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The swine farming industry, a key pillar of Chinese animal husbandry, faces significant 
challenges due to frequent outbreaks of porcine gastrointestinal infectious diseases 
(PGID). Traditional diagnostic methods reliant on human expertise suffer from low 
efficiency, high subjectivity, and poor accuracy. To address these issues, this paper 
proposes a multimodal diagnostic method based on artificial intelligence (AI) and 
large language model (LLM) for six common types of PGID. In this method, ChatGPT 
and image augmentation techniques were first used to expand the dataset. Next, 
the Multi-scale TextCNN (MS-TextCNN) model was employed to capture multi-
granularity semantic features from text. Subsequently, an improved Mask R-CNN 
model was applied to segment small intestine lesion regions, after which seven 
convolutional neural network (CNN) models were used to classify the segmented 
images. Finally, five machine learning models were utilized for multimodal classification 
diagnosis. Experimental results demonstrate that the multimodal diagnostic model 
can accurately identify six common types of PGID. This study provides an efficient 
and accurate intelligent solution for diagnosing PGID and demonstrates superior 
performance compared with single-modality methods.
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1 Introduction

The swine farming industry is a crucial component of Chinese animal husbandry. In 2024, 
China’s pork production reached 57.06 million tons, accounting for 59.05% of the total output 
of pork, beef, mutton, and poultry (1). The swine farming industry not only plays a vital role 
in ensuring the safe supply of meat but is also a significant industry related to national 
economic and social welfare, holding a pivotal position in Chinese agricultural production. 
During the swine farming process, various diseases frequently occur, with digestive tract 
infectious diseases being the most common and severe, representing one of the primary causes 
of piglet mortality (2). Economic losses in swine farms due to digestive tract infectious diseases 
exceed 10 billion yuan annually, causing substantial financial damage to the swine farming 
industry (3, 4). Early, rapid, and accurate diagnosis is critical for disease prevention and control 
in swine.
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Traditional clinical diagnostic methods for PGID primarily rely 
on observing clinical symptoms, pathological changes, and 
epidemiological data to make preliminary diagnoses, or make 
confirmed diagnoses on some diseases that present typical and 
characteristic clinical signs. These methods heavily depend on the 
expertise and experience of frontline veterinarians, suffering from 
strong subjectivity, low efficiency, and poor accuracy. Additionally, 
the specialized skills and experience of veterinary experts are difficult 
to replicate quickly, leading to a shortage of qualified frontline 
veterinarians. In contrast, laboratory diagnostic methods utilize 
advanced detection technologies and sophisticated equipment to 
enable early diagnosis with high accuracy and robustness, making 
them one of the most commonly used and effective approaches for 
diagnosing swine diseases. Among these, multiplex quantitative PCR 
(qPCR) and enzyme-linked immunosorbent assay (ELISA) are 
widely applied in diagnosing PGID. Chen et al. developed a triplex 
qPCR for detecting porcine transmissible gastroenteritis virus, 
porcine epidemic diarrhea virus, and porcine delta coronavirus, 
achieving a clinical sample detection concordance rate of 
approximately 95% (5). Yang et al. established an indirect ELISA 
using the COE protein of porcine epidemic diarrhea virus expressed 
in Pichia pastoris as the coating antigen to detect antibodies against 
porcine epidemic diarrhea in serum, with a detection concordance 
rate of up to 99.4% (6). Although PCR and ELISA can achieve high 
diagnostic rates, these methods are complex, time-consuming, costly, 
and require specialized equipment and trained personnel to perform.

In recent years, with the rapid development of AI and image 
processing technologies, image recognition techniques based on deep 
learning have been widely applied in animal disease diagnosis (7–9). 
Kittichai et al. proposed an automated tool based on deep neural networks 
and image retrieval procedures for identifying Anaplasmosis, a common 
livestock disease, in microscopic images (10). This method, utilizing the 
ResNeXt-50 model combined with the Triplet-Margin loss function, 
achieved an accuracy of 91.30% and a specificity of 92.83%. Muhammad 
Saqib et al. introduced a deep learning approach using the MobileNetV2 
model and RMSprop optimizer for diagnosing lumpy skin disease in 
cattle (11). This method demonstrated an accuracy of up to 95%, 
surpassing existing benchmark methods by 4–10%. Yu et al. developed a 
deep learning model based on the YOLOv8 detection algorithm, utilizing 
kidney ultrasound images to classify the International Renal Interest 
Society (IRIS) stages of chronic kidney disease in dogs (12). This model 
performed best in distinguishing IRIS stage 3 and above in canine chronic 
kidney disease, achieving an accuracy of 85%, significantly outperforming 
the 48–62% accuracy of veterinary imaging experts. Buric et al. employed 
a U-Net architecture combined with backbone networks such as VGG, 
ResNet, Inception, and EfficientNet for diagnosing various canine 
ophthalmic diseases (13). This model exhibited strong reliability, with an 
Intersection over Union score exceeding 80%, demonstrating high 
accuracy in the segmentation and diagnosis of canine eye diseases. 
Although these methods have shown significant success in animal disease 
diagnosis, their direct application to diagnosing porcine digestive tract 
remains challenging. The diagnosis of PGID is highly complex, requiring 
not only the identification of small intestine lesion characteristics from 
anatomical images but also the integration of textual case information for 
comprehensive analysis, involving the collaborative processing of 
multimodal image and text data. Currently, research on multimodal 
diagnostic techniques is primarily focused on human diseases (14–17), 
with no related academic reports in the field of PGID diagnosis.

Moreover, due to the sensitive nature of swine disease case 
information, which involves the interests of farms and the stability of 
the industry, collecting cases of PGID is challenging, leading to 
insufficient sample sizes for disease case data. This, in turn, causes 
issues such as low accuracy and overfitting in diagnostic models. Data 
augmentation is a key technology for addressing this problem, but 
traditional text augmentation methods (e.g., synonym replacement, 
word embeddings) have limited effectiveness. As an LLM, ChatGPT, 
with its powerful text generation and semantic understanding 
capabilities, excels in data augmentation, effectively tackling the 
challenges of insufficient training data and limited diversity. Dai et al. 
proposed the AugGPT method, which prompts ChatGPT to perform 
multiple rewrites of sentences, generating semantically similar but 
diversely expressed samples, significantly improving the accuracy and 
sample distribution diversity in text classification tasks (18). Fang et al. 
utilized ChatGPT to generate synthetic text, enhancing the 
compositional generalization ability of open-intent detection models 
and improving their capability to handle unseen data (19). Han et al. 
employed ChatGPT to generate synthetic data to reduce model bias, 
designing two strategies: targeted prompts and general prompts. The 
former is more effective but requires predefined bias types, while the 
latter is more broadly applicable (20). These methods provide viable 
pathways for text data augmentation in the diagnosis of PGID.

Here, a multimodal AI and LLM-based method was proposed for 
diagnosing PGID. The method first employs LLMs and image 
augmentation techniques to enhance case sample data, then uses a 
MS-TextCNN to extract text features from case reports and adopts an 
improved Mask R-CNN combined with a CNN classification model 
to identify small intestine lesion features, and finally utilizes a machine 
learning model to perform disease classification and diagnosis based 
on multimodal text and image features, which will effectively address 
the issue of insufficient text data, and achieve high-precision 
disease diagnosis.

2 Materials and methods

The experimental workflow for diagnosing PGID using 
multimodal AI in this study is illustrated in Figure  1. Step A: 
Constructed a text dataset of PGID case information. This involved 
using text to describe the onset details of PGID cases, including age at 
onset, season of onset, disease progression, clinical signs, appetite 
status, and fecal characteristics. Step B: Constructed and annotated a 
dataset of swine anatomical images. Domain experts manually 
annotated the small intestine lesion regions in the anatomical images 
and assigned classification labels based on eight distinct small intestine 
lesion characteristics. Step C: Augmented the text dataset of PGID 
case information. Using ChatGPT-4, each text description was 
augmented to generate five new text samples that were semantically 
consistent but vary in expression style. Step D: Augmented the swine 
anatomical image dataset. New swine anatomical images were 
generated using rotation (90°, 180°, and 270°) and mirroring 
(horizontal and vertical), producing five new images per original 
image. Step E: Implemented disease prediction based on multimodal 
feature fusion for PGID. The augmented text and image datasets were 
merged as multi-source data, and each case was labeled with a disease 
tag based on laboratory disease detection results. MS-TextCNN and 
Mask R-CNN + CNN branch networks were constructed to extract 
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text and image features, respectively. The extracted features are 
concatenated, feature-level fusion is performed, machine learning 
classification is performed, and the classification results are evaluated.

2.1 Data collection and preprocessing

2.1.1 Dataset
The swine disease data used in this study were sourced from the 

Animal Disease Research Institute of Heze University, collected from 
July to December 2023. The dataset comprised 106 confirmed cases of 
swine disease, covering 6 common types of PGID: porcine epidemic 
diarrhea (PED), transmissible gastroenteritis of pigs (TGE), porcine 
proliferative enteropathy (PPE), yellow scour of newborn piglets 
(YSNP), white scour of piglets (WSP), and clostridial enteritis of 
piglets (CEP). Details are provided in Table 1.

Each case included data in two different formats: a textual 
description of the swine’s disease onset information and anatomical 
images of the swine containing small intestine lesion regions. The 
textual description of the onset information covered details such as 
age at onset, season of onset, disease progression, clinical signs, 

appetite status, and fecal characteristics. The swine anatomical images 
included the lesion regions of the small intestine, with lesion 
characteristics primarily classified into 8 categories: small intestinal 
serous membrane congestion (SISMC), small intestinal wall bleeding 
(SIWB), hemorrhage and thinning of small intestinal wall (HTSIW), 
thinning of small intestinal wall (TSIW), small intestinal wall 
hyperplasia (SIWH), small intestinal mucosal hyperplasia (SIMHp), 
hemorrhage and hyperplasia of small intestinal mucosa (HHSIM), 
and small intestinal mucosal hemorrhage (SIMHh) (see Figure  2 
for details).

2.1.2 Data preprocessing
To mitigate the issues of classification instability and overfitting 

caused by insufficient data samples, this section applied data 
augmentation to both the textual descriptions of swine disease case 
information and the anatomical images of swine. For text 
augmentation, ChatGPT was utilized for natural language generation. 
ChatGPT, built on the GPT-4 architecture, is an autoregressive 
language model with a core Transformer decoder structure. Trained 
on large-scale corpora through unsupervised pre-training, it possesses 
robust semantic modeling and language generation capabilities. 

FIGURE 1

Flow chart of porcine gastrointestinal infectious diseases diagnosis by multimodal AI and LLM.
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Without requiring fine-tuning, ChatGPT can generate high-quality 
text samples that maintain semantic consistency but vary in expression 
style through input prompts. The conditional probability formula of 
ChatGPT’s language model is presented in Equation 1:

	
( ) ( )−=

=∏ 1 2 11 | . ., .,m
i iiP x P s s s s

	 (1)

Where ( )= …1 2, , , mx s s s  represents the generated text sequence, 
and is  is the i-th word or token. By maximizing this conditional 
probability distribution, ChatGPT generates complete sentences, 
achieving both semantic preservation and diversity in expression. For 
each original clinical case description, a prompt (“Based on the text 
above, generate 5 sentences that have the same meaning but different 
expressions.”) was constructed and inputted into ChatGPT to generate 
five semantically consistent but stylistically diverse text samples, 
thereby expanding the dataset. Through this method, the original text 
samples were expanded from 106 to 636, significantly enhancing 
corpus richness and linguistic variability, thus improving the model’s 
ability to recognize and understand different expression styles.

Image augmentation employs various geometric transformation 
operations, including rotation by 90°, 180°, and 270°, as well as 
horizontal and vertical mirroring. These methods significantly 
increased the diversity of image samples while ensuring that the 
semantic characteristics of small intestine lesions remained 
unchanged. The augmented image dataset was also expanded to 6 
times the original size, improving the model’ generalization ability 
across different image angles, orientations, and visual perturbations. 
Image augmentation not only increased the scale of training data but 
also provided a more comprehensive feature representation space 
during training, enhancing the robust identification of lesion regions.

Sequencely, the Labelme software was used to manually annotate 
the augmented images, accurately delineating the boundaries of small 
intestinal lesion areas and explicitly labeling their lesion types. During 
the model testing phase, 5-fold cross-validation was employed for 
objective evaluation to comprehensively assess the model’s 
generalization ability and stability.

2.2 Multi-scale TextCNN

TextCNN is a CNN-based text classification model widely used in 
natural language processing tasks (21). Its core principle involves 

representing text as a word embedding matrix, capturing local 
semantic features (e.g., n-gram patterns) through convolutional filters, 
retaining prominent features via max-pooling, and outputting 
classification results through fully connected layers and a softmax 
layer (22). TextCNN is renowned for its efficient feature extraction and 
robustness in handling short texts, making it suitable for classifying 
case information descriptions in porcine digestive tract infectious 
disease diagnosis.

The MS-TextCNN proposed in this paper (shown in Figure 3) 
enhanced the modeling capability for complex texts by introducing 
convolutional kernels of multiple sizes to extract semantic features of 
varying lengths in parallel. In the context of porcine gastrointestinal 
infectious disease diagnosis, the model took 100-dimensional word 
embeddings as input, employed 128 multi-scale filters, and integrated 
batch normalization, Rectified Linear Unit (ReLU) activation, 
Dropout, and global max-pooling to output a 6-class classification.

2.3 Improved Mask R-CNN

In practical diagnosis, small intestine lesion regions typically occupy 
only a small portion of anatomical images (as shown in Figure  2). 
Directly using a CNN model for whole-image classification is susceptible 
to interference from irrelevant background, which affects recognition 
accuracy. Therefore, it is necessary to first use an image detection model 
(e.g., Mask R-CNN) to locate and extract lesion regions before 
performing image classification to enhance the model’s recognition 
performance. Compared to single-stage detection algorithms like YOLO, 
Mask R-CNN employs a two-stage detection mechanism, making it 
superior in small target detection and high-precision tasks.

To improve the recognition and segmentation accuracy of small 
intestine lesion regions, this study optimized the original Mask 
R-CNN model by incorporating the High-Resolution Network 
(HRNet) as the backbone network and embedding the Convolutional 
Block Attention Module (CBAM) attention mechanism during the 
feature extraction stage. HRNet can extract rich semantic features 
while maintaining spatial resolution, effectively preserving detailed 
information of lesion regions. CBAM, through its channel and spatial 
attention mechanisms, guides the model to focus on more 
discriminative feature regions. This improved structure enhanced the 
model’s perception and segmentation accuracy for small target lesion 
regions while retaining Mask R-CNN’s multi-task detection and 
segmentation capabilities.

TABLE 1  Dataset details of PGID.

Disease type Disease description Number

PED Porcine epidemic diarrhea, caused by porcine epidemic diarrhea virus, characterized by watery diarrhea and vomiting (46) 46

TGE
Transmissible gastroenteritis of pigs, caused by transmissible gastroenteritis virus, characterized by vomiting, severe diarrhea, and 

high mortality in 2–3-week-old piglets (47)
27

PPE
Porcine proliferative enteropathy, caused by Lawsonia intracellularis, characterized by proliferation of crypt epithelial cells in the 

ileum and colon, leading to thickened intestinal mucosa (48)
8

YSNP
Yellow scour of newborn piglets, caused by pathogenic Escherichia coli, characterized by severe diarrhea, yellow watery feces, and 

rapid death (49)
12

WSP White scour of piglets, also caused by pathogenic Escherichia coli, characterized by milky-white or grayish pasty feces (49) 9

CEP
Clostridial enteritis of piglets, caused by Clostridium perfringens type C, characterized by red feces, small intestine mucosal 

hemorrhage and necrosis, with rapid onset, short disease course, and high mortality (4)
4
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FIGURE 2

Lesion features in porcine small intestine. SISMC, the serosal layer shows dilated and engorged capillaries, appearing bright red with prominent 
texture; SIWB, Damaged mucosal capillaries cause blood to enter the intestinal lumen, with affected segments appearing dark red; TSIW, the 
intestinal wall becomes thin, even transparent, losing its original toughness and elasticity; HTSIW, the intestinal wall appears red, becomes thin and 
transparent, and loses its toughness; SIWH, the intestinal wall thickens, resembling a soft hose, with a rough or granular surface; SIMHp, the 
mucosal surface thickens, exhibiting longitudinal and transverse wrinkles with an uneven surface; HHSIM, the mucosa appears red or dark red, with 
thickened layers, a rough surface, and accompanying wrinkles; SIMHh, the mucosal surface shows bright red or dark red dotted, patchy, or diffuse 
hemorrhages.

FIGURE 3

Disease diagnosis based on MS-TextCNN.
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The improved model, as shown in Figure 4, replaces the original 
ResNet-FPN backbone with HRNet and incorporates CBAM modules 
in key output layers to enhance feature representation. After image 
input, HRNet first extracts multi-scale high-resolution features, which 
are then enhanced by the CBAM attention module in both channel 
and spatial dimensions. Subsequently, the Region Proposal Network 
(RPN) generates candidate bounding boxes on the feature map for 
preliminary target localization. The candidate regions are aligned 
using ROIAlign and fed into three branches: a fully connected layer 
for classification, a regression layer for bounding box regression, and 
a fully convolutional network (FCN) for mask prediction. The final 
output includes the category, bounding box, and corresponding pixel-
level segmentation mask for each candidate region.

2.4 CNN classification models

This study selected 7 classic CNN classification models for 
classifying segmented images. Alex Krizhevsky’s Convolutional 
Neural Network (AlexNet) employs large convolutional kernels and 
overlapping pooling layers, combined with ReLU activation and 
Dropout techniques, to effectively enhance image feature extraction 
capabilities, achieving groundbreaking results in the 2012 ImageNet 
challenge (23). Visual Geometry Group Network (VGGNet) 
progressively deepens the network using multiple 3 × 3 convolutional 
layers and pooling layers, capturing rich features from low to high 
levels, and demonstrates outstanding performance in various image 
recognition tasks (24). GoogleNet utilizes Inception modules to apply 
convolutional kernels of different sizes in parallel, capturing multi-
scale features, while replacing fully connected layers with global 
average pooling to reduce computational complexity and improve 

efficiency (25). Residual Network (ResNet) introduces residual 
learning and skip connections, enabling effective training of deep 
networks, addressing the vanishing gradient problem, and excelling 
in image recognition tasks (26). Dense Convolutional Network 
(DenseNet) employs dense connections, allowing each layer to 
receive feature maps from all preceding layers, significantly improving 
information flow, reducing the vanishing gradient issue, and 
enhancing model generalization and efficiency (27). EfficientNet is a 
convolutional neural network architecture that simultaneously 
balances the depth, width, and resolution of the network through 
composite coefficients, significantly reducing model parameters and 
computational complexity while achieving higher accuracy (28). 
Vision Transformer divides images into patches and models them 
using a pure Transformer encoder, excelling at capturing global 
features and demonstrating image recognition performance 
comparable to or even superior to CNNs when trained on a large 
scale (29).

2.5 Machine learning models

This study selected 5 classic machine learning classification 
algorithms for the final disease classification. Naive Bayes (NB), based on 
Bayes’ theorem, calculates class probabilities through feature 
independence assumptions, making it suitable for high-dimensional 
sparse data with advantages of efficient computation and ease of 
implementation (30). K-Nearest Neighbors (KNN) performs classification 
through majority voting based on sample distances, offering an intuitive 
and interpretable decision process, particularly suitable for small-scale 
datasets (31). Support Vector Machine (SVM) constructs a hyperplane by 
maximizing the classification margin, effectively handling 

FIGURE 4

Structure of the improved Mask R-CNN.
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high-dimensional and nonlinear problems, and performs exceptionally 
well with small sample datasets (32). Random Forest (RF) integrates 
multiple decision trees, enabling automatic feature selection and reducing 
overfitting, with strong robustness suitable for complex datasets (33). 
eXtreme Gradient Boosting (XGBoost) employs a gradient boosting 
framework with regularization and optimized feature splitting, 
significantly improving accuracy and efficiency in modeling large-scale 
datasets and nonlinear relationships (34).

2.6 Evaluation metrics

This study adopted accuracy, precision, recall, and F1 score as 
evaluation metrics for model performance. Accuracy measures the 
overall classification prediction performance of the model, calculated as 
shown in Equation 2:

	
+

=
+ + +

TP TNAccuracy
TP TN FP FN 	

(2)

Where TP represents true positives (correctly predicted positive 
samples), TN represents true negatives (correctly predicted negative 
samples), FP represents false positives (negative samples incorrectly 
predicted as positive), and FN represents false negatives (positive 
samples incorrectly predicted as negative). Accuracy reflects the 
overall correctness of predictions across all sample categories.

Precision focuses on the proportion of true positives among 
samples predicted as positive, calculated as shown in Equation 3:

	
=

+
TPPrecision

TP FP 	
(3)

A high precision indicates a low false positive rate.
Recall measures the proportion of actual positive samples 

correctly identified, calculated as shown in Equation 4:

	
=

+
TPRecall

TP FN 	
(4)

A high recall indicates a low false negative rate.
The F1 score is the weighted harmonic mean of precision and 

recall, calculated as shown in Equation 5:

	
×

= ×
+

1 2 Precision RecallF
Precision Recall 	

(5)

Its value ranges from 0 to 1, with a higher value indicating a better 
balance between the two types of errors.

2.7 Experimental environment setup

The computer used in this study is equipped with an Intel Core 
i5-12400F CPU, 32GB RAM, and an Nvidia RTX 4060 GPU. During 
training, the Adam optimizer was used with an initial learning rate of 
0.0001, a cross-entropy loss function, a batch size of 32, 200 training 
epochs, and early stopping set to 30. Experiments confirmed that this 
was sufficient for effective training.

3 Results and analysis

3.1 Mask R-CNN detection results

This study employed an improved Mask R-CNN network to detect 
and segment lesion regions in small intestine anatomical images. To 
optimize the detection performance of Mask R-CNN, three 
classification methods were used to annotate lesion regions, as shown 
in Figure  5. The first method was based on eight true lesion 
characteristics provided by domain experts. The second method 
merged these into six categories. The third method further 
consolidated the six categories into three. The choice of classification 
labels directly impacts Mask R-CNN’s detection performance, and 
merging similar categories can reduce inter-class uncertainty, thereby 
improving the model’s recognition performance and 
generalization ability.

Table  2 presents the detection performance of Mask R-CNN 
under different classification methods. In the 8-class scenario, except 
for “TSIW” and “SIWH,” the Precision, Recall, and F1 scores for all 
other categories were 0, with an overall accuracy (OA) of only 0.0845. 
This suggests that overly fine-grained category divisions may hinder 
the model’s ability to effectively identify lesion types. In the 6-class 
scenario, detection performance improved for some categories, with 
“SIWB” achieving a Recall of 0.8125 and an F1 score of 0.5226, though 
the OA remained low at 0.287. In the 3-class scenario, detection 
performance significantly improved across all categories, particularly 
for “Non-dissected small intestinal wall lesions (NDSIWL),” where 
Precision, Recall, and F1 scores reached 0.9277, and OA increased to 
0.8202. This indicates that merging similar categories enhances Mask 
R-CNN’s detection performance and improves the model’s 
generalization ability.

To further analyze the recognition performance of Mask R-CNN, 
Table  3 presents the detection rates under different classification 
methods to evaluate whether Mask R-CNN successfully detects lesion 
regions even when it fails to classify them correctly. The results show 
that in the 8-class scenario, the detection rates for all categories were 
low, with an overall detection rate of only 0.3521. In the 6-class 
scenario, the overall detection rate improved to 0.6620, with “SIWB” 
reaching a detection rate of 0.8281, and other categories also showing 
improved detection rates, indicating that merging similar categories 
enhances the ability to detect target regions. In the 3-class scenario, 
the detection rates for all categories significantly improved, 
particularly for “NDSIWL” and “SIMHh,” which achieved detection 
rates of 0.9814 and 0.9000, respectively. The overall detection rate 
increased to 0.9430, demonstrating that broader category merging 
significantly enhances the detection capability for lesion regions.

Combining the results from Tables 2, 3, it is evident that in the 
3-class scenario, Mask R-CNN performs best in terms of both 
recognition accuracy and detection rate. However, the 3-class 
approach cannot fully describe the true lesion characteristics of the 
affected regions. Therefore, it is necessary to introduce a CNN network 
for secondary classification of the segmented images.

3.2 CNN classification results

To investigate the impact of different classification 
granularities, the experiment was conducted with two approaches: 
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8-class and 6-class classifications, while the 3-classification 
method was solely used for image segmentation of lesion regions. 
Classic CNN models described in section 2.4 were trained and 
tested on the segmented images. The experimental results, as 
shown in Table 4, indicate that all CNN models achieved higher 
classification accuracy on the pixel-level segmented images, with 
the OA of the 6-class approach generally outperforming the 
8-class approach. Although the 8-class approach can more finely 
characterize lesion features, it also increases classification 
difficulty, resulting in slightly lower accuracy. For example, 
GoogleNet achieved an accuracy of 96.74% in the 8-class scenario, 
which further improved to 97.67% in the 6-class 
scenario. Similarly, DenseNet’s accuracy increased from 95.81 to 
96.74%, Vision Transformer’s accuracy increased from 94.88 to 
96.74%. This suggests that for fine-grained lesion classification 
tasks, moderately merging similar categories can reduce 
the model’s learning difficulty, thereby achieving better 
classification performance.

3.3 Multimodal disease recognition

This study employed five representative machine learning models 
described in Section 2.5 to evaluate the classification performance of 
different feature modalities for PGID diagnosis. The classifiers were 
first applied to the text features (10 dimensions) extracted by 
MS-TextCNN, with results summarized in Table 5. Among all models, 
RF achieved the best overall performance, reaching the highest 
accuracy 0.8479, precision 0.9198, recall 0.8564, and F1 score 0.8870. 
In contrast, NB performed the worst, with an accuracy of only 0.6261, 
despite showing relatively high precision 0.7821. The remaining 
models demonstrated generally good performance but were slightly 
less accurate and stable compared with RF. These results indicate that 
text-based clinical features are highly discriminative.

Then, the classifiers were applied to the image features (4 
dimensions) extracted by Mask R-CNN + CNN under both 8-class 
and 6-class encodings, and the performance of all classifiers 
declined considerably, as shown in Table 6. The best results again 

FIGURE 5

Classification relationship of porcine small intestine lesion image.

TABLE 2  Detection results of the improved Mask R-CNN under different classification methods.

Category 
number

Metric SISMC /
NDSIWL

SIMHh SIMHp TSIW SIWH SIWB HTSIW HHSIM OA

8

Precision 0 0 0 0.2632 0.2727 0 0 0

0.0845Recall 0 0 0 0.3191 0.3000 0 0 0

F1 0 0 0 0.2885 0.2857 0 0 0

6

Precision 1 0 0.75 1 0 0.3852 \ \

0.2870Recall 0.1282 0 0.075 0.0426 0 0.8125 \ \

F1 0.2273 0 0.1364 0.0816 0 0.5226 \ \

3

Precision 0.9277 0.5238 0.7333 \ \ \ \ \

0.8202Recall 0.9277 0.5500 0.4681 \ \ \ \ \

F1 0.9277 0.5366 0.5714 \ \ \ \ \

TABLE 3  Detection rate of the improved Mask R-CNN under different classification methods.

Category 
Number

SISMC /
NDSIWL

SIMHh SIMHp TSIW SIWH SIWB HTSIW HHSIM OA

8 0.2778 0.1875 0.2273 0.4894 0.3000 0.4000 0.5714 0.1667 0.3521

6 0.7436 0.1875 0.4250 0.7234 0.7000 0.8281 \ \ 0.6620

3 0.9814 0.9000 0.8298 \ \ \ \ \ 0.9430
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came from RF, which achieved the highest accuracy 0.5526 for 
8-class and 0.5476 for 6-class, with F1 scores around 0.58. At the 
other extreme, NB remained the weakest, with accuracies of 0.3987 
for 8-class and 0.3949 for 6-class, and F1 scores near 0.41. The other 
models exhibited intermediate performance between the best and 
worst results, revealing certain limitations relative to the RF model. 
Overall, the results confirm that compared with text features, image 
features alone are less discriminative and less reliable for 
PGID classification.

Figure 6 presents the visual results of text and image features. The 
LDA projection of text features (Figure 6A) reveals substantial overlap 
between PED and TGE, with blurred boundaries among other 
categories, which explains the residual misclassifications observed in 
Table  5 despite the strong performance of text-only models. In 
contrast, the Sankey diagram of small-intestine lesion features 
(Figure  6B) illustrates a many-to-many correspondence between 
lesion traits and PGID classes, thereby clarifying why the image-only 
models reported in Table 6 performed poorly.

To further improve the recognition performance, this study 
performed feature-level fusion, combining the text features from 
MS-TextCNN with the image features from Mask R-CNN + CNN 
under both 8-class and 6-class encodings. The results are shown in 
Table  7. Among them, RF achieved the best performance, with 
accuracies of 87.58% (text + 8-class image features) and 86.47% (text 
+ 6-class image features), outperforming all single-modality baselines. 
KNN, SVM, and XGBoost also demonstrated high overall accuracies 
(all >83%), validating the robustness of multimodal fusion, while NB 
remained the weakest (66.03 and 62.78%). Additionally, most models 
performed slightly better with the text + 8-class scheme, suggesting 
that finer-grained image encoding provides richer complementary 
cues to bagging classification.

To more intuitively analyze and compare the recognition 
performance for each disease, confusion matrices for the classification 
results of each model under the 8-class image classification scenario 
were plotted, as shown in Figure 7. The confusion matrices indicate 
that RF model performed best, with only 21 PED cases misclassified 
as TGE, achieving a recognition accuracy of 87.58%. In contrast, NB 
model exhibited the poorest performance, with significant errors in 
distinguishing PED and TGE, resulting in lower model accuracy. 
KNN, SVM, and XGBoost models showed improved performance 
over NB model but did not match the superior accuracy of the RF 
model. Furthermore, the confusion matrix revealed a severe class 
imbalance issue, where the rare class CEP showed the lowest 
recognition performance across most models. As shown in Figure 7, 

the RF model achieved a recall rate of only 62.5% for CEP. In contrast, 
the NB model yielded the highest recall for CEP at 87.5%. We further 
explored common imbalance-handling strategies such as SMOTE 
(35), ADASYN (36), and AdaBoost (37), but none of them yielded 
notable improvements for the minority class CEP.

To further assess the contribution of each feature to the RF 
model, Figure 8 presents the importance scores of the text features 
and 8-class image features used in model construction. In the 
figure, blue bars denote text features and red bars denote image 
features. The results indicate that text features contribute more 
substantially to the model than image features. Further examination 
of the textual descriptions of PED and TGE revealed that some 
samples share highly similar keywords, which aligns with the 
partial overlap observed in Figure  6A. Moreover, as shown in 
Figure  6B, both diseases exhibit TSIW-type and HTSIW-type 
lesions in the anatomical images of the small intestine. These 
similarities in textual descriptions and lesion types collectively 
contribute to the difficulty in distinguishing certain PED and 
TGE cases.

3.4 Comparison with YOLO

YOLO uses attention mechanisms and dynamic convolution to 
especially improve small object detection, achieving better detection 
accuracy and computational efficiency (38). To further validate the 
advantage of the proposed Mask R-CNN in improving the recognition 
accuracy of CNN networks, YOLO was used to detect swine 
anatomical images, with results shown in Table 8. It can be observed 
that under three different classification scenarios, the recognition 
performance of YOLOv8 is similar to that of the proposed Mask 
R-CNN model but slightly inferior. YOLOv8 (39) demonstrates 
slightly better recognition performance than YOLOv12 (40) and 

TABLE 4  Classification results of improved Mask R-CNN-segmented images by different CNN models.

Models 8 Categories 6 Categories

Acc P R F1 Acc P R F1

AlexNet 0.8326 0.8000 0.8189 0.8038 0.9023 0.8867 0.8983 0.8883

DenseNet 0.9581 0.9438 0.9575 0.9500 0.9674 0.9683 0.9617 0.9683

GoogleNet 0.9674 0.9613 0.9675 0.9613 0.9767 0.9717 0.9750 0.9733

ResNet 0.8047 0.7950 0.7750 0.7700 0.8791 0.8441 0.8800 0.8617

VGGNet 0.8279 0.8463 0.7600 0.7500 0.8465 0.8400 0.8250 0.8217

EfficientNet 0.9209 0.9239 0.8937 0.9052 0.9256 0.9170 0.8966 0.9053

Vision Transformer 0.9488 0.9342 0.9571 0.9423 0.9674 0.9659 0.9419 0.9524

TABLE 5  Classification results of text features by different machine 
learning models.

Models Acc P R F1

NB 0.6261 0.7821 0.7369 0.7588

KNN 0.8132 0.8668 0.8213 0.8434

SVM 0.8399 0.9073 0.8481 0.8767

RF 0.8479 0.9198 0.8564 0.8870

XGBoost 0.8399 0.8798 0.8279 0.8531
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YOLOv13 (41), making it the most effective YOLO model under the 
data conditions of this study.

The segmented images from YOLO v8 were input into the CNN 
networks for classification, with experimental results shown in Table 9. 
Compared to the results in Table 4, the classification accuracy of all 
CNN models in Table 9 is significantly lower. Among them, DenseNet 
achieved the highest classification performance, with accuracies of 
94.34 and 94.81% for the 8-class and 6-class scenarios, respectively. 
These results indicate that the classification performance of YOLOv8-
segmented images is generally lower than that of Mask R-CNN, 
demonstrating the superiority of Mask R-CNN’s pixel-level image 
segmentation technology in classification and recognition tasks.

4 Discussion

4.1 Advantages of multimodal information 
fusion

In the diagnosis of PGID, traditional single-modal diagnostic 
methods, whether relying on empirical observation of clinical 
symptoms or single laboratory testing techniques, have significant 
limitations (Figure 6). In contrast, this study integrates anatomical 
images of swine small intestines with disease case information to 
construct a multimodal diagnostic model, effectively addressing 
these shortcomings.

TABLE 6  Classification results of image features by different machine learning models.

Models 8-Class image features 6-Class image features

Acc P R F1 Acc P R F1

NB 0.3987 0.4165 0.4052 0.4108 0.3949 0.4168 0.3977 0.4080

KNN 0.4543 0.9126 0.8730 0.8924 0.4568 0.9168 0.8720 0.8826

SVM 0.4697 0.5176 0.4647 0.4897 0.4476 05008 0.4570 0.4769

RF 0.5526 0.5871 0.5731 0.5800 0.5476 05866 0.5687 0.5765

XGBoost 0.5149 0.5357 0.5047 0.5197 0.5079 0.5122 0.4976 0.5121

FIGURE 6

Visualization of single-modal classification effects. (A) Visualization of text classification effects. (B) Visualization of the mapping between small 
intestine lesion characteristics and porcine gastrointestinal infectious diseases.

TABLE 7  Classification results of combined features by different machine learning models.

Models Text features + 8-class image features Text features + 6-class image features

Acc P R F1 Acc P R F1

NB 0.6603 0.8305 0.8152 0.8228 0.6278 0.7623 0.7749 0.7685

KNN 0.8569 0.9126 0.8730 0.8924 0.8569 0.9168 0.8720 0.8938

SVM 0.8443 0.9158 0.8564 0.8851 0.8455 0.9198 0.8564 0.8870

RF 0.8758 0.9301 0.8754 0.9019 0.8647 0.9249 0.8677 0.8954

XGBoost 0.8381 0.9093 0.8474 0.8773 0.8496 0.8898 0.8376 0.8629
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Multimodal information fusion integrates information from 
multiple data sources to achieve complementarity and enhancement, 
thereby obtaining richer, more comprehensive, and more accurate 
information, which in turn improves detection performance (42, 43). 
In this study, image data intuitively present visual features such as the 

morphology and location of small intestine lesions, while case 
information includes contextual and symptomatic details such as age 
at onset, season, and disease progression. These two modalities 
complement each other, providing a more comprehensive and 
multidimensional basis for disease diagnosis. At the model level, 

FIGURE 7

Confusion matrices of different machine learning models. (A) NB. (B) KNN. (C) SVM. (D) RF. (E) XGBoost.

FIGURE 8

Importance scores for all features used in the RF model.
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multimodal feature fusion enables the model to learn associations and 
complementary information between different modalities, enhancing 
its ability to represent complex disease characteristics. Experimental 
results demonstrate that the multimodal recognition model 
significantly outperforms single-modal models in disease classification 
accuracy. The RF algorithm, after fusing multimodal features, achieved 
a diagnostic accuracy of 87.58%, fully highlighting the substantial 
potential of multimodal information fusion in improving diagnostic 
accuracy and reliability.

4.2 High-quality text generation by LLM

The collection of porcine digestive tract infectious disease cases is 
challenging, and the limited sample size results in insufficient training 
data, which is a key factor constraining the performance of diagnostic 
models. ChatGPT, as an advanced LLM, leverages its powerful semantic 
understanding and text generation capabilities to produce a large number 
of semantically consistent but diversely expressed text samples through 
simple prompt inputs (18). This approach expanded the original text 
dataset from 106 to 636 samples, significantly enriching the training data.

These high-quality generated texts not only increase data diversity 
but also enable the model to learn a broader range of linguistic 
expressions, improving its ability to recognize and understand case 
information described in different styles. During actual training, 
models augmented with LLM-generated data exhibited better 
generalization when processing new, unseen text descriptions, 
effectively mitigating overfitting issues caused by data scarcity. 

Additionally, the process of text generation using LLMs requires no 
complex model fine-tuning, offering an efficient and convenient 
solution for addressing the issue of insufficient text data in swine 
disease diagnosis.

4.3 Advantages of combining Mask R-CNN 
with CNN models

In swine anatomical images, small intestine lesion regions often 
occupy a small portion and are surrounded by complex backgrounds. 
Directly applying CNN for whole-image classification is prone to 
interference from irrelevant information, leading to reduced 
recognition accuracy. Mask R-CNN is a two-stage framework-based 
model capable of simultaneously performing object detection and 
instance segmentation (44). Compared to single-stage detection 
algorithms like YOLO, Mask R-CNN demonstrates superior 
performance in small object detection and high-precision tasks. 
Previously, Li et al. employed the Mask R-CNN model to segment 
disease spots and insect spots on tea leaves, followed by classification 
using F-RNet, achieving precise segmentation and identification of the 
diseases and insect spots in tea leaves (45). In this study, the improved 
Mask R-CNN, optimized by incorporating HRNet and CBAM, can 
accurately locate and segment lesion regions, effectively removing 
background noise and preserving detailed lesion information, thus 
providing high-quality image data for subsequent classification.

Building on this, CNN classification models leverage their robust 
feature extraction and classification capabilities to perform in-depth 

TABLE 8  Detection results of the YOLO under different classification methods.

Models Category 
number

SISMC /
NDSIWL

SIMHh SIMHp TSIW SIWH SIWB HTSIW HHSIM OA

YOLOv8

8 0.2728 0.1851 0.2213 0.4872 0.2965 0.3932 0.5651 0.1619 0.3478

6 0.7384 0.1794 0.4205 0.7151 0.6944 0.8207 \ \ 0.6542

3 0.9777 0.894 0.8213 \ \ \ \ \ 0.9354

YOLOv12

8 0.2688 0.1853 0.2253 0.4700 0.2896 0.3795 0.5538 0.1587 0.3341

6 0.7136 0.1853 0.4110 0.7133 0.6355 0.8113 \ \ 0.6340

3 0.9654 0.8600 0.7986 \ \ \ \ \ 0.9140

YOLOv13

8 0.2758 0.1875 0.2253 0.4864 0.2997 0.3988 0.5567 0.1651 0.3431

6 0.7349 0.1875 0.4110 0.7213 0.6300 0.8170 \ \ 0.6480

3 0.9724 0.8876 0.8156 \ \ \ \ \ 0.9314

TABLE 9  Classification results of YoloV8-segmented images by different CNN models.

Models 8 Categories 6 Categories

Acc P R F1 Acc P R F1

AlexNet 0.7453 0.7475 0.7362 0.7325 0.8443 0.8627 0.7783 0.8050

DenseNet 0.9434 0.9350 0.9625 0.9438 0.9481 0.9517 0.9450 0.9450

GoogleNet 0.9151 0.9225 0.9150 0.9113 0.9434 0.9533 0.9333 0.9417

ResNet 0.7358 0.7100 0.7175 0.7075 0.8302 0.8550 0.8033 0.8217

VGGNet 0.7972 0.8113 0.7475 0.7688 0.8066 0.7783 0.7733 0.7717

EfficientNet 0.8661 0.8355 0.8461 0.8408 0.9023 0.8967 0.8764 0.8864

Vision transformer 0.9017 0.8981 0.8871 0.8926 0.9324 0.9311 0.9246 0.9292
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analysis of segmented lesion regions. Different CNN models utilize their 
unique network architectures to extract lesion features from various 
perspectives, capturing rich semantic information from low to high levels 
and enabling fine-grained classification of complex lesion characteristics. 
Experimental results show that, with preprocessing by the improved 
Mask R-CNN, CNN models significantly improved classification 
accuracy for lesion characteristics, achieving efficient and accurate 
identification and classification of small intestine lesions in swine.

4.4 Shortcomings and future work

In livestock farming, early disease diagnosis faces significant 
challenges due to the heavy reliance on subjective and inefficient 
manual inspections, while laboratory methods such as PCR, though 
highly accurate, are time-consuming, costly, require complex 
procedures, and depend on specialized equipment and trained 
personnel. These issues are particularly pronounced in large-scale 
farms, often leading to the spread of epidemics and increased 
economic losses. Therefore, the use of AI to achieve swine disease 
detection can effectively break through the limitations of traditional 
approaches, and while ensuring accuracy, improve detection efficiency 
and reduce costs.

Although the multimodal diagnostic framework proposed in this 
study demonstrates good performance in identifying PGID, it still has 
some limitations. First, the current dataset is relatively small and 
suffers from severe class imbalance, which may limit its generalization 
ability in diagnosing swine diseases. To address this issue, a novel data 
augmentation technique was proposed, which improved model 
accuracy but had limited impact on class imbalance. Furthermore, due 
to the extremely small number of samples in certain categories (e.g., 
CEP), synthetic data-based augmentation and boosting algorithms 
also proved insufficient in resolving the class imbalance problem in 
this dataset. Second, the text modality enhancement relies on semantic 
descriptions generated by ChatGPT, which, while helpful in enhancing 
sample diversity, may also introduce semantic biases that could affect 
the stability of the text-image fusion model. These biases may manifest 
as inconsistencies between the generated textual features and the 
actual clinical presentation of the diseases, potentially leading to 
misalignment during multimodal feature fusion and reducing overall 
diagnostic accuracy.

In future work, we plan to collect a larger and more balanced dataset 
encompassing diverse regions and pig breeds to enhance the 
generalization ability of the model. To further improve diagnostic 
performance, more advanced deep learning architectures will 
be  explored and compared. In particular, generative models will 
be considered to produce realistic synthetic samples for minority classes, 
thereby alleviating class imbalance and improving the robustness of the 
diagnostic framework. Furthermore, optimizing text enhancement is 
expected to improve semantic quality and credibility, with focusing on 
expert-annotated descriptions and domain-specific language model 
tuning to reduce bias and enhance multimodal robustness.

5 Conclusion

This study presented an intelligent diagnostic method, multimodal 
AI and LLMs-based classification framework, for identifying 6 types 

of PGID. The framework integrates a MS-TextCNN model, an 
improved Mask R-CNN model, CNN image classification models, and 
machine learning algorithms, exhibiting improved classification 
performance and robustness. Our results indicate that multimodal 
diagnostic model can significantly enhance the accuracy and efficiency 
in complex disease diagnosis. This study provides an efficient and 
accurate intelligent solution for diagnosing PGID, offering valuable 
reference for disease prevention and control in the livestock industry.
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