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Vaccine adjuvants are now widely utilized in vaccine formulations. The IFN-
Stimulated Genes (ISGs) family, play crucial roles in immune regulation and exhibit
broad-spectrum antiviral activity. However, limited studies have investigated the
potential of ISGs as vaccine adjuvants. Here, three swine ISGs fusion proteins
were induced and purified from Escherichia coli, including IFITM1, IFITM3 and
Viperin (sIFITM1, sIFITM3, and sViperin). Furthermore, sIFITM1, sIFITM3, and sViperin
inhibited the replication of pseudorabies virus (PRV) in swine (PK-15 and 3D4/21)
and murine (NIH/3 T3 and C57/B6-L) cells. Importantly, these fusion proteins
effectively enhanced the immunogenicity of inactivated classical swine fever
virus (CSFV) vaccine and improved the immune response in vaccinated mice.
Our evidence indicates that, compared with the CSFV vaccine group, the co-
administration of sIFITM1, sIFITM3, and sViperin with CSFV vaccine significantly
improved humoral immunity, increased T lymphocyte proliferation in the spleen,
and elevated serum IgG antibody levels. In conclusion, this study successfully
prepared sIFITM1, sIFITM3, and sViperin fusion proteins, confirming their ability
to inhibit PRV replication and suggesting their potential as vaccine adjuvants.

KEYWORDS

IFN-Stimulated Genes (ISGs), antiviral proteins, inactivated CSFV vaccine, vaccine
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1 Introduction

Adjuvants are a class of substances that non-specifically enhance or modulate host specific
immune response to antigens. They are typically administered prior to or concurrently with
immunogenic agents to promote the induction of a sustained and effective immune response.
Adjuvants have become critical components in the formulation of recombinant subunit
vaccines (1, 2), protein-toxin vaccines, and inactivated vaccine preparations. Appropriate
adjuvant technology can fill several key gaps in the development of modern vaccine products
(3, 4). The incorporation of adjuvants markedly decreases the required dose of antigens in
vaccination protocols, while also effectively reducing the number of immunizations needed.
In addition, certain adjuvants exert immunomodulatory functions by stimulating host to
induce the secretion of antibodies belonging to various subtypes. These adjuvants trigger
T-cell-mediated immune responses (5, 6), thereby mitigating the potential pathological
reactions induced by the antigen itself, enhancing antibody-dependent efficacy, and assisting
vaccines in achieving a more durable and effective immune protective effect (7, 8).

Another reason for formulating vaccines with adjuvants is to achieve qualitative regulation
of the immune response. Adjuvants can be utilized in preclinical and clinical studies.
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Additionally, adjuvants functionally elicit an appropriate immune
response profile. It has been reported that balanced Th1/Th2/Th17
responses increase the duration of T cell responses and prolong the
survival of mice (9, 10). Adjuvants enhance the generation of long-
term memory cells (e.g., T-cell memory) (11-13), facilitate the rapid
initial response during pandemics (14, 15), and alter the breadth,
specificity, or affinity of the immune response (16, 17). Currently,
adjuvants are employed to augment the immune response to specific
vaccines and reinforce the antibody reaction. These compounds
enhance the serum conversion rates in individuals whose reactivity is
diminished due to age, disease, or therapeutic intervention. For
example, the adjuvant MF59 was used with influenza vaccine to
improve response in older individuals (18, 19) and to reduce the dose
of vaccine antigen and the number of booster (20, 21).

In recent years, studies have found that there are many ISGs with
unique antiviral functions (22). At present, the antiviral spectrum of
IFITMs includes more than 20 viruses (23). These viruses include
DNA viruses, coated RNA viruses, and non-coated RNA viruses (24—
26). Several viruses that are highly pathogenic in humans are
suppressed by IFITMs, including human immunodeficiency virus
(HIV) (27), Ebola virus (EBOV) (28), Influenza A virus (IAV) (29, 30),
Zika virus (ZIKV) (31), and Severe acute respiratory syndrome corona
virus (SARS-CoV) (32). Among drugs with antiviral activity, IFITM3
has the best effect (33).

At present, the comprehensive antiviral mechanism of IFITM
mainly includes IFITM-mediated inhibition of virus fusion into
plasma membrane, lysosome or endosome membrane, so as to achieve
the purpose of inhibiting virus entry, rather than restricting virus
entry through specific recognition of virus components (33). IFITMs
also regulate the pH of endosomes or lysosomes (34). The
conformation of some viral envelope proteins (such as hemagglutinin)
changes at low endosomal pH, which mediates semi-fusion of the
virus and endosomal membrane (35). In addition, IFITM3 inhibit the
replication of some non-enveloped viruses by modulating the function
of late endosomes. IFITMs reduce the infectivity of some newly
created viruses. For example, IFITMs co-locate with HIV-1 Env and
Gag and become part of newborn virions, inhibiting the entry of
virions into new host cells (27). Recently, IFITMs have been found to
inhibit HIV-1 protein synthesis, thereby limiting viral infection (36).

In vitro antiviral activity of Viperin has been shown to work
against a variety of viruses (37). Viperin blocks the release of IAV
particles from infected cells by inhibiting an enzyme in the mevalonate
pathway, farnesyl diphosphate synthetase (FPPS) (38), suggesting that
this metabolic pathway plays a role in viral excretion. High expression
of Viperin occurs in Respiratory syncytial virus (RSV)-infected
macrophages that are not allowed to be cultured with RSV (39, 40).
Although Viperin shows anti-RSV activity in vivo (41), its mode of
antiviral action has not been established. Additionally, Viperin has
antiviral effects against Human cytomegalovirus (HCMV) for the first
time. Overexpression of Viperin in human fibroblasts prior to HCMV
infection significantly decreased the expression of late viral proteins
such as gB, pp28, and pp651 (42). So, Viperin has anti-broad viral
activity against DNA and RNA viruses. Viperin can regulate cellular
lipid metabolism during HCMV infection (43). The precise
mechanisms by which Viperin exerts its antiviral effects warrant
further investigation.

While most studies on IFITMs and Viperin have focused on
their function in host innate immunity, this study focuses on the
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function of IFITMs and Viperin as vaccine adjuvants. Swine
IFITM1, IFITM3, and Viperin fusion proteins were prepared as
adjuvators and immunized with classical swine fever virus (CSFV)
E2 protein recombinant baculovirus inactivated vaccine. To explore
its ability to enhance the immune protection effect of CSFV
inactivated vaccine, and provide a new method for better control
and prevention of CSFV.

2 Materials and methods
2.1 Cell lines and cell culture

Swine kidney cell line PK-15, swine alveolar macrophage cell line
3D4/21, mouse embryonic cell line NIH/3 T3, and mouse lung
fibroblast cell line C57/B6-L were purchased from American Type
Culture Collection (ATCC). The above cell lines were maintained in
complete Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and 100 U/mlpenicillin-
streptomycin (Beyotime Biotechnology, Shanghai, China). All cells
were incubated at 37°C with 5% CO,.

2.2 Expression plasmid construction

PK-15 cells were used for total RNA extraction with the total RNA
extraction Kit (Foregene, China). One microgram of total RNA was
used for cDNA synthesis with M5 Single-tube qPCR RT kit (Mei5
Biotechnology, China). Primers sequences used are shown in Table 1.
The 393 bp of swine IFITM1, 456 bp of swine IFITM3, and 1,107 bp
of swine Viperin gene was excised from the gel and purified using
DNA purification kit.

The purified DNA segments of swine IFITM1, IFITM3, Viperin
and the expression vector pCold-TF were digested with Xhol and
Xbal restriction enzymes. The purified DNA of [IFITM1, IFITM3, and
Viperin were cloned into pCold-TF expression vector. There is a
thrombin cleavage site between the pCold-TF chaperone protein and
ISGs (the recognition sequence is LVPRGS, which cuts between R and
G, leaving a residual GS sequence). The pCold-TF vector is a cold-
shock inducible expression vector designed to fuse and express the
soluble tag known as “Trigger Factor (TF) companion’, which is a
prokaryotic ribosome-associated chaperone protein and can facilitate
the co-translational folding of newly synthesized polypeptides. The
protein size expressed by pCold-TF vector is approximately 48 kDa.
The recombinant pCold-TF-IFITM1, pCold-TF-IFITM3, and pCold-
TF-Viperin were transformed into the Escherichia coli (E. coli)

TABLE 1 Primer sequences used for PCR.

Primer name

Primer sequence (5" — 3’)
IFITMI (swine) forward | CCGCTCGAGATGGATCAAGAGCCAG
IFITM1 (swine) reverse GCATCTAGACTAGTAGCCTCTGTTACTCTT
IFITM3 (swine) forward | CCGCTCGAGATGAACTGCGCTTCC
IFITM3 (swine) reverse GCATCTAGACTAGTAGCCTCTGTAATCCTT
Viperin (swine) forward | CCGCTCGAGATGTGGACACTGGTA

Viperin (swine) reverse GCATCTAGATCACCAGTCCAGCTTCAG

frontiersin.org


https://doi.org/10.3389/fvets.2025.1661103
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Liu et al.

DH5a-competent cells; the positive clones were selected and
determined by restriction enzyme analysis with XhoI and Xbal.

2.3 Recombinant protein expression and
purification

The recombinant plasmids pCold-TF-IFITM1, pCold-TF-
IFITM3, and pCold-TF-Viperin were transformed into E. coli DH5a-
competent cells, they were coated on solid LB petri dishes containing
ampicillin and cultured at 37°C for 14 h. Positive single colonies were
selected from the above petri dishes and inoculated into liquid
medium containing antibiotics, and cultured at 37°C and 200 rpm
until OD600 was 0.8-1.0, then isopropyl-f-d-thiogalactoside (IPTG)
was added into the bacterial solution, and the final concentration of
IPTG in the bacterial solution was 0.5 mmol/L. Subsequently, the
bacterial solution containing IPTG was induced and cultured in a
constant temperature shaking table at 16°C and 200 rpm for 16 h.
Harvested E. coli were lysed by sonication and subjected to 10%
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE). The recombinant proteins were separately purified by Ni-NTA
or ammonium sulfate.

2.4 SDS-PAGE and Western blotting

The collected cell samples were subjected to cell lysis using
Beyotime (Shanghai, ST506). The protein concentration was
quantified using the BCA Protein Assay Kit (Beyotime, Shanghai,
P0012). Subsequently, the protein samples were separated by
SDS-PAGE. For Western blotting, the next step after SDS-PAGE was
to transfer to NC membranes (Merck Millipore, HATF00010) and
detected with antibodies as indicated. PRV-gE was presented from
Chen’ lab and actin was purchased from Proteintech Group, Inc. (Cat.
66,009-1-Ig).

2.5 Viruses and viral infection

The swine influenza virus H3N2 was propagated in specific-
pathogen-free (SPF) chicken embryos. Pseudorabies virus (PRV) was
propagated in PK-15 cells. H3N2 and PRV were used to infect PK-15,
3D4/21, NIH/3 T3, and C57/B6-L cells. Cells were incubated with
virus for 1 h and cultured in DMEM for the indicated times, as
described previously (44).

2.6 Endotoxin determination assay

Bacterial endotoxin was quantitatively detected by Chromogenic
LAL Endotoxin Assay Kit (Beyotime, China). Simply was as follows:
First, diluted the endotoxin standard solution to the specified
concentration with endotoxin detection water. Subsequently, took the
endotoxin-free centrifuge tube and added endotoxin detection water,
endotoxin standard solution or the sample. Then added the endotoxin
detection reagent solution and incubated at 37°C in the dark for
7 min. Added the chromogenic reagent solution and incubated at
37°C for 10 min. Then, added the reaction solutions A, B, and C, and
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measured the absorbance value at a wavelength of 545 nm. Finally, a
standard curve was established: Y = bX + a, and the endotoxin content
of each sample was calculated.

2.7 Bicinchoninic acid assay

The Bicinchoninic Acid (BCA) assay mainly consists of the
following two steps. The first step is to draw the standard curve.
Simply is as follows: Dilute BSA by multiple ratios as per the
instructions. Add the protein standard solution diluted in a certain
ratio to the standard wells. The absorbance was measured at a
wavelength of 562 nm and a standard curve was plotted.

The second step is to detected purified protein concentration.
Simply is as follows: The sample is added to the BCA working solution
and incubated at 37°C for 30 min. The absorbance at A562 nm was
determined by an enzyme-linked immunosorbent assay (ELISA)
reader, and the protein concentration of the sample to be tested was
calculated according to the standard curve.

2.8 RNA preparation, RT-PCR, and
RT-qPCR

Total RNA was isolated using TRIzol reagent (TTANGEN, China)
and reverse transcribed into cDNA utilizing M-MLV Reverse
Transcriptase (Promega, United States). The cDNA was analyzed by
RT-PCR using Taq DNA polymerase (GenStar, Beijing, China) and by
RT-qPCR using SYBR Green Master Mix (Vazyme, Nanjing, China).
Primers used are shown in Table 2. f-actin was chosen as a reference
housekeeping gene for internal standardisation. The data of RT-qPCR
analysis were shown in normalized ratios which was auto-calculated
using the 2744 method, as described previously (45).

2.9 Plaque assay

After PK-15 cells were infected with PRV for 2 h, the adjuvant was
subsequently added and incubated for 24 h. Then, the culture
supernatant was collected for plaque assay. Specifically, MDCK cells
were inoculated with the serially diluted supernatant for 1 h. Following
this, the cells were washed three times with PBS and overlaid with
medium containing methylcellulose. After incubation at 37°C for
72 h, the plaques were quantified.

2.10 Grouping and immunization of
experimental animals

CSFV E2 protein recombinant baculovirus vaccine, inactivated
(Strain WH-09) was a veterinary drug available over the counter. Its
primary component was the CSFV E2 protein and it was purchased
from Wuhan Keqian Biology Co., Ltd. 75 female BALB/c mice were
randomly divided into His-tagged pCold-TF chaperone protein group
(control), normal saline + CSFV vaccine group (Vaccine), sSIFITM1
protein + CSFV vaccine group (sIFITM1 + Vaccine), sSIFITM3 protein
+ CSFV vaccine group (SIFITM3 + Vaccine), sViperin protein + CSFV
vaccine group (sViperin+Vaccine). The fusion protein (dissolved in

frontiersin.org


https://doi.org/10.3389/fvets.2025.1661103
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Liu et al.

TABLE 2 Primer sequences used for RT-PCR and RT-qPCR.

Primer name

Primer sequence (5" — 3’)
B-actin (swine) forward CGGCATCCACGAAACTACCT
B-actin (swine) reverse GCCGTGATCTCCTTCTGCAT
PRV-gE forward TTTGGATCCATGCGGCCCTTTCTG
PRV-gE reverse TTTGAATTCTTACGACACGGCGTCGCA
H3N2-NP forward CCACAAGAGGGGTCCAGATT

H3N2-NP reverse GGAGATTTCGCTGCACTGAG

B-actin (mus) forward GCTGCCTCAACACCTCAACCC
B-actin (mus) reverse GTCCCTCACCCTCCCAAAAG
IFN-B (mus) forward ATGAGTGGTGGTTGCAGGC

IFN-B (mus) reverse ACCTTTCAAATGCAGTAGATTCA

IL-28 (mus) forward CCATCGAGAAGAGGCTGCTT
1L-28 (mus) reverse GTCTGCAGCTGGGAGTGAAT
1L-6 (mus) forward TCCGGAGAGGAGACTTCACA

IL-6 (mus) reverse GTCTTGGTCCTTAGCCACTCC

PBS, 30 pg/mouse) is mixed with CSFV vaccine. On the 1st day, the
mixture of vaccine and the adjuvant are injected into the thigh muscle.
The mice were re-immunized with the mixture on the 21th day, and
were euthanized and sampled on the 28th day (or the 7th day after the
secondary immunization).

2.11 Organ coefficient measurement

Spleen and thymus tissues of mice were collected, and the blood
on the surface was drained with filter paper, then weighed and
calculated. The specific formula is as follows: Spleen coefficient = spleen
wet weight (mg)/mouse body weight (g); Thymus coefficient = thymus
wet weight (mg)/mouse body weight (g).

2.12 Extraction and culture of splenic
lymphocytes

The spleens of mice were dissociated using a cell strainer to obtain
a single-cell suspension. Following the addition of a separation
solution and subsequent centrifugation, a distinct layer of circular,
milky-white lymphocytes was harvested. Subsequently, a complete
culture medium composed of RPMI-1640 supplemented with 10%
fetal bovine serum (FBS) was added to prepare a splenic lymphocyte
suspension at a concentration of 1 x 10° cells/mL.

2.13 Splenic T lymphocyte proliferation
rate

The prepared mouse splenic lymphocyte suspension was added to
96-well cell plate, the blank control hole was added with RPMI-1640.
Concanavalin A (ConA, a plant hemagglutinin and has a good
promoting effect on T lymphocyte transformation) (Sigma-Aldrich,
United States) with a final concentration of 5 pg/mL was added and
cultured in a 5% CO, incubator at 37°C for 24 h. Subsequently, cell
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proliferation was detected by the CCK8 method, as follows: Add 10 pL
of CCK8 (Sigma-Aldrich, United States) to each well and continue the
culture for 2h. OD values were measured by enzyme-linked
immunoassay at 450 nm wave length, and lymphocyte stimulation
index (SI) = (experimental hole OD — blank hole OD)/(control hole
OD - blank hole OD) x 100%.

2.14 Enzyme-linked immunosorbent assay

After enucleation of the eyeballs of mice and collection of blood
samples, the blood was left to stand at room temperature for 1 h,
centrifuged at 1000 rpm for 20 min, and the serum was collected and
frozen at —20°C according to the single usage. Then, the protein levels
of IgG or CSFV E2 antibody were examined by enzyme-linked
immunosorbent assay (ELISA) using the mouse IgG analysis kit
(Jiangsu Enzyme Exemption Industry Co., Ltd.) or CSFV E2 analysis
kit (Amoy Lunchangshuo Biotech, Co., Ltd.) according to the
manufacturer’s instructions.

2.15 Histopathological analysis

BALB/c mice were sacrificed and dissected on the 7th day after
the secondary immunization. Mice spleen and thymus were collected
and fixed in 4% paraformaldehyde and embedded with paraffin. Then,
4-mm-thick sections were prepared and stained with hematoxylin and
eosin (H&E). The slides were visualized under an Olympus BH-2
microscope (Tokyo, Japan).

2.16 Statistical analysis

The data were analyzed by One-way ANOVA using GraphPad
Prism 5 statistical software. For RT-qPCR analysis, the folding changes
of mRNA expression and the normalized domestic genes were
determined by technical methods. The SDS-PAGE assay of the three
fusion proteins were quantified by Image] software to detect the
protein purity. Statistical comparisons between groups were performed
using Student’s t-test. Data are presented as the mean + SD (standard
deviation). A p-value < 0.05 was considered statistically significant.

3 Results

3.1 Prokaryotic expression and purification
of sIFITM1, sIFITM3, and sViperin proteins

3.1.1 Induced expression and solubility analysis of
sIFITM1, sIFITM3, and sViperin

To better express soluble proteins in prokaryotic cells,
we employed pCold-TF vector to construct recombinant plasmids
pCold-TF-IFITM1, pCold-TF-IFITM3, and pCold-TF-Viperin. The
pCold-TF vector encodes a chaperone protein that facilitates the
folding of newly synthesized polypeptides. Subsequently,
we transformed E. coli with the constructed recombinant plasmids
pCold-TF-IFITM1, pCold-TF-IFITM3 and pCold-TEF-Viperin.

Induction of expression was carried out by adding 0.1 mM IPTG,
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adjusting the oscillation conditions to 16°C, and incubating at
200 rpm for 16 h. The expression of recombinant proteins were
detected by SDS-PAGE analysis. Swine IFITM1 (sIFITM1), swine
IFITM1 (sIFITM3), and swine Viperin (sViperin) proteins were
successfully expressed, and their bands were close to 66 kDa, 69 kDa,
and 93 kDa, respectively, consistent with the expected size
(Supplementary Figures SIA-C). The results indicated that the
recombinant proteins sIFITM1, sIFITM3, and sViperin were
successfully induced.

Further, SDS-PAGE was utilized to detect the solubility of
recombinant proteins. The results showed that recombinant proteins
SIFITM1, sIFITM3, and sViperin were mainly expressed in the
supernatant (Figures 1A-C), indicating that most of the sIFITM1,
sIFITM3, and sViperin are fusion proteins.

3.1.2 Purification of sIFITM1, sIFITM3, and sViperin

Next, the fusion proteins SIFITM1, sIFITM3, and sViperin were
purified by Ni-NTA affinity chromatography and eluted with
500 mmol/L imidazole. The data showed that relatively fusion proteins
SIFITM1, sIFITM3, and sViperin were obtained after Ni-NTA
purification (Figures 1D-F).

Moreover, since we consider the practical production applications
of these three fusion proteins in the future, we explored more efficient
and convenient purification methods, such as ammonium sulfate
precipitation. This method is simple to operate, can be precipitated
several times to purify the degree, and has a wide range of applications.
Fusion proteins SIFITM1, sIFITM3, and sViperin with high purity
could be obtained (Figures 2A-C). In addition, we determined the
optimal ammonium sulfate saturation for fusion protein purification.
The results showed that the fusion protein sIFITM1, sIFITM3, and
sViperin could achieve good purification effect when the saturation of
ammonium sulfate was 70% (Figure 2A), 60% (Figure 2B), and 70%
(Figure 2C), respectively.

Next, we tested the purity of the three fusion proteins. Since the
constructed pCold-TF-IFITM1, pCold-TF-IFITM3, and pCold-TF-
Viperin recombinant plasmid carried His-tag, anti-His was used as the
primary antibody to detect the size of the purified target protein. The
results by SDS-PAGE assay showed that there was a single specific
band at the molecular weight of 66 kDa (sSIFITM1, Figure 2D), 69 kDa
(sIFITM3, Figure 2E), and 93 kDa (sViperin, Figure 2F). The
quantitative analysis indicated that the protein purity of SIFITMI is
75.36%, that of SIFITM3 is 84.26%, and that of sViperin is 79.46%
(Figures 2G-1). The preliminary experiments show that the fusion
proteins were successfully purified, and the purity was good. Further,
we performed high performance liquid chromatography (HPLC)
assay to purify and quantify the fusion proteins. The purity of the
fusion proteins were as follows: 92.9% for sIFITM1 (Figure 2J;
Supplementary Table S1), 94.5% for sIFITM3 (Figure 2K;
Supplementary Table S2), and 96.9% for sViperin (Figure 2L;
Supplementary Table S3). Moreover, the BCA assay indicated the
concentrations of the fusion proteins were as follows: 3470 ug/mL
with a total volume 0.8 mL and a purification efficiency of 27.76 mg/L
for sIFITM1; 5,300 pg/mL with a total volume 0.8 mL and a
purification efficiency of 42.40 mg/L for sIFITM3; 6,020 pg/mL with
a total volume 0.8 mL and a purification efficiency of 48.16 mg/L for
sViperin. In addition, the endotoxin was 1.1028 EU/mL for sIFITM1,
1.0727 EU/mL for sIFITM3, 1.0575 EU/mL for sViperin, respectively,
which was originally lower than the national regulation of no more
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than 50 EU/mL. The above results indicate that the fusion proteins
obtained by the ammonium sulfate precipitation method are sufficient
to serve as adjuvants for subsequent experiments. Therefore, the
fusion proteins sIFITM1, sIFITM3, and sViperin obtained by the
ammonium sulfate precipitation

were adopted in the

following experiments.

3.2 Effects of sIFITM1, sIFITM3, and sViperin
on the replication of viruses

3.2.1 Effect of sIFITM1, sIFITM3, and sViperin on
innate immune response in swine cells

PRV is a neurophilic virus that can infect a variety of animals,
including vertebrates, carnivores, and rodents (46, 47). Swine PRV
have been reported in many countries around the world, which has
caused great economic losses. According to literature reports, IFITM1,
IFITM3, and Viperin have antiviral effects (23, 48). In order to
investigate whether the fusion proteins sIFITMI, sIFITM3, and
sViperin purified in this study have anti-PRV effects, swine kidney
cells PK-15 were infected with PRV (MOI = 1) for 2 h. Then, the
different concentrations of fusion proteins (1 ng/mL, 10 ng/mL and
100 ng/mL) were added for 24 h. The replication of PRV was detected
by RT-PCR and RT-qPCR. The data showed that the mRNA levels of
PRV-gE in sIFITM1, sIFITM3, and sViperin treatment groups was
significantly reduced in a dose-dependent manner (Figures 3A,B,D,E
,G,H). When the concentration of fusion protein reached 100 ng/mL,
SIFITM1 and sIFITM3 could inhibit the mRNA levels of PRV-gE
(Figures 3A,B,D,E,G,H), and also inhibit the virus titers of PRV
(Figures 3CKI). And sViperin could significantly damaged the
PRV-gE mRNA expression (Figures 3G,H). To further explore the
impact of these fusion proteins on the innate immunity, we detected
the expression of several portal cytokines related to innate immunity,
such as IFN-f, IL-6, and IL-28. The data indicated that sSIFITM3 and
sViperin remarkably promoted the expression of IFN-f, IL-6, and
IL-28 in PRV-infected PK-15 cells (Figures 3J-L). In addition,
sIFITM3 and sViperin remarkably inhibited the PRV-gE expression
in swine 3D4/21 cells (Figure 3M).

To further explore the antiviral function of SIFITMI, sIFITM3,
and sViperin, we infected PK-15 cells with swine influenza H3N?2 for
2 h. sSIFITM1, sIFITM3, and sViperin with indicated concentration
were incubated for 24 h to detect the replication of H3N2 in PK-15
cells. And the NP of H3N2 in sIFITMI, sIFITM3, and sViperin
treatment groups was extremely inhibited at the mRNA levels
(Supplementary Figures S2A-C). Moreover, we found that sSIFITM1
can effectively inhibit protein levels of H3N2 in PK-15-infected cell
(Supplementary Figure S2D). Importantly, SIFITM1, sIFITM3, and
sViperin can effectively inhibit the viral titers H3N2 in PK-15-infected
cell (Supplementary Figures S2E-G). Together, these results indicated
that the fusion protein sViperin remarkably inhibit PRV and H3N2
replication in swine PK-15 and 3D4/21 cells.

3.2.2 Effect of sIFITM1, sIFITM3, and sViperin on
the replication of PRV in murine cells

Since the homology of the genes of the three antiviral proteins
involved in this study was high in mice and swines: IFITM1 was 77%,
IFITM3 was 75%, and Viperin was 83%. Therefore, we infected murine
NIH/3 T3 cells and C57/B6-L cells with PRV and incubated them with
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Prokaryotic expression and purification of sIFITM1, sIFITM3, and sViperin proteins. (A—C) The solubility analysis of fusion proteins sIFITMZ1, sIFITM3, and
sViperin was determined by SDS-PAGE. Solubility of sIFITM1 (A), sIFITM3 (B), and sViperin (C). M, marker; WBL, whole bacterial lysate; SN, supernatant;
PP, precipitate. (D—F) Fusion proteins sIFITM1, sIFITM3, and sViperin were purified by Ni-NTA affinity chromatography, and the purification degree of
fusion proteins was determined by SDS-PAGE. Purification of sIFITM1 (D), sIFITM3 (E), and sViperin (F).
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FIGURE 3
Analyze the effect of sIFITM1, sIFITM3, and sViperin on innate immune response in swine cells. (A-L) After adsorption of PK-15 cells by PRV (MOI = 1)
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detected by plaque assay (C,F1). The mRNA level of indicated cytokines was detected by RT-gqPCR (J-K). Data are represented as mean + SD. NS, no
significant; * p < 0.05; ** p < 0.01. (M) Following a 2 h adsorption period of PRV (MOI = 1) on 3D4/21 cells, the fusion proteins sIFITM1, sIFITM3, and
sViperin were introduced to cells at concentrations of 100 ng/mL respectively, for 24 h. Subsequently, RT-gPCR assays were conducted to assess the
viral replication efficiency. Data are represented as mean + SD. NS, no significant difference, * p < 0.05, ** p < 0.01.

100 ng/mL sIFITM1, sIFITM3, and sViperin to further explore their
antiviral functions. In NIH/3 T3 cells, sViperin was found to significantly
inhibit the mRNA expression of PRV-gE, whereas sSIFITM1 and sIFITM3
exhibited no notable inhibitory effect (Figure 4A). Interestingly, SIFITM1
and sViperin significantly reduced the protein levels of PRV-gE in
NIH/3 T3 cells (Figures 4B,C). In C57/B6-L cells, both sIFITM3 and
sViperin were both capable of suppressing the mRNA expression of
PRV-gE, while the effect of sViperin is more significant (Figure 4D).
SIFITM1, sIFITM3, and sViperin inhibit the protein levels of PRV-gE in
C57/B6-L cells (Figures 4E,F). Collectively, these results indicated that
the inhibitory effects of the three adjuvants on the protein levels of
PRV-gE are more significant than those on the mRNA levels.

3.3 Efficacy evaluation of adjuvants
sIFITM1, sIFITM3 and sViperin for
inactivated swine fever vaccine

3.3.1 Adjuvants sIFITM1, sIFITM3, and sViperin
promote the proliferation of spleen lymphocytes
in immunized animals

Purified sIFITM1, sIFITM3, and sViperin were utilized as
adjuvants together with CSFV E2 protein recombinant baculovirus
vaccine, inactivated (Strain WH-09) vaccine to immunize BALB/c
mice (0.1 mL/mouse). The fusion protein (dissolved in PBS, 30 pg/
mouse) is mixed with the inactivated CSFV vaccine. On the 1st day, the
mixture of vaccine and the adjuvant are injected into the thigh muscle.
The mice were re-immunized with the mixture on the 21th day, and
were euthanized and sampled on the 28th day (or the 7th day after the
secondary immunization) (Figure 5A). During the immunization
period, the spleens of mice were isolated to a single-cell suspension.
Following centrifugation, the second layer of ring-shaped, milky white
cells were harvested and identified as lymphocytes. Then lymphocytes
were stimulated with ConA to promote T lymphocyte transformation
and proliferation rate were detected. The data showed that the spleen
T lymphocytes proliferation rate of mice with fusion protein group was
higher than that of vaccine group and His-tagged pCold-TF chaperone
protein (control) group (Figure 58). On the 7th day after the secondary
immunization, the spleen T lymphocyte proliferation rate in all groups
was extremely significantly increased compared with the control group
or vaccine group (p < 0.01), among which the sViperin+ Vaccine group
had the greatest increase (Figure 5C).

In order to have a deeper understanding of this change in immune
status, we further tested the spleen and thymus coefficient. Compared
with the vaccine group, the spleen coefficient of SIFITM1, sIFITM3,
and sViperin groups were significantly increased (p < 0.01), while the
thymus coeflicient was not significantly different (p > 0.05) (Table 3).
This suggests that SIFITM1, sIFITM3, and sViperin fusion proteins
can affect the spleen coefficient of immune mice, but have no
significant effect on the thymus coefficient of immune mice. Together,
these results indicate that sIFITMI, sIFITM3, and sViperin can
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promote the proliferation of spleen lymphocytes in immunized mice,
and sViperin has the best effect.

3.3.2 As adjuvants sIFITM1, sIFITM3 and sViperin
showed good safety

The secondary immunization was performed 21 days after the first
immunization, during which the weight of mice was weighed every
7 days and the weight changes were detected. The effects of SIFITM1,
sIFITM3, and sViperin fusion proteins on body weight of mice were
shown in Figure 6. Compared with the control group, all groups
gained weight after immunization, but the difference was no
significant. Compared with vaccine control group, there were no
significant differences in adjuvants with vaccine groups.

In addition, the spleen and thymus of immunized mice were
observed with H&E staining. The effects of sIFITM1, sIFITM3, and
sViperin fusion proteins on the spleen of mice were shown in
Figure 7A. The results of blank Control group, Vaccine control group,
adjuvant and vaccine combined group were the same: normal spleen
structure, no obvious abnormality; the red and white pulp is clear, with
a small amount of granulocyte infiltration (green arrow) and
extramedullary hematopoietic cells (red arrow). Moreover, the effects of
SIFITM1, sIFITM3, and sViperin fusion proteins on the thymus of mice
were shown in Figure 7B. Compared with the untreated control group,
the vaccine group, sSIFITM1 + Vaccine group, sSIFITM3 + Vaccine group,
and sViperin+Vaccine group all exhibited normal thymus architecture,
with no significant necrosis observed.

The above results demonstrated that, compared with the blank
control group, the spleen and thymus of the vaccine groups (Vaccine,
SIFITM1 + Vaccine, sIFITM3 + Vaccine, and sViperin + Vaccine)
exhibited no significant pathological damage. This preliminary
suggests that SIFITM1, sIFITM3, and sViperin fusion proteins as
adjuvants showed good safety.

3.3.3 sIFITM1, sIFITM3, and sViperin significantly
increased the expression of IgG and CSFV E2
antibody and the secretion of lymphokines in
immunized mice

On the 7th day after the secondary immunization, the blood of
mice in each group was collected by ocular blood collection. The
serum was separated and the protein levels of IgG and specific CSFV
E2 antibody in serum of mice in each group was detected. The ELISA
assay showed that the IgG was significantly increased in vaccine,
SIFITM1 + Vaccine, sIFITM3 + Vaccine, and sViperin+ Vaccine
group (p <0.01). Compared with the Vaccine group, IgG was
significantly increased in sIFITM1 + Vaccine, SIFITM3 + Vaccine,
and sViperin+ Vaccine group (Figure 8A). Consistent with the IgG
results, data showed that compared with the Vaccine group, the
protein levels of CSFV E2 antibody in the sSIFITM1 + Vaccine group
was significantly increased. There was also an increasing trend in
both the SIFITM3 + Vaccine group and the sViperin+ Vaccine group
(Figure 8B). The results suggested that sIFITMI, sIFITM3, and
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FIGURE 4
Detect the effect of fusion proteins on the replication of PRV in murine cells. (A—D) After a 2 h adsorption period of NIH/3 T3 cells (A,B) and C57/B6-L
cells (C,D) with PRV (MOI = 1), fusion proteins sIFITM1, sIFITM3, and sViperin were added at the concentration of 100 ng/mL for 24 h. The replication
efficacy of PRV-gE was assessed by RT-gPCR (A,C). Immunoblots were performed to examine expression of gE (B,E). The gE levels were quantitated by
densitometry and normalized to ACTIN levels (C,F). Data are represented as mean + SD. NS, no significant; * p < 0.05; ** p < 0.01; *** p < 0.001.
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FIGURE 5 (Continued)

randomly euthanized, spleen lymphocytes were isolated, and the proliferation rate of spleen T lymphocytes was detected. Compared with the control
group, * means p < 0.05, ** means p < 0.01, *** means p < 0.001; Compared with the vaccine group, # means p < 0.05 and ## means p < 0.01.

TABLE 3 The effects of fusion proteins sIFITM1, sIFITM3 and sViperin on the organ coefficients of immunized mice.

Group Ingredient Spleen coefficient Thymus Index
A Control 511+0.27 1.27 £ 0.54
B Vaccine 521+0.19 149 £0.33
C sIFITM1 + Vaccine 7.72 £ 0.20%F 44 1.68 +0.23
D SIFITM3 + Vaccine 745+ 0.39% 44 127 £0.27
E sViperin+Vaccine 7.94 = 0.67%%## 2.31+0.53

Compared with the control group, ** p < 0.01, and *** p < 0.001. Compared with the vaccine group, ## p < 0.01, ### p < 0.001.
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FIGURE 6

The effects of fusion proteins sIFITM1, sIFITM3 and sViperin on body weight in immunized mice.
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sViperin significantly increased the expression of IgG and specific
CSFV E2 antibody in serum of immunized mice.

Th1 cells are a type of helper CD4T cells and mainly secrete
IL-28 promotes T cell-mediated immune responses. Th2 cells can
secrete cytokines such as IL-4 and IL-5 to enhance antibody-
mediated the humoral immune response. The main cytokines Th17
cells executes are IL-17 and IL-6 (9). Therefore, we also detected the
secretion of these related cytokines. On the 7th day after the
secondary immunization, the secretion of specific immuned-related
lymphokines in spleen of mice was detected by RT-qPCR. As shown

Frontiers in Veterinary Science

in Figures 8C-E, the mRNA expressions of IL-5, IL-28, and IL-6 in
the vaccine, sSIFITM1 + Vaccine, sSIFITM3 + Vaccine, and sViperin+
Vaccine group all showed an increasing trend compared with the
control group. Compared with the Vaccine group, the mRNA
expressions of IL-5, IL-28, and IL-6 in sIFITMI1 + Vaccine,
sIFITM3 + Vaccine, and sViperin+ Vaccine group were significantly
increased (Figures 8C,D). These results indicate that sIFITM1,
sIFITM3, and sViperin can enhance the secretion of immuned-
related lymphokines, including IL-5, IL-28, and IL-6, in the spleen
of immunized mice.
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Thymus

FIGURE 7

The spleen and thymus of immunized mice were observed with H&E staining. (A,B) The effects of sIFITM1, sIFITM3 and sViperin on the spleen (A) and
thymus (B) of immunized mice were analyzed by H&E staining. 1: Control; 2: Vaccine; 3: sIFITM1 + Vaccine; 4: sIFITM3 + Vaccine; 5: sViperin+ Vaccine.
A small amount of granulocyte infiltration (green arrow); Extramedullary hematopoietic cells (red arrow); A small number of extramedullary
hematopoietic cells around the trabeculae of the spleen (blue arrow); slight bleeding at the local edge (black arrow).

4 Discussion

Adjuvants, as an auxiliary substance, can reduce the antigen
quantity demand, and enhance the vaccine-induced host immune
response to improve vaccine efficiency (49). Adjuvants play crucial
roles in improving the efficiency of vaccines, especially in vaccines
with weak immunogenicity, such as inactivated vaccines, synthetic
peptide vaccines, subunit vaccines, and DNA vaccines.

In recent years, studies have found that there are many ISGs with
unique antiviral functions in host cells (22). Taking IFITMs as an
example, they can inhibit the membrane fusion reaction between
viruses and target cells by changing the sequence of membrane lipids
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in cells, thereby altering the rigidity and fluidity of membranes (50).
sViperin has the ability to catalyze the formation of 3" -deoxy-3’, 4’
-didehydro-CTP (ddhCTP). ddhCTP can be incorporated into
nascent RNA, thereby directly inhibiting viral replication (51). The
diversity and specific functions of these ISGs provide host cells with a
comprehensive antiviral line of defense. However, the potential
capabilities of IFITMs and Viperin as immune enhancers have not
been reported in the literature. This means that the application
prospect of IFITMs and Viperin in the direction of adjuvant research
and development is still a blank area worth further exploration.

We expressed and purified three swine ISGs: SIFITM1, sIFITM3,
and sViperin by the E. coli expression system, and configured them as
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FIGURE 8

The expression of IgG, CSFV E2 antibody, and lymphokines in immunized mice were analyzed. (A,B) On the 7th day after immunization, the blood of
mice in each group was collected by eyeball blood collection, serum was separated, and IgG expression level in serum of mice in each group was

(Continued)
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FIGURE 8 (Continued)

detected by mouse IgG ELISA kit (A) or CSFV E2 antibody ELISA kit (B). Compared with the blank control group, ** means p < 0.01, *** means

p < 0.001; Compared with the vaccine group, # means p < 0.05. Negative control is from the ELISA kit and represents a negative sample. (C—E) The
mMRNA level of indicated secretary lymphokines in the spleen of mice in each group was detected by RT-PCR (C) and RT-gPCR (D,E). Compared with
the blank control group, ** means p < 0.01, *** means p < 0.001; Compared with the vaccine group, # means p < 0.05.

vaccine adjuvants. The cells were infected with viruses, and then
cultured with sIFITM1, sIFITM3, and sViperin fusion proteins. The
data showed that sIFITM1, sIFITM3, and sViperin had certain
antiviral activity in vitro. After comprehensive consideration of the
experimental results, sViperin had the strongest function in resisting
swine H3N2 and PRV infection.

We further explored the potential of sSIFITM1, sIFITM3, and
sViperin as vaccine adjuvants in enhancing immune effects.
Inactivated swine fever vaccine is the main means to prevent CSFV,
but its immune response is limited, and mice are often used as the
model animal of swines in scientific research. To this end,
we combined the three fusion proteins with the inactivated
recombinant baculovirus vaccine of CSFV E2 protein and applied
them to immunize BALB/c mice. Compared with the vaccine group
alone, the groups with sIFITM1, sIFITM3, and sViperin fusion
proteins showed significant immune-enhancing effects. The organ
coefficient and H&E staining of immune mice displayed that
SIFITM1, sIFITM3, and sViperin fusion proteins effectively improved
the immune response of the spleen, and have a high degree of safety.

ConA is a mitogen of T lymphocytes, which mainly promotes the
proliferation of T lymphocytes, and the proliferation ability of T
lymphocytes is usually an important indicator of the cellular
immunity level (52). In this study, spleen T lymphocytes of
immunized mice were stimulated by ConA for 24h, and the
proliferation rate of T lymphocytes increased after sSIFITM1, sIFITM3
and sViperin. We found that the sIFITM1, sIFITM3, and sViperin
fusion proteins, when combined with inactivated CSFV E2 protein
recombinant baculovirus vaccine, can significantly enhance the
cellular immune response in mice by promoting the proliferation of
splenic T lymphocytes, thereby functioning as effective vaccine
immune adjuvants.

IgG is an indicator of humoral immune response (53). When
pathogenic microorganisms enter the body, the immune system will
be activated and corresponding antibodies against pathogenic
microorganisms will be produced. IgG antibody plays the role of
activating complement and synthesizing various toxins in immune
response (54). Moreover, immune-related factors are important cytokines
involved in cellular immune response (55). In this study, we found that
SIFITM1, sIFITM3, and sViperin fusion proteins could significantly
increase the expression of IgG and CSFV E2 antibodies in serum of
immunized mice, and significantly increase the mRNA levels of IL-28,
and IL-6 in spleen. The combination of sSIFITM1, sIFITM3, and sViperin
fusion proteins with inactivated CSFV E2 protein recombinant
baculovirus vaccine significantly enhances both cellular and humoral
immune responses by increasing the expression of IgG and CSFV E2
antibodies and lymphokines such as IL-5, IL-28, and IL-6. This synergistic
effect plays a crucial role in augmenting immunogenicity of the vaccine.

In summary, the combination of sSIFITM1, sIFITM3, and sViperin
with inactivated CSFV vaccine as adjuvants significantly enhances the
vaccine immunogenicity and improves the immune response in
vaccinated mice. This study provides a theoretical foundation for
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advancing the development of animal vaccine adjuvants and identifies
promising candidate molecules for the development of novel and
highly effective antiviral drugs and vaccine adjuvants.

5 Conclusion

In this study, three porcine ISGs, namely IFITM1, IFITM3, and
Viperin, were successfully expressed and purified using a prokaryotic
expression system. Additionally, based on the Ni-NTA affinity
chromatography purification method, an alternative approach
involving ammonium sulfate precipitation was explored for protein
purification. This method not only enhanced the purification efficiency
but also reduced costs, thereby establishing a robust foundation for
future large-scale production and industrial application. Furthermore,
in vitro experiments demonstrated that the fusion proteins SIFITM1,
sIFITM3, and sViperin exhibit broad-spectrum antiviral activities. This
underscores their critical roles in the antiviral defense mechanism and
identifies them as promising candidate molecules for the development
of novel antiviral therapeutics.

Simultaneously, these antiviral proteins were evaluated as vaccine
adjuvants. Immunization experiments on BALB/c mice have shown
that when sIFITM1, sIFITM3, and sViperin fusion proteins are
utilized in combination with the vaccine, they effectively enhance the
immune protective efficacy of the vaccine by strengthening cellular
and humoral immune responses. This discovery underscores the
potential of ISGs as effective vaccine immune enhancers, deepens our
understanding of their roles in immune regulation, and provides a
theoretical basis for optimizing vaccine design and enhancing
vaccine efficacy.
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