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This experiment was conducted to explore the effects of different neutral 
detergent fiber (NDF) levels on nutrient apparent digestibility and intestinal 
microbiota composition and function in adult male forest musk deer (FMD) 
(Moschus berezovskii). A total of 18 adult male forest musk deer (FMD) (aged 
4–10 years) with an initial average body weight of 7.09 ± 0.82 kg were selected 
and randomly divided into three groups with different NDF levels: L: 21.60%, M: 
25.14%, and H: 28.47%. The FMD were used in a 50-day trial. The results showed 
that the apparent digestibility of NDF and acid detergent fiber (ADF) first increased 
and then decreased as NDF levels rose, with the M group showing the highest 
digestibility (p < 0.05). The H group exhibited significantly higher (p < 0.05) Chao1 
and ACE indices compared to the L group. In addition, at the phylum level (the 
relative abundance > 0.5%), no significant differences were observed among the 
three groups, except for Mycoplasmatota, which showed higher (p < 0.05) relative 
abundance in the M group compared to the L group. At the genus level (the relative 
abundance > 1%), the three groups did not change (p > 0.05) significantly. In the 
KEGG function analysis, differentially expressed genes were primarily enriched 
in pathways related to organismal systems and human diseases. In the CAZy 
functional analysis, significant differences (p < 0.05) were observed in glycoside 
hydrolases (GHs) and carbohydrate-binding modules (CBMs), with the M group 
showing clear enrichment in fiber-degrading enzymes. Overall, the M group 
demonstrated superior NDF apparent digestibility and enhanced fiber degradation 
capacity. Therefore, a dietary NDF level of approximately 25% is recommended 
as optimal for adult male FMD.
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1 Introduction

The forest musk deer (FMD) (Moschus berezovskii), the smallest species within the 
Moschus genus, is a ruminant under first-class protection in China (1). The musk secreted 
by male forest musk deer (FMD) holds great economic and social value, particularly in 
the production of high-end perfumes and traditional Asian medicine (2, 3). However, due 
to long-term illegal hunting and habitat fragmentation over the past 70 years—especially 
during the 1980s—the number of FMD has sharply declined (4). Although China initiated 
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an artificial musk deer farming program in 1958, more than 
60 years later (5), the captive breeding of FMD continues to face 
substantial challenges due to the species’ physiological constraints. 
For example, their heightened susceptibility to stress potentially 
contributes to elevated captive morbidity (35 ~ 62%) and mortality 
rates (18 ~ 30%), primarily due to gastrointestinal and respiratory 
diseases (6). Additionally, there are critical knowledge gaps 
regarding the nutritional requirements and feeding standards of 
FMD. This complex issue has resulted in markedly slower progress 
in breeding technology compared to other ungulate species (cattle, 
sheep, and deer, among others). Current husbandry practices for 
FMD remain largely experience-based, lacking scientific validation 
regarding optimal dietary composition. The nutritional adequacy 
of diets for captive FMD remains uncertain, potentially posing the 
risks of both deficiency and excess. Generally, wild FMD exhibit 
seasonal dietary diversity through selective browsing of varied 
plant species, but captive FMD are typically fed a restricted diet 
consisting primarily of concentrates formulated from conventional 
ruminant feedstuffs, supplemented with a limited variety of leaves 
and vegetables obtained through manual collection. However, this 
feeding approach lacks established nutritional standards, making 
it difficult to determine whether it meets the nutritional 
requirements or increases the body’s burden for FMD. Meanwhile, 
the nutritional requirements of FMD cannot be  fully based on 
those of other ruminants because of special feeding ecology. This 
nutritional paradigm gap may contribute to the high incidence of 
digestive disorders in captive FMD, and appropriate nutritional 
provision is critical for the physiological maintenance and growth 
of captive FMD.

Optimal nutritional levels are essential for establishing stable 
gut microbial communities, which, in turn, promote host health. 
Gong et  al. (7), through a comprehensive analysis of gut 
microbiome composition, determined that growing male FMD 
require a dietary protein level of 13.37%. Even so, reports on the 
nutritional requirements of FMD remain scarce. Neutral detergent 
fiber (NDF) serves as a critical nutritional indicator in ruminant 
feeding systems; suitable NDF levels are essential for ruminal 
health maintenance, production performance, high feed intake, 
and digestibility (8, 9). Given the stringent conservation policies 
governing FMD husbandry in China—which strictly prohibit any 
invasive procedures that may cause harm or stress—this study 
adopted non-invasive fecal sampling to evaluate the effects of 
varying NDF levels, using nutrient digestibility and fecal 
microbiome profiling indices. Nutrient digestibility coefficients 
serve as fundamental indicators of feeding efficiency in FMD, 
directly reflecting the animal’s capacity to utilize dietary 
components. The gut microbiome serves as a critical interface 
between diet and host physiology, with particular relevance for 
FMD conservation, and is frequently studied in forest musk deer 
research. Furthermore, fecal microbial profiles provide 
multidimensional insights into health status, immune competence, 
nutritional adaptation, and evolutionary fitness (10, 11). Therefore, 
this study systematically evaluated the effects of dietary NDF levels 
on nutrient apparent digestibility and the structure and function 
of intestinal microbiota in FMD. The findings recommend the 
appropriate NDF levels for the diet of adult male FMD to provide 
a valuable reference for scientifically formulating their 
nutritional plan.

2 Materials and methods

2.1 Ethics committee approval

All experimental procedures involving animals were reviewed and 
approved by the Institutional Animal Care and Use Committee at the 
Sichuan Institute of Musk Deer Breeding, Chengdu, Sichuan, China 
(SCYS-E2024002). All studies were conducted in accordance with the 
guidelines outlined in the Ethical Treatment of Experimental Animals 
of China.

2.2 Experimental design and animals

This study was conducted at the Musk Deer Farm of the Sichuan 
Institute of Musk Deer Breeding, located in Marcon County, Aba 
Tibetan and Qiang Autonomous Prefecture, Sichuan Province, China. 
A total of 18 adult male FMD (years 4–10) with similar body 
conditions (weighing 7.09 ± 0.82 kg) were selected. These FMD were 
randomly divided into three groups, with six replicates per group and 
one FMD in each replicate. The experiment lasted for 50 days. All 
animals were housed individually, and their sheds were thoroughly 
cleaned before the experiment.

2.3 Diet and feeding management

In this experiment, each FMD was fed the total mixed ration 
(TMR) at 9:00 a.m. and 16:00 p.m. every day. Considering the 
physiological activity patterns of FMD (crepuscular habits), only 
20–30% of the total daily feed ration was provided in the morning, 
with the remainder fed in the afternoon. The TMR consists of dried 
leaves (a mixture of several kinds of leaves), concentrate, and fresh 
vegetables, and the leaves and vegetables were pre-treated by 
cutting them into pieces approximately 1–3 cm in size before 
mixing. The NDF contents of the three TMR were 21.6% (L group), 
25.14% (M group), and 28.47% (H group), respectively. The dietary 
composition of the experimental groups is presented in Table 1. All 
FMD were provided with ration and water ad libitum, and the 
cleanliness of the enclosure was maintained.

2.4 Data and sample collection

On day 16 of the experimental period, daily feed provision and 
residues were recorded for each FMD, with refusal samples collected 
daily. Then, the samples were dried at 105 °C for 4 h in a forced-air 
oven, equilibrated in a desiccator, and weighed for DMI analysis.

A total of 0.5 kg of the TMR from the different experimental 
groups was collected, packed into ziplock bags, marked, and stored in 
the refrigerator at −20 °C for later use. After mixing the dietary 
samples collected from each group, samples of appropriate portions 
were obtained and dried to a constant weight in an oven at 105 °C. The 
dried samples were then ground using a pulverizer and passed 
through a 40-mesh sieve for further analysis.

During days 43–49, fresh feces from all FMD were collected 
into ziplock bags by the total fecal collection method for the 
digestibility test. Fecal samples were collected and pooled based on 
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a per-FMD individual basis. A representative 10% aliquot was 
obtained from the thoroughly mixed fecal matter and homogenized 
with a 10% sulfuric acid solution at a ratio of 10 mL acid per 100 g 
of the fecal sample. These samples were then stored with the 
residual fecal samples at −20 °C for subsequent determination of 
apparent nutrient digestibility.

On the final experimental day, fresh fecal samples were 
collected prior to morning feeding, which were immediately snap-
frozen in liquid nitrogen and stored at −80 °C for subsequent 
metagenomic analysis.

2.5 Nutrient digestibility and digestive 
energy

The feed and fecal samples were dried at 105 °C to a constant 
weight to determine dry matter (DM) content for subsequent 
analysis. Crude protein (CP) was determined using a Kjeldahl 
apparatus (KDN-2008, Shanghai Xianjian, China). NDF and acid 
detergent fiber (ADF) contents were analyzed using a fiber analyzer 
(ANKOM-A2000i, Ankom Technology, United  States). Ether 
extract (EE) was determined using a fat analyzer (SZC-C, Shanghai 
Xianjian, China). Gross energy (GE) and fecal energy (FE) were 
measured using an oxygen bomb calorimeter (Parr6400, Parr 
Instrument Company, Champaign, IL, United  States). Nutrient 
apparent digestibility and digestive energy (DE) were calculated 
using the following formulas:

	

( )
( )( )

Apparent digestibility %
Nutrient in feed Nutrient in feces / Nutrient in feed 100= − ×

	

( ) ( )
( )

Digestive energy MJ / kg Intake gross energy GE
Fecal energy FE

=
−

2.6 DNA extraction and high-throughput 
sequencing

The 18 samples collected were sent to Rhonin Bioscience Co., Ltd. 
(Chengdu, Sichuan, China) for metagenomic sequencing and 
functional analysis. Microbial genomic DNA was extracted from each 
sample using a PowerFecalTM Fecal DNA Kit (MOBIO, Carlsbad, 
CA, United States) following the manufacturer’s instructions. The 
sample gDNA was purified using Zymo Research BIOMICS DNA 
Microprep Kit (Cat# D4301, United  States). The quality of the 
extracted DNA was assessed using fluorescence quantitative PCR and 
agarose gel electrophoresis. After quality control, the DNA was 
utilized to construct sequencing libraries with the TruSeq™ DNA 
PCR-Free Sample Prep Kit (Illumina, Inc., San Diego, CA, 
United  States) following the manufacturer’s protocols. Second-
generation sequencing (Next-Generation Sequencing, NGS) was 
performed using the PE150 sequencing method on the Illumina 
NovaSeq 6,000 (Illumina, Inc., San Diego, CA, United States). The 
obtained data underwent quality control and were used for 
bioinformatics analysis.

2.7 Taxonomy profiling

Raw data were preprocessed using Trimmomatic (version 0.36) 
(12) to obtain high-quality sequences. Kraken2 was used for 
taxonomic annotation of each sequence (13), and species counts 
were compiled to construct an operational taxonomic unit (OTU) 
table. Using R software (version 4.4.2), the abundance data were 
statistically analyzed at taxonomic levels, which culminated in 
species composition and abundance distribution results. α diversity 
indices, including Shannon, Simpson, Chao1, and ACE, were 
calculated using the “Vegan” package (version 2.6.2) in R software 
(version 4.4.2) to evaluate species diversity and richness within each 
sample’s gut microbiota (14). β diversity was assessed using Bray–
Curtis distance algorithms with the “Vegan” package in R software 
(version 4.4.2) to obtain distance matrices for principal coordinates 
analysis (PCoA) (15). The adonis function was used to perform 
non-parametric multivariate analysis of variance (PERMANOVA) 
(16) in order to examine the significance of similarities and 
differences in the structure of gut microbial community among the 
samples and groups.

2.8 Assembly and gene prediction

The clean reads obtained after quality control were used for 
metagenomic assembly with SPAdes (17), and the resulting contigs 

TABLE 1  Composition and nutritional levels of the experimental diet (DM 
basis).

Item Group

L M H

Ingredients (%)

  Dry leaves 30 40 35

  Alfalfa meal 1 6 20

  Succulent feeda 19 14 15

  Concentrateb 50 40 30

  Total 100 100 100

Nutrient levelsc

  CP (%) 17.09 16.59 16.23

  NDF (%) 21.60 25.14 28.47

  ADF (%) 13.43 17.61 20.42

  EE (%) 6.24 6.06 5.82

  GE (MJ/kg) 16.46 16.53 16.32

  Ash (%) 9.05 8.98 9.34

  Calcium (%) 1.06 1.21 1.33

  Phosphorus (%) 0.49 0.43 0.40

L = low NDF (21.6%); M = middle NDF (25.14%); H = high NDF (28.47%); CP = crude 
protein; NDF = neutral detergent fiber; ADF = acid detergent fiber; EE = ether extract; 
GE = gross energy.
aThe succulent feed composition (on a fresh weight basis) consisted of 55% lettuce, 15% 
carrot, 15% pumpkin, and 15% cabbage.
bThe concentrate composition (on an air-dry basis) consisted of 57% corn, 19.5% soybean 
meal, 10% bran, 7% extruded soybean, 2.5% Angel yeast, 1.5% sodium bicarbonate, and 2.5% 
premix.
cNutrient levels were based on measured values.
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were used to evaluate the assembly effect using QUAST (18). Gene 
prediction was performed on the assembled contigs using Prodigal 
(version 2.6.3) (19), and the predicted nucleic acid sequence and 
amino acid sequence of the coding gene were obtained. 
Non-redundant gene clusters were generated using MMseqs2 
(version 13.45111) (20), with the following parameters: identity 
> = 95% and coverage > = 90 as the clustering threshold and the 
longest sequence selected as the representative sequence. All 
representative sequences formed a non-redundant gene set for 
subsequent quantitative analysis. The non-redundant gene sets 
obtained were annotated using the KEGG (21, 22) and CAZy (23) 
functional databases and were statistically analyzed in combination 
with the quantitative results of the genes. Linear discriminant 
analysis effect size (LEfSe) analysis of CAZy families was performed 
using the LEfSe online platform.1

2.9 Data analysis

All experiment results had at least three replicates and were 
expressed as mean ± standard error (SEM). ANOVA (SPSS 20.0) was 
used for statistical analysis, and a p-value of < 0.05 was considered 
statistically significant.

3 Result

3.1 Intake, digestibility, and digestive 
energy

As shown in Table 2, the DM digestibility of the L group was 
higher (p < 0.05) compared to the H group. Moreover, the FMD fed 
with medium NDF levels had significantly higher (p < 0.05) NDF and 
ADF apparent digestibility compared to the H group. Similarly, NDF 
digestibility initially increased but then declined with increasing NDF 
levels. Nevertheless, there were no significant differences in DMI, 
OM digestibility, and DE among the three experimental groups 
(p > 0.05).

1  https://huttenhower.sph.harvard.edu/galaxy/

3.2 Profiling of the intestinal metagenome

Metagenome sequencing analysis was performed on the fecal 
samples obtained from the 18 FMD, and a total of 630,074,687 raw 
reads were obtained. After filtering the host genome data, 
628,138,962 clean reads were obtained, averaging 34,896,609 
per sample.

A total of 4 kingdoms, 82 phyla, 178 classes, 338 orders, 764 
families, and 3,081 genera were obtained. At the kingdom level, the 
relative abundance, from highest to lowest, was as follows: Bacteria 
(90.69 ~ 97.74%), eukaryotes (1.24 ~ 3.79%), archaea 
(0.57 ~ 4.29%), and viruses (0.07 ~ 0.18%). In addition, no 
significant differences were observed among the three treatments 
(p > 0.05) (Figure 1).

3.3 Comparison of intestinal microbial 
diversity

In the α-diversity analysis results (Figure  2), the Chao1 
(Figure 2A) and ACE (Figure 2B) indices in the H group were higher 
(p < 0.05) than those in the L group. However, no significant difference 
(p > 0.05) for the Shannon (Figure 2C) and Simpson (Figure 2D) 
indices was found among the three groups. Furthermore, 
PERMANOVA of β diversity revealed no significant differences in 
fecal microbial communities among the three groups (p > 0.05), 
although a trend toward a difference was observed between the L and 
M groups (p = 0.067) (Figure 3; Table 3).

3.4 Comparison of intestinal microbiome

At the phylum level, the dominant phyla across the three groups 
included Bacillota (L = 35.62%; M = 36.16%; H = 33.83%) and 
Bacteroidota (L = 28.93%; M = 31.30%; H = 30.69%), followed by 
Pseudomonadota (L = 16.65%; M = 15.42%; H = 16.44%), 
Actinomycetota (L = 8.08%; M = 5.74%; H = 7.27%), Euryarchaeota 
(L = 2.17%; M = 2.04%; H = 1.43%), and Chordata (L = 1.20%; 
M = 1.77%; H = 1.63%) (Figure 4A; Supplementary Table S1). With 
an increase in the NDF level, the relative abundance of Bacillota and 
Bacteroidota first increased and then decreased. There was no 
significant difference in microbial relative abundance among the three 

TABLE 2  Effects of the different NDF levels on feed intake, apparent digestibility, and digestible energy.

Item Group P-value

L M H

DMI (g/d) 405.48 ± 87.58 482.69 ± 121.35 410.77 ± 116.95 0.191

DM (%) 73.76 ± 1.31a 71.19 ± 1.08ab 70.19 ± 0.57b 0.079

OM (%) 75.85 ± 1.46 73.97 ± 1.10 73.14 ± 0.47 0.237

CP (%) 59.50 ± 1.83 59.96 ± 1.37 59.94 ± 0.97 0.969

NDF (%) 44.63 ± 1.36ab 50.18 ± 2.46a 41.42 ± 1.56b 0.018

ADF (%) 45.01 ± 2.03ab 50.11 ± 2.60a 40.44 ± 1.44b 0.021

DE (MJ/kg) 11.76 ± 0.25 11.45 ± 0.19 11.37 ± 0.10 0.354

L = low NDF (21.6%); M = middle NDF (25.14%); H = high NDF (28.47%); DMI = dry matter intake; DM = dry matter; OM = organic matter; CP = crude protein; NDF = neutral detergent 
fiber; ADF = acid detergent fiber; DE = digestible energy. Within a row, values with different lowercase letters indicate significant differences among groups (p < 0.05).
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groups (p > 0.05). In addition, the relative abundance of 
Mycoplasmatota in the M group was significantly higher compared to 
the L group (p < 0.05).

At the genus level, species with over 1% average relative 
abundance in gut microbial communities among the three groups 
are presented (Figure 4B; Supplementary Table S2). Among these 
genera, Bacteroides (L = 9.34%; M = 7.97%; H = 8.78%) exhibited the 
highest relative abundance, followed by Phocaeicola (L = 3.89%; 
M = 4.08%; H = 4.69%) and Paenibacillus (L = 3.90%; M = 4.33%; 
H = 4.59%). However, no significant differences in the relative 
abundance at the genus level were observed among the three 
treatments (p > 0.05).

3.5 Functional gene annotation analysis

3.5.1 KEGG functional annotation
The KEGG database was used to annotate the pathways of 

different levels and abundances. A total of 1,048,575 UniGenes were 
annotated, covering 426 pathways across six major categories. The 
categories ranked by the relative abundance of enriched genes from 
highest to lowest were as follows (Figure 5): metabolism (64.19%), 
genetic information processing (13.81%), environmental 
information processing (8.02%), cellular processes (5.55%), 
organismal systems (3.19%), and human diseases (5.24%). The level 
2 classification results showed that carbohydrate metabolism 
(19.89%) had the highest relative abundance, followed by amino 
acid metabolism (12.48%), energy metabolism (7.17%), replication 

and repair (6.12%), and metabolism of cofactors and vitamins 
(5.31%).

The distribution plot of the relative abundance differences in the 
KEGG functional annotation is shown in Figure  6. The relative 
abundance of neurodegenerative disease in the L group was 
significantly higher (p < 0.05) than in the M group. In addition, the 
abundances of drug resistance: antineoplastic, infectious disease: 
bacterial, and excretory system in the L group were significantly 
higher (p < 0.05) than those in the H group. The abundances of 
environmental adaptation and neurodegenerative disease were 
significantly lower (p < 0.05) in the M group compared to the H group, 
while the abundance of the excretory system was higher than that in 
the H group (p < 0.05).

3.5.2 CAZy functional annotation
The column chart illustrating the number of carbohydrate-active 

enzyme genes was generated by comparison with the CAZy database. 
As shown in Figure 7, a total of 269,885 carbohydrate-active enzymes 
were predicted. Among the six types of enzyme molecules, glycoside 
hydrolases (GHs) accounted for the highest proportion at 48.53%, 
while auxiliary oxidoreductases (AAs) accounted for the lowest 
proportion at 0.04%.

To further analyze the differences in carbohydrate-active enzymes 
caused by varying NDF levels, the LEfSe analysis results shown in 
Figure 8 indicated that the LDA scores of seven biomarkers among the 
three groups were greater than 2. Notably, according to the LDA 
scores, GH177 was significantly enriched in the H group (LDA ≥ 2; 
p < 0.05), while GH78, GH120, and GBM5 were enriched in the M 

FIGURE 1

Influence of the different NDF levels on relative abundance at the intestinal kingdom level. L = low NDF (21.6%); M = middle NDF (25.14%); H = high 
NDF (28.47%). The “ns” indicates that the difference was not significant (p > 0.05).
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group (LDA ≥ 2; p < 0.05). In contrast, GH13, GH6, and GH2 showed 
significant enrichment in the L group (LDA ≥ 2; p < 0.05).

4 Discussion

To ensure experimental precision, this study employed a TMR 
feeding system instead of the conventional separate feeding of 
concentrate and roughage. The palatability of the TMR influenced 
intake patterns, although no statistically significant differences in DMI 
were observed across the NDF levels, and it is possible that when the 
NDF content exceeds a certain level, it may enhance the animal’s satiety, 
thereby reducing DMI. Notably, the M group exhibited the highest DMI 
values, suggesting a potential acceptability for balancing fiber content 
and feed intake. Nutrient digestibility reflects the efficiency of nutrient 
utilization by animals, and high nutrient digestibility is beneficial for 
growth performance. Although the L group exhibited higher DM 
digestibility, its DMI was low. The elevated DM digestibility compared 
to the H group may be attributed to the lower NDF content, which 
allowed rumen microbes—normally adherent to fiber—to preferentially 

ferment carbohydrates and proteins, thereby contributing to the higher 
DM digestibility in the L group. Similarly, a study in cattle reported that 
the low-fiber group exhibited higher DM digestibility but lower NDF 
digestibility compared to the high-fiber group (24). In addition, the 
digestibility of NDF showed significant quadratic relationships with 
increasing dietary NDF levels. The quadratic regression analysis of the 
NDF levels and NDF digestibility showed that the regression equation 
was Y = − 0.761 × X2 + 37.188 × X − 400.781 (R2 = 0.549). In the 
formula, Y is NDF digestibility and X is the NDF level, and maximum 
predicted NDF digestibility occurred at an NDF level of 24.43%. With 
reference to previous studies in other ruminant species, the dietary NDF 
level for Tarim red deer was 37 ~ 47% (25). For growing lambs, an NDF 
level of 280 g/kg of ration was suggested (26). In peak-lactation dairy 
cows, a dietary NDF level of 28% was recommended (27). In contrast, 
as a specialized small ruminant with distinct browsing preferences 
(Moschus berezovskii preferentially consumes tender leaves while 
avoiding graminoids), the FMD exhibits markedly lower fiber tolerance. 
This dietary behavior helps explain why the experimentally determined 
NDF level, based on NDF digestibility, was lower compared to 
other herbivores.

FIGURE 2

Influence of different NDF levels on α diversity. (A) Chao1, (B) ACE, (C) Shannon, and (D) Simpson. Different lowercase letters denote significant 
differences among groups (p < 0.05). L = low NDF (21.6%); M = middle NDF (25.14%); H = high NDF (28.47%).
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The gastrointestinal microbiome constitutes a fundamental 
component of ruminant physiology, playing a key role in nutrient 
digestion and utilization, host immunity, intestinal barrier 
maintenance, and intestinal epithelium differentiation (10, 28). 
In this study, the α-diversity analysis revealed significantly higher 
Chao 1 and ACE indices in the H group compared to the L group, 
and the PERMANOVA revealed a tendency for separation 
between the L group and M group, indicating that gut microbial 
richness progressively increased with elevated dietary NDF levels. 
Zhang et al. (29) observed that rumen microbial diversity had a 
positive association with NDF levels. The H group’s diet, 
characterized by higher structural carbohydrate content, 

presumably enhanced rumen distension, and this dietary 
composition likely led to increased retention of undigested 
structural carbohydrates in the rumen. The associated ruminal 
microbiota, adhering to these fibrous substrates, were 
subsequently conveyed to the intestinal tract via the digesta 
passage, which may explain the demonstrated elevation in 
microbial α diversity. The microbial community was 
predominantly composed of Bacillota and Bacteroidetes, which 
were the dominant phyla, consistent with previous findings in 
FMD (30, 31). Bacillota, as primary cellulolytic bacteria, degrade 
fiber into short-chain fatty acids (SCFAs) for host utilization, 
while Bacteroidetes specialize in carbohydrate and protein 
degradation, promoting gastrointestinal immune system 
development (32, 33). Although the differences were not 
statistically significant, the M group exhibited the highest relative 
abundance of these two predominant bacterial phyla. Evidently, 
Mycoplasmatota (formerly Tenericutes) showed significantly 
higher relative abundance in the M group than in the L group. 
Similar to our findings, a significant quadratic correlation was 
observed between physically effective NDF (peNDF1.18) levels and 
Tenericutes abundance in the rumen of goats (34). Moreover, 
dietary fiber supplementation was associated with increased 
Tenericutes abundance in the porcine cecum (35). As 

FIGURE 3

Influence of the different NDF levels on β diversity. L = low NDF (21.6%); M = middle NDF (25.14%); H = high NDF (28.47%).

TABLE 3  PERMANOVA of the gut microbiota under the different NDF 
levels.

Group R2 P-value

L vs. M 0.129 0.067

L vs. H 0.080 0.554

M vs. H 0.069 0.814

L vs. M vs. H 0.122 0.380

L = low NDF (21.6%); M = middle NDF (25.14%); H = high NDF (28.47%).
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FIGURE 4

Bar charts showing the relative abundance of the intestinal microbiota at the phylum classification level (A) and the genus classification level (B). 
L = low NDF (21.6%); M = middle NDF (25.14%); H = high NDF (28.47%).

FIGURE 5

Column chart of annotation classification based on the KEGG database (Level 1 and Level 2).
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FIGURE 6

Differential analysis diagram of the KEGG functional annotations (Level 2) under the different NDF levels. L = low NDF (21.6%); M = middle NDF 
(25.14%); H = high NDF (28.47%).

FIGURE 7

Bar chart showing the number of carbohydrate-active enzyme genes annotated based on the CAZy database.
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cell-wall-deficient bacteria, Mycoplasmatota may exhibit unique 
interactions with the host intestinal epithelium (36). Marine 
studies further suggest its potential involvement in DNA 
metabolism (37, 38). However, its ecological role in mammalian 
gut systems remains poorly characterized. Therefore, further 
investigation is required to elucidate whether Mycoplasmatota 
participates in fiber degradation. In mammalian systems, 
although transient dietary alterations provoke immediate 
microbial shifts, attainment of a stabilized gut microbiota 
configuration generally requires an extended adaptation period 
that ranges from 30 days to multiple months (39, 40). The 
absence of intergroup differences at the genus level may reflect 
the limitation of the 50-day experimental period; however, 
subsequent metagenomic functional analyses revealed distinct 
characteristics among the three groups.

KEGG pathway analysis demonstrated that metabolism 
dominated the functional potential of the gut microbiota, 
whereas organismal systems were minimally represented, 
consistent with previous findings (41). Among the three 
treatment groups, differences in the KEGG pathways were 
primarily observed in organismal systems and human disease 
categories. The significant enrichment of the human disease 
pathways in the L group suggested a potential predisposition to 
disease development or manifestation of inflammatory 
conditions. Interestingly, the H group exhibited environmental 
adaptation enrichment under high NDF levels and low DMI 
conditions. This phenomenon may be attributed to the animal’s 
adaptive self-regulation in response to stress induced by external 
factors under conditions of reduced total energy intake. A 
previous study indicated that intestinal barrier disruption and gut 
microbiota dysbiosis are associated with reduced activity of 
excretory system pathways in mouse models (42). Consistently, 
the enrichment of the excretory system implied that the moderate 
dietary NDF level could enhance digestive and metabolic 
efficiency in FMD, potentially optimizing digestion and waste 
excretion processes. LEfSe analysis based on the CAZy database 
identified differential microbial biomarkers across the three 
treatment groups, with the majority belonging to GHs. All known 
agar-degrading bacteria possess at least one conserved GH117 
enzyme, which is essential for their polysaccharide utilization 

capabilities (43). GH78 has been demonstrated to hydrolyze ester 
bonds between lignin and polysaccharides in plant cell walls, and 
it exhibits robust α-L-rhamnosidase activity, which is implicated 
in the degradation of hemicellulose and pectin chains (44). 
GH120 functions as a β-xylosidase, catalyzing the hydrolysis of 
xylooligosaccharides into monomeric xylose units (45, 46). 
Carbohydrate-binding modules (CBMs) primarily facilitate 
substrate conversion, with CBM5 specifically acting as a 
chitinase-binding module that enhances chitinase activity on 
fermentative substrates (47). The GH13 family includes starch-
debranching enzymes that specifically and efficiently hydrolyze 
α-1,6-glycosidic bonds at starch branching points, thereby 
enhancing starch utilization efficiency (48). GH6 comprises 
glucanases and cellobiohydrolases, constituting a specialized 
enzyme family involved in cellulose degradation (49). GH2 plays 
a pivotal role in oligosaccharide degradation (50). These results 
indicate that the L group was primarily involved in degrading 
non-structural carbohydrates (e.g., starch and oligosaccharides), 
whereas the M group predominantly targeted the fibrous 
components of plant cell walls, which aligns with the high NDF 
digestibility observed in this study.

5 Conclusion

Based on the apparent nutrient digestibility results, an NDF level 
of 24.43% is recommended for optimal fiber degradation in FMD. Gut 
microbiome structure and function analysis further demonstrated that 
the M group (NDF level of 25.14%) exhibited superior digestive 
system performance, with higher enzymatic activity for structural 
carbohydrate degradation. Therefore, we recommend maintaining 
dietary NDF at approximately 25% for adult male FMD under the 
conditions of this experiment.
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FIGURE 8

LEfSe analysis bar chart showing the differences in the carbohydrate-active enzymes of the intestinal microbiota. L = low NDF (21.6%); M = middle NDF 
(25.14%); H = high NDF (28.47%).
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