and health maintenance.

Previous reviews have primarily focused on the nutritional 
regulatory effects of yeast in animals, with inadequate attention given 
to its antioxidant mechanisms. Current research lacks a systematic 
elucidation of how yeast synergizes direct and indirect antioxidant 
actions to regulate the antioxidant system, thereby holistically 
enhancing organismal antioxidant capacity. This review aims to 
elucidate these key mechanisms, yielding deeper insights into yeast-
mediated antioxidant enhancement.

2 Oxidative stress response

2.1 Mechanism of occurrence

Oxidative stress is mainly caused by an increase in reactive oxygen 
species generation and an imbalance in antioxidant defense, leading 
to the disruption of redox homeostasis. Under physiological 
conditions, reactive oxygen species is mainly produced by the 
mitochondrial respiratory chain, nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase family, and xanthine oxidase (XO) (7), 
and participates in cellular signaling. Under pathological conditions, 
excessive generation of reactive oxygen species or external stimuli 
(radiation, toxins) can cause dysfunction of the antioxidant enzyme 
system, leading to damage to the body (8).

The excessive production of reactive oxygen species can lead to an 
increase in lipid peroxidation products, such as malondialdehyde and 
4-hydroxynonenoic acid, which affect cell function by disrupting the 
integrity of the biofilm structure (9, 10). It also exacerbates cell damage 
by oxidizing protein thiols and increasing the accumulation of 
8-hydroxydeoxyguanosine (11). During this process, excessive 
reactive oxygen species can activate the NF - κB and MAPK signaling 
pathways, leading to an increase in pro-inflammatory factors such as 
tumor necrosis factor  - α (TNF - α) and interleukin  - 6 (IL – 6), 
thereby forming a vicious cycle between oxidative stress and 
inflammatory response (12).

2.2 Causes of oxidative stress response in 
ruminant animals

Under intensive farming conditions, oxidative stress is one of the 
major challenges faced by ruminants. Ruminant animals, due to their 
unique rumen fermentation system, are more likely to produce 
metabolites and endotoxins, making the intestinal epithelium more 
susceptible to oxidative stress. Excessive reactive oxygen species can 
downregulate the expression of tight junction proteins, weaken 
intestinal barrier function, and lead to the transfer of endotoxins 
across the barrier, thereby causing oxidative stress in animal bodies 
(13). Its occurrence is usually the result of multiple internal and 
external factors working together. These factors increase the 
generation of reactive oxygen species or weaken the clearing ability of 
the body’s antioxidant system, ultimately leading to an imbalance of 

redox balance. The following explores the causes of oxidative stress in 
ruminant animals from three aspects: diseases and metabolic 
disorders, environmental stress, and feed nutritional components.

2.2.1 Diseases and metabolic disorders
The invasion of pathogens into animal bodies triggers an 

“oxidative burst” of neutrophils and macrophages. Excessive reactive 
oxygen species can not only kill pathogens, but also directly attack 
body tissues. For example, in mastitis, reactive oxygen species leads to 
lipid peroxidation of breast tissue, exacerbating the inflammatory 
response (14–16). The intestinal barrier damage caused by 
gastrointestinal infections promotes the translocation of endotoxins 
(lipopolysaccharide, LPS), activates systemic inflammatory response 
through the TLR4/NF  - κ B pathway, triggers the secretion of 
pro-inflammatory cytokines, and further promotes the generation of 
reactive oxygen species (17). Parasitic infections induce chronic 
inflammation by disrupting the integrity of intestinal epithelium, such 
as nematode disease, significantly increasing serum malondialdehyde 
(MDA) levels and inhibiting glutathione peroxidase (GPx) activity 
(18). These sources of infection not only cause local inflammation, but 
also systemic oxidative damage (19).

Metabolic diseases exacerbate oxidative stress through metabolic 
imbalance and dysbiosis of the microbiota. Fatty liver is extremely 
common in high lactation cows. Excessive mobilization of 
non-esterified fatty acids (NEFA) in fatty liver leads to mitochondrial 
overload in liver cells, resulting in a large amount of reactive oxygen 
species leakage from the electron transport chain. At the same time, 
accompanied by a decrease in antioxidant enzyme activity, lipid 
peroxidation is induced, causing oxidative stress (20). Under ketosis 
conditions, the production of β - hydroxybutyric acid increases, and 
its metabolic process is accompanied by a burst of mitochondrial 
reactive oxygen species, which exacerbates cellular oxidative damage 
by inhibiting DNA repair enzyme activity (21, 22). Subacute ruminal 
acidosis (SARA) also causes oxidative stress. High precision feed diets 
can cause a decrease in rumen pH in ruminants, leading to abnormal 
proliferation of lactic acid bacteria. At the same time, microbial 
metabolic disorders can increase the production of reactive oxygen 
species. Rumen barrier damage promotes the entry of LPS into the 
bloodstream, activates the TLR4 signaling pathway, and triggers 
systemic inflammation and oxidative stress (23). It is worth noting 
that there is a bidirectional interaction between metabolic diseases 
and oxidative damage. Fatty liver exacerbates endotoxin toxicity by 
reducing liver detoxification ability, while SARA induced oxidative 
stress further inhibits rumen epithelial cell proliferation, forming a 
vicious cycle (24, 25).

2.2.2 Environmental stress
Under high temperature conditions, ruminants rely on respiratory 

evaporation and skin vasodilation to regulate body temperature, 
which increases metabolic stress and is accompanied by the generation 
of reactive oxygen species. At the same time, heat stress caused by 
abnormal high temperatures can lead to overexpression of heat shock 
protein 70 (HSP70), which competitively binds to Keap1 protein (26), 
inhibits nuclear translocation of the Nrf2 signaling pathway, and 
suppresses the activity of SOD and GPx. Heat stress can also disrupt 
the balance of rumen microbiota, leading to the proliferation of lactic 
acid bacteria and a decrease in fiber degrading bacteria, exacerbating 
rumen acidosis and promoting LPS release. LPS activates the TLR4/
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MyD88 dependent NF - κ B inflammatory pathway, upregulates the 
expression of pro-inflammatory factors, and forms a vicious cycle of 
oxidative stress and inflammatory response. Cold stress increases 
reactive oxygen species generation and inhibits Nrf2 nuclear 
translocation through mitochondrial uncoupling protein 1 (UCP1) 
mediated thermogenesis in brown adipose tissue, leading to a decrease 
in liver antioxidant capacity and accumulation of lipid peroxidation 
products (27–29).

Long distance transportation, intensive feeding, and early weaning 
also lead to oxidative damage. Transport stress promotes the secretion 
of cortisol and catecholamines by activating the hypothalamic 
pituitary adrenal (HPA) axis and the sensory adrenal medullary 
(SAM) axis, which generate a large amount of reactive oxygen species 
(30). Monoamine oxidase (MAO) catalyzes the metabolism of 
catecholamines while generating hydrogen peroxide, further 
disrupting the cellular redox homeostasis (31). Under high-density 
feeding conditions, the increase in temperature and insufficient 
ventilation in the livestock house promote the accumulation of 
ammonia (NH3) and hydrogen sulfide (H2S) concentrations, which 
directly stimulate the production of reactive oxygen species (32). Early 
weaning reduces the expression of glutathione synthase (GSS) and 
gamma glutamylcysteine ligase (GCL) in the intestine, decreases GSH 
synthesis, weakens the antioxidant barrier function of intestinal 
epithelium, promotes endotoxin translocation and systemic 
inflammatory response (33). It may also cause intestinal damage in 
weaned lambs through the PPAR signaling pathway and iron death, 
leading to oxidative stress (34).

Heat stress also inflicts significant harm on pregnant ruminants. 
It elevates the risk of postpartum infections through 
immunosuppression, impedes mammary gland development, reduces 
milk production, and induces energy metabolism imbalances that 
exacerbate the risk of metabolic disorders such as ketosis. 
Furthermore, maternal heat stress severely compromises fetal 
intrauterine development by impairing placental angiogenesis and 
nutrient transport efficiency, resulting in diminished fetal immune 
competence and substantial health damage (35–38).

2.2.3 Feed nutritional components
Feed, as the main source of energy and nutrition for ruminants, 

directly determines the health level of the animals in terms of its 
quality and composition. Excessive grains in high-precision feed diets 
lead to excessive fermentation of rumen carbohydrates, resulting in 
the accumulation of volatile fatty acids and a sustained decrease in pH, 
which promotes the release of LPS by microorganisms (39–41). LPS 
activates the Toll-like receptor 4 (TLR4) mediated NF  - κ B 
inflammatory pathway while inhibiting Nrf2 mediated antioxidant 
gene expression, systematically reducing GPx activity and promoting 
the accumulation of lipid peroxidation product malondialdehyde 
(MDA) (42, 43). The free radicals generated by oxidized fat in spoiled 
feed can directly attack cell membranes, trigger lipid peroxidation 
chain reactions, and cause cell apoptosis. At the same time, the 
interference of spoiled fat on the β  - oxidation pathway of rumen 
microorganisms can further exacerbate intestinal oxidative 
damage (44).

Polluted feed and nutrient deficiencies can exacerbate the risk of 
oxidative stress. Fungal contaminated feed contains mycotoxins such 
as aflatoxin and deoxynivalenol, which can induce reactive oxygen 
species leakage by interfering with the mitochondrial electron 

transport chain, directly damaging liver and intestinal cells (45, 46). 
Copper and iron in feed contaminated with heavy metals can catalyze 
the generation of hydroxyl radicals through the Fenton reaction, 
leading to oxidative damage to proteins and DNA (47, 48). The lack of 
nutrients in feed also leads to an imbalance in the antioxidant system. 
For example, selenium deficiency in feed can reduce the efficiency of 
GPx enzyme protein synthesis, vitamin E deficiency can weaken the 
lipid peroxidation defense barrier, and high-precision feed diets can 
reduce the synthesis of B vitamins by rumen microorganisms, 
resulting in reduced NADPH regeneration and exacerbating oxidative 
stress (49, 50).

3 Antioxidant system

The animal antioxidant defense system regulates redox 
homeostasis through a synergistic network of enzymatic and 
non-enzymatic systems (51). The enzymatic system consists of 
antioxidant enzymes such as SOD, catalase, and glutathione 
peroxidase. SOD has three isoenzymes, namely copper zinc 
superoxide dismutase (Cu/Zn-SOD), manganese superoxide 
dismutase (Mn-SOD), and extracellular superoxide dismutase 
(EC-SOD). These three enzymes work together to resist oxidative 
stress (52). Cu/Zn- SOD and Mn-SOD catalyze the conversion of 
superoxide anions (O₂−) to H₂O₂ and O₂ in the cytoplasm and 
mitochondria, respectively (53). Catalase (CAT) efficiently 
decomposes H₂O₂ into H₂O and O₂ in peroxisomes, while GPx relies 
on reduced glutathione (GSH) to reduce H₂O₂ to H₂O, generating 
oxidized glutathione (GSSG) that is regenerated by glutathione 
reductase (GR), forming a dynamic cycle (54, 55).

The non-enzymatic antioxidant system comprises endogenous 
antioxidants (such as glutathione and melatonin) and exogenous 
antioxidants (such as vitamin C/E and carotenoids). These molecules 
collaboratively maintain the body’s oxidative homeostasis by directly 
neutralizing free radicals and repairing oxidative damage. For 
example, water-soluble antioxidant vitamin C can directly neutralize 
reactive oxygen species through single electron transfer; fat soluble 
antioxidant vitamin E can be embedded in the lipid layer of biological 
membranes, terminating the chain reaction of lipid peroxidation free 
radicals (LOO·) through phenolic hydroxyl hydrogenation (56–58), 
reducing oxidative damage to cell membranes; endogenous 
polyphenolic metabolites covalently modify Keap1, promote Nrf2 
nuclear translocation, activate the expression of antioxidant enzyme 
genes, and enhance antioxidant capacity (59).

This defense system has a precise regulatory mechanism, where 
the basal reactive oxygen species level is maintained in a steady state 
through negative feedback between enzyme activity and substrate 
concentration. Under stress, Nrf2 mediated antioxidant enzyme 
synthesis is enhanced, and the repair mechanism triggered by 
oxidative damage markers such as malondialdehyde and 
8-hydroxydeoxyguanosine forms a dual guarantee (60). These two 
systems jointly create a comprehensive defense network through 
multi-level regulation, enabling the body to maintain balance under 
oxidative conditions and prevent cellular oxidative damage.

To enhance this sophisticated defense network, various exogenous 
substances are often used for nutritional regulation in ruminants. For 
example, phytochemicals from dietary sources (such as polyphenols) 
can enhance endogenous enzyme activity by activating the Nrf2 
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pathway (61, 62); trace elements such as selenium are essential 
components for key enzyme activity centers such as GPx (63), while 
certain microorganisms and their metabolites exhibit unique 
antioxidant regulatory potential (64, 65). Yeast and its cultures, with 
their unique bioactive components such as β - glucan, oligosaccharides, 
organic selenium, B vitamins, glutathione precursors, etc., can 
effectively enhance the host’s antioxidant defense network through 
multi-target and networked regulation, thereby helping to maintain 
redox homeostasis (66).

4 The mechanism by which yeast and 
its cultures enhance the antioxidant 
capacity of animal bodies

4.1 Characteristics of yeast and its cultures

Yeast, as a group of unicellular fungi widely distributed in nature, 
is of great value in ruminant nutritional regulation, with Saccharomyces 
cerevisiae and Candida utilis being the most widely used. Yeast and 
their cultures are rich in high-quality proteins, B vitamins, and 
minerals, and can improve the palatability of feeds (67). In the 
regulation of the rumen environment, yeast can promote the 
proliferation of fibrolytic and lactic acid-utilizing bacteria (68) and 
inhibit the colonization of pathogenic bacteria, thus stabilizing the 
rumen pH, reducing the risk of subacute acidosis (69–71), and 
improving the digestibility of dry matter (72, 73). Furthermore, by 
reducing lactic acid accumulation, yeast can improve milk production 
efficiency and milk fat percentage (74). In terms of intestinal health, 
yeast effectively reduces the incidence of diarrhea in young livestock 
and enhances disease resistance by regulating the structure of the 
microbiota (39–41, 64, 65, 75), enhancing intestinal barrier function, 
and activating immune response (76). Of particular importance is its 
significant antioxidant capacity. Metabolites from yeast, such as 
glutathione and polyphenols, can enhance the body’s antioxidant 
capacity (77, 78). By clearing free radicals and increasing antioxidant 
enzyme activity (such as superoxide dismutase and catalase), the 
metabolites can alleviate the negative effects of oxidative stress on 
animals, especially under high temperature or high metabolic load 
conditions, significantly improving animal health status (79).

4.2 Direct antioxidant activity of yeast and 
its cultures

4.2.1 Glutathione
Yeast enhances the antioxidant capacity of animal intestines by 

regulating the dynamic defense system centered on GSH. Under 
oxidative stress conditions, yeast activates a specific transcriptional 
regulatory network, significantly increasing the expression of gamma 
glutamylcysteine synthase (γ - GCS) and glutathione synthase (GS) 
(80), enhancing their transmembrane transport capacity, and 
promoting the synthesis of GSH (81). Yeast breaks down cell walls in 
the acidic microenvironment of the intestine, delivering the produced 
GSH to intestinal epithelial cells to maintain cell integrity (82).

GSH exerts its antioxidant function in the intestine through 
various ways. Its active thiol group (− SH) directly scavenges 
hydroxyl radicals through electron transfer, interrupting the chain 

reaction of free radicals. GSH, as a key substrate of glutathione 
peroxidase, systematically scavenges oxidative products such as 
H₂O₂ and organic peroxides (ROOH). Reductase systems such as 
thioredoxin (Trx) and glutaredoxin (Grx) work synergistically with 
GSH to repair thiol disulfide bond exchange and restore key 
enzyme activity (83), thereby constructing a multi-level antioxidant 
barrier (84). Yeast can secrete coenzyme precursors such as 
riboflavin, which directly enhance glutathione reductase (GR) 
activity (85), drive the regeneration of oxidized glutathione (GSSG) 
into reduced glutathione, and maintain intracellular redox 
homeostasis. In addition, the system extends to the maintenance 
of intestinal barrier function, protecting tight junction protein 
structures by clearing reactive oxygen species, promoting the 
secretion of key components in the mucus layer to form a physical 
barrier, and regulating the interaction of antioxidant anti-
inflammatory signaling pathways (82). Adding yeast and its culture 
during daily feeding can effectively improve the antioxidant 
capacity of ruminants. According to the research findings of Chen 
et al. (86) supplementing with yeast culture increases glutathione 
levels, effectively enhancing antioxidant capacity.

4.2.2 Superoxide dismutase
Yeast constructs a multi-level antioxidant system by secreting 

superoxide dismutase (SOD), directly clearing reactive oxygen species 
and regulating the antioxidant system (87). SOD can catalyze the 
dismutation of superoxide anions into hydrogen peroxide and oxygen, 
blocking the oxidative chain reaction of reactive oxygen species. 
Extracellular Cu/Zn-SOD catalyzes the dismutation reaction of 
superoxide anions through its copper zinc active center, effectively 
inhibiting lipid peroxidation and maintaining intestinal mucosal 
barrier function (39–41, 88), protecting intestinal mucosa from 
oxidative damage (5, 6). The Mn-SOD targeted by mitochondria 
efficiently catalyzes O₂− dismutation in the manganese active center, 
reduces mitochondrial reactive oxygen species accumulation, 
stabilizes membrane potential, and inhibits abnormal opening of 
membrane permeability transition pores (mPTP), thereby blocking 
cytochrome c release and activating apoptosis signals (89). The SOD 
released after yeast lysis can still maintain its activity in the 
extracellular environment, continuously clearing reactive oxygen 
species and forming a dynamic antioxidant defense line.

At the molecular regulatory level, SOD activates the Nrf2 signaling 
pathway in the body, synthesizes endogenous antioxidant enzymes 
such as GSH, and inhibits NF - κ B-mediated inflammatory responses, 
blocking the vicious cycle of oxidation inflammation (55, 90). 
Meanwhile, the H₂O₂ generated by SOD catalysis can be synergistically 
degraded into water by the host GPx, avoiding oxidative damage 
caused by the accumulation of H₂O₂ (91).

4.2.3 Vitamins and organic acids
Yeast cultures are rich in vitamins and organic acids, which 

neutralize reactive oxygen species through multi-level interactions. 
Vitamin C, as a water-soluble antioxidant, can directly eliminate 
superoxide anions and hydroxyl radicals in the intestinal lumen (92). 
Vitamin E (alpha tocopherol) effectively terminates the lipid 
peroxidation chain reaction by embedding into the phospholipid layer 
of intestinal epithelial cell membrane, thereby reducing the production 
of toxic products such as malondialdehyde (MDA) (93, 94). In the B 
vitamins, riboflavin acts as a cofactor for glutathione reductase (GR), 
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catalyzing the reduction of GSSG to its active form GSH (95, 96). At 
the same time, tricarboxylic acid (TCA) cycle intermediates such as 
succinic acid and α - ketoglutarate can accelerate the operation of 
mitochondrial electron transport chains (14–16), generate ATP, and 
promote the generation of NADPH, thereby enhancing the antioxidant 
system’s capacity (61, 62, 97, 98).

Adding vitamins and organic acids during daily feeding can 
effectively alleviate oxidative damage in ruminant animals. According 
to Wang et al.’s research, supplementing vitamin E and yeast culture 
effectively reduced the absorption rate of endotoxins in dairy goats, 
enhanced their antioxidant capacity, and thus alleviated heat stress 
(99). Supplementing with vitamin E and selenium can effectively 
improve the physiological, hormonal, and antioxidant status of sheep, 
and alleviate heat stress (100).

4.2.4 Polyphenols
Yeast metabolizes polyphenol precursors in the diet, such as rutin 

and chlorogenic acid, and uses extracellular enzymes such as β  - 
glucosidase and esterase to hydrolyze them into highly active 
polyphenol derivatives such as quercetin and caffeic acid (101). This 
significantly enhances the lipid solubility and bioavailability of 
polyphenols, and improves the antioxidant capacity of animal 
intestines (102). Quercetin and other polyphenolic substances 
efficiently scavenge free radicals through the hydrogen atom transfer 
(HAT) mechanism of phenolic hydroxyl groups and the single 
electron transfer (SET) mechanism (29, 103). Caffeic acid, catechins, 
etc. form highly stable octahedral complexes with Fe2+/Cu2+ through 
the phenolic hydroxyl groups in catechol or gallic acid structures, 
blocking the redox active sites of metal ions, directly blocking the 
Fenton reaction, and reducing the generation of hydroxyl radicals 
(104, 105). In addition, hydrophobic polyphenols such as resveratrol 
and curcumin can be  embedded in the membrane of intestinal 
epithelial cells, directly quenching lipid peroxidation free radicals 
(LOO·) inside the membrane, thereby maintaining cellular 
homeostasis (106).

Yeast metabolites can also enhance antioxidant capacity by 
activating the antioxidant system. For example, quercetin promotes 
the expression of superoxide dismutase and glutathione peroxidase by 
activating the Nrf2/KEAP1 pathway (61, 62); caffeic acid can 
selectively inhibit Escherichia coli, while its metabolism of short chain 
fatty acids (such as butyric acid) promotes the proliferation of lactic 
acid bacteria and inhibits reactive oxygen species generation (107, 
108) (Table 1).

4.3 Indirect antioxidant effects of yeast and 
its cultures

4.3.1 Intestinal flora
Yeast enhances the antioxidant capacity of animal intestines by 

regulating the structure of gut microbiota. Its core mechanism of 
action is first reflected in the inhibition of pathogenic bacteria. The 
lectin proteins (such as Flo1p) on the surface of Saccharomyces 
cerevisiae are calcium-dependent glycoproteins that can specifically 
recognize and adhere to the mannose residues on intestinal epithelial 
cells. They physically occupy potential colonization sites for 
pathogenic bacteria (such as Escherichia coli and Salmonella), forming 
a biological barrier that competitively inhibits the colonization and 
proliferation of pathogenic bacteria (109–111). Simultaneously 
prioritizing the metabolism of carbon sources in the intestine, limiting 
the energy acquisition and respiratory chain activity of pathogenic 
bacteria (112). Yeast inhibits the proliferation and toxicity of 
pathogens by secreting various antibacterial active substances. For 
example, antimicrobial peptides produced by Saccharomyces cerevisiae 
can target lipopolysaccharides on the surface of Escherichia coli, 
disrupting the integrity of the bacterial outer membrane structure, 
leading to leakage of intracellular energy substances and significantly 
weakening bacterial activity (113, 114). These antibacterial 
mechanisms work together to effectively inhibit the colonization and 
metabolic activity of pathogenic bacteria, reduce their survival rate, 
and decrease the release of pro-inflammatory factors such as LPS 
while reducing the number of pathogenic bacteria. They also inhibit 
the activation of NADPH oxidase in macrophages, thereby reducing 
the excessive generation of intestinal reactive oxygen species (115).

Yeast not only inhibits harmful bacterial communities, but also 
improves the intestinal environment and enriches probiotic 
communities with antioxidant properties. The mannan and β  - 
glucan produced by yeast metabolism can serve as prebiotics, 
promoting the proliferation of beneficial bacteria such as lactic 
acid bacteria and Bifidobacteria (5, 6, 116), by increasing short-
chain fatty acids in the intestine, inhibiting the adhesion and 
growth of harmful bacteria, and collaborating with the anaerobic 
microenvironment formed by yeast consuming oxygen, the 
proliferation of pathogens can be suppressed. The enrichment of 
these probiotics works together with the anaerobic 
microenvironment formed by yeast oxygen consumption to inhibit 
the proliferation of pathogens. Yeast can also increase the 
abundance of butyrate producing bacteria, which produce short 

TABLE 1 The impact of yeast culture on its oxidizing ability.

Species Feeding supplement Conclusion References

Cow Saccharomyces cerevisiae Increase the levels of T-AOC, GSH-Px, and SOD in serum (66)

Lactating cow Chromium yeast
Enhance the activity of GSH-Px, SOD, and T-AOC in serum, and reduce the 

concentration of MDA
(143)

Neonatal goats Mannose-oligosaccharide Increase serum CAT and IL-4 levels, and decrease MDA and IL-6 levels (144)

Holstein cows Se-yeast
Enhance the activity of plasma T-AOC, SOD, and CAT, and maintain the 

activity of plasma GSH-Px.
(63)

Female holstein calf Sodium butyrate Enhance serum GSH-Px activity and reduce serum MDA concentration (141)

Lamb
Bacillus licheniformis and Saccharomyces 

cerevisiae
Enhance serum GSH-Px activity and reduce serum MDA concentration (145)
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chain fatty acids (SCFAs) by fermenting dietary fiber (24, 25), 
directly neutralizing reactive oxygen species such as hydroxyl 
radicals (117–119), and activating the antioxidant defense pathway 
of intestinal epithelial cells by inhibiting histone deacetylase 
(HDAC) (120), regulating antioxidant enzyme activity, and directly 
clearing reactive oxygen species (121). It is worth noting that the 
lactic acid produced by the metabolism of lactic acid bacteria can 
lower the pH value of the intestine, inhibit the proliferation of 
hydrogen sulfide producing bacteria, thereby reducing the 
production of hydrogen sulfide (H₂S) with strong oxidative 
toxicity, maintaining intestinal barrier function, and reducing 
oxidative stress (122, 123).

4.3.2 Intestinal barrier function
Yeast can also regulate intestinal barrier function and resist 

oxidative stress by strengthening the mucosal barrier and repairing 
tight connections. Yeast can enhance the mucosal barrier function, 
and its metabolites can regulate the function of goblet cells through 
molecular signaling networks. For example, SCFAs and polyphenol 
derivatives activate the ERK/Sp1 signaling pathway in intestinal 
epithelial cells, promote the transcription of MUC2 genes in goblet 
cells, and stimulate the secretion of mucins (124, 125). This 
significantly increases the thickness and viscosity of the mucus 
layer, and the thickened mucus layer can effectively block the 
infiltration of endotoxins and free radicals produced by rumen 
fermentation into the intestinal epithelium, reducing oxidative 
stress-induced reactions (57, 58). At the same time, yeast inhibits 
the activity of sulfatase positive bacteria, reduces the hydrolysis of 
mucin sulfate groups (126), prolongs the stability of the mucus 
layer, and thus maintains the stability of the mucus layer (118, 
119). This not only enhances the physical barrier ability of the 
mucus layer, but also reduces the generation of free radical 
precursors such as sulfides by reshaping the metabolic pattern of 
the microbiota.

4.3.3 Immunologic function
Yeast cell wall components (such as β  - glucan) bind to 

Dectin-1 and TLR2 receptors on the surface of intestinal mucosal 
macrophages (127, 128), increasing anti-inflammatory factor IL-10 
and inhibiting the release of pro-inflammatory factors TNF - α and 
IL-6, thereby blocking NADPH oxidase activation and reducing 
the production of superoxide anions and hydrogen peroxide 
(H₂O₂) (9, 10, 21, 22, 129). At the same time, yeast metabolite 
butyric acid can increase the levels of pro-inflammatory cytokines 
IL-10 and TGF  - β, inhibit Th17 cell activity, reduce IL-17-
mediated neutrophil infiltration and myeloperoxidase (MPO) 
release (130, 131), thereby reducing the production of oxidative 
toxic substances such as hypochlorous acid (HOCl) (132). In 
addition, yeast significantly increases the level of secretory IgA by 
stimulating the differentiation of Peyer’s patches B cells into plasma 
cells. SIgA specifically binds to pathogen surface antigens, blocking 
their adhesion to intestinal epithelium and reducing oxidative 
damage caused by pathogen colonization, thereby alleviating 
oxidative stress (133, 134). According to research by Du et al. (66) 
supplementation with brewing yeast culture effectively reduces 
inflammatory factors in dairy cows and synergizes with 
endogenous hormones to alleviate the adverse impacts of heat 
stress. Although Zhang et al. (14–16) observed no significant effect 

of yeast culture supplementation on immunity in bulls, this 
discrepancy may be attributable to variations in active components 
and strains across yeast culture preparations.

Yeast enhances immunity and antioxidant capacity by regulating 
SCFAs and tryptophan metabolism. The butyric acid produced by the 
metabolism of butyric acid producing bacteria enters macrophages 
and T cells through the monocarboxylate transporter (MCT1) (135, 
136), inhibiting HDAC activity and activating PPAR γ. PPAR γ 
upregulates the expression of SOD and CAT, while inhibiting key 
glycolytic enzymes (HK2, PFKFB3) (137), reducing mitochondrial 
reactive oxygen species leakage (138, 139). Butyric acid can also 
promote Nrf2 nuclear translocation by inhibiting Keap1, increase the 
expression of heme oxygenase-1 (HO-1) and glutathione synthase, 
enhance antioxidant capacity (140–142), and provide dynamic 
protection for the intestinal health of ruminants.

5 Conclusion

During intensive farming of ruminants, intestinal barrier 
damage, metabolic disorders, and inflammatory reactions caused 
by oxidative stress severely restrict their health and production 
performance. This article systematically summarizes the causes of 
oxidative stress (such as high-precision feed, environmental stress, 
metabolic diseases) and endogenous antioxidant mechanisms 
(enzymatic and non-enzymatic system synergy), with a focus on 
revealing the mechanisms by which yeast and its cultures enhance 
intestinal antioxidant capacity through multiple dimensions and 
pathways. On the one hand, by secreting and metabolizing 
glutathione, superoxide dismutase, and polyphenolic substances, 
reactive oxygen species is directly cleared and oxidative damage is 
reduced. On the other hand, by regulating intestinal microbiota 
and indirectly improving intestinal barrier and immune function, 
the two work together to enhance intestinal antioxidant defense 
capacity. Although the application research of yeast in the 
prevention and control of reactive oxygen species in ruminants is 
still in the exploratory stage, it provides new ideas for the 
prevention and control of reactive oxygen species in intensive 
farming through multi-target antioxidant mechanisms and host 
microbe synergistic regulation ability. In the future, we can delve 
deeper into exploring strain specificity, host–microbe interaction 
mechanisms, and analyzing key yeast metabolites, to promote the 
precise application of personalized antioxidant solutions in 
ruminant production.
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