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Ticks are known vectors of various pathogens and are increasingly recognized as 
carriers of antimicrobial-resistant (AMR) bacteria. However, the role of camel ticks 
in AMR transmission remains poorly understood. In this study, we investigated 
bacteria isolated from Hyalomma dromedarii hard ticks collected from dromedary 
camels in Hail Province, Saudi Arabia, and assessed their AMR profiles. A total of 
57 ticks were collected, yielding 29 bacterial isolates. The majority (79%; 23/29) 
were Gram-negative bacteria, primarily Enterobacter cloacae complex (n = 21) 
and Pseudomonas putida (n = 2). Gram-positive isolates (21%; 6/29) included 
Staphylococcus sciuri (n = 4) and Staphylococcus xylosus (n = 2). All Gram-
negative isolates were resistant to cefazolin, 91% to amoxicillin/clavulanic acid, 
and 8.7% to trimethoprim/sulfamethoxazole, while remaining susceptible to 
higher-generation cephalosporins, carbapenems, and aminoglycosides. Among 
Gram-positive isolates, resistance to fusidic acid was universal, with occasional 
resistance to benzylpenicillin (33%) and erythromycin (17%). No multidrug resistance 
across three or more antibiotic classes was observed. These findings highlight 
the presence of clinically relevant AMR bacteria in camel ticks and underscore 
the need for targeted AMR surveillance in arid livestock regions. Such efforts are 
critical to understanding and mitigating AMR risks within the animal–human–
environment interface of the One Health framework.
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Introduction

Antimicrobial resistance (AMR) has emerged as a significant global public health challenge 
(1–3). The rise of AMR has made many conventional antibiotic therapies ineffective, 
necessitating combination antibiotic regimens. This, in turn, contributes to the emergence of 
multidrug-resistant (MDR) bacteria, perpetuating a vicious cycle of resistance development 
(4). Global modeling for 2019 indicates that antimicrobial resistance was implicated in about 
4.95 million deaths worldwide, including 1.27 million deaths directly caused by drug-resistant 
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bacterial infections (5). AMR bacteria have been identified in humans, 
animals, food, plants, and various environmental compartments, 
including water, soil, and air (6, 7). These resistant organisms are 
frequently transmitted from their natural reservoirs to humans and 
animals, facilitating cross-species transmission (8, 9).

Although numerous studies have investigated various modes of 
AMR transmission within the environment (10–13). There is limited 
literature available on the transmission of AMR through arthropod 
vectors (14, 15). Ticks are well-established vectors of various 
pathogens affecting both humans and animals, and they represent a 
significant threat to public and veterinary health (16, 17). Humans can 
be  infected with various tick-borne bacterial diseases, including 
human granulocytic anaplasmosis caused by Anaplasma 
phagocytophilum, Lyme disease, spotted fever caused by Spotted fever 
group rickettsiae, Q-fever caused by Coxiella burnetti, and Tularemia 
caused by Francisella tularensis (18–20). The composition of the tick 
microbiome is complex, shaped by interactions between symbiotic 
bacteria, the host, and the surrounding environment (21). During 
blood-feeding, ticks can transmit pathogens and microorganisms and 
may facilitate the transfer of AMRs between hosts (22). Given their 
broad geographic distribution and ability to parasitize a wide range of 
hosts, including domestic animals, wildlife, migratory birds, and pets, 
ticks are increasingly recognized as potential reservoirs and vectors 
for AMR dissemination (23, 24). Despite this, most existing research 
has focused primarily on tick-borne pathogens, often overlooking the 
potential public health risks associated with AMR transmission (14). 
Furthermore, the effects of tick species, parasitic versus free-living life 
stages, and intergenerational transmission on the distribution and 
persistence of AMR remain poorly understood.

The present study aims to investigate the prevalence, diversity, and 
potential AMR determinants of bacteria harbored by ticks infesting 
camels, a major livestock species in Saudi Arabia. Despite the growing 
importance of camels in regional food security and veterinary health, 
the role of camel-associated ticks as reservoirs and vectors of AMR 
bacteria remains poorly understood. By identifying tick species, 
isolating bacterial communities, and characterizing antimicrobial 
resistance patterns, this research aims to characterize the bacterial 
communities and antimicrobial resistance profiles carried by camel 
ticks, thereby providing a baseline for future studies focused on 
transmission. The findings will contribute to national surveillance 
systems, inform antimicrobial stewardship, and support targeted 
interventions within the One Health framework. Ultimately, this study 
aims to strengthen public and animal health, promote environmental 
sustainability, and protect vital natural resources.

Materials and methods

Selection of study area

This research was done in Hail City, located in the northwestern 
region of Saudi Arabia (Figure 1). Hail is characterized by its unique 
topography, including mountains, deserts, and fertile agricultural 
areas, supported by a semi-arid climate with moderate rainfall 
compared to other regions of the Arabian Peninsula. These 
environmental conditions foster crop cultivation and livestock 
farming, making Hail a vital hub for agricultural and pastoral 
activities. The region’s substantial camel population and frequent 

human-animal interactions provided an ideal setting for investigating 
tick-borne bacterial pathogens.

Collection and identification of ticks

A total of 57 ticks were collected from multiple sites within a 
20-mile radius of Hail City, Saudi Arabia (27.42476° N, 41.73580° E) 
during the months of October and November. Specimens were 
manually obtained from 13 female dromedary camels at the Hail 
Camels’ Market by targeting preferred attachment sites such as the 
perianal region, udder, and inner thighs. Each specimen was carefully 
detached using fine-tipped forceps and immediately placed into a 
sterile 20 mL plastic container with a perforated lid to ensure 
adequate ventilation.

Post-collection, ticks were maintained under controlled 
conditions with relative humidity ranging from 70 to 93% and 
temperature between 20 and 26 °C to preserve their viability. Viability 
assessments were conducted upon processing, and notable biological 
observations were recorded, such as egg-laying in engorged females.

Morphological identification was carried out using a 
stereomicroscope to examine structural features in detail, employing 
taxonomic keys based on external morphology, developmental stage, 
and sex-specific traits (25). Further species confirmation was achieved 
through molecular identification targeting the mitochondrial 16S 
rRNA gene. Genomic DNA was extracted using the Qiagen DNeasy 
Blood & Tissue Kit, following the manufacturer’s instructions. A 
partial fragment of the 16S rRNA gene was amplified using primers 
described by Black and Piesman (26): Forward 
5′-CTGCTCAATGATTTTTAAATTGCTGTGG-3′ and Reverse 
5′-CCGGTCTGAACTCAGATCAAGT-3′. PCR amplification was 
performed in our laboratory in 20 μL reaction volumes, using thermal 
cycling conditions adapted from Mangold et  al.27, with minor 
modifications: an initial denaturation at 94 °C for 3 min, followed by 
35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 min, 
concluding with a final extension at 72 °C for 5 min. PCR products 
were visualized using 2% agarose gel electrophoresis and purified with 
a commercial gel extraction kit. The purified amplicons were 

FIGURE 1

Geographic location of the study area. Map illustrating the Hail 
Province (highlighted in red) in the northern region of Saudi Arabia, 
where tick specimens were collected from dromedary camels.
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submitted to Macrogen, Inc. (Seoul, Republic of Korea) for 
bidirectional sequencing.

Bacterial isolation from ticks

Ticks collected from camels were processed through multiple 
steps to ensure effective bacterial isolation. Initially, each tick was 
surface-sterilized by immersion in 70% ethanol for 5 min, followed by 
three sequential washes with sterile phosphate-buffered saline (PBS) 
to eliminate external contaminants. Internal tissues were then 
aseptically extracted. Homogenization of tick tissues was performed 
under aseptic conditions inside a Class II biosafety cabinet (Thermo 
Fisher Scientific). Sterile disposable gloves, laboratory coats, and face 
masks were used throughout the procedure. All instruments were 
sterilized prior to use, and sterile PBS was employed. Tick tissues were 
manually homogenized using autoclaved glass homogenizers; 
although a tissue homogenizer machine could reduce human contact, 
the manual method was adopted due to equipment constraints while 
ensuring sterility at all times. The resulting homogenate was 
transferred into a nutrient broth (Sigmaaldrich, Germany) for 
enrichment and incubated at 37 °C incubator (Thermo Fisher 
Scientific, US) with constant agitation at 250 rpm for 24 h. Following 
enrichment, samples were cultured on blood agar and MacConkey 
agar plates to facilitate the growth of a broad spectrum of bacterial 
species. All media and broths, including nutrient broth, blood agar 
(Oxoid, United  Kingdom), and MacConkey agar (Himedia, 
United States), were prepared according to standard microbiological 
protocols (27). Media were sterilized by autoclaving at 121 °C and 
15 psi for 15 min before use. Blood agar plates were prepared by 
supplementing sterilized base agar with 5% defibrinated sheep blood 
under aseptic conditions. Following the culturing, plates were 
incubated for 24 h at 37 °C. Next day, colonies were selected based on 
morphology and pigmentation. Finally, bacterial isolates were 
preserved at −80 °C in glycerol stocks for further analysis.

Identification of bacterial isolates

For bacterial identification, the isolated microorganisms were 
identified using the Gram staining technique to distinguish between 
Gram-positive and Gram-negative bacteria. Following Gram staining, 
bioMérieux Vitek 2 Compact System was used for both identification 
and antimicrobial sensitivity testing. The BioMérieux Vitek 2 Compact 
System with Gram-positive (GP) ID REF21342 and Gram-negative (GN) 
ID REF21341 cards were used according to manufacturer guidelines.

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed on 29 bacterial 
isolates using the Vitek 2 Compact System. Through specialized cards, 
AST-N417 for GN and AST-P580 for GP, this system determines the 
minimum inhibitory concentration (MIC) for various antibiotics against 
the bacteria. The antibiotics tested represented multiple classes for both 
Gram-positive and Gram-negative bacteria. The antibiotics used for 
Gram-positive bacteria are benzylpenicillin, oxacillin, gentamicin, 
tobramycin, levofloxacin, moxifloxacin, erythromycin, clindamycin, 

linezolid, teicoplanin, vancomycin, tetracycline, tigecycline, 
nitrofurantoin, fusidic acid, rifampicin, and trimethoprim/
sulfamethoxazole. For Gram-negative bacteria, the antibiotics used are 
amoxicillin / clavulanic acid, piperacillin/tazobactam, cefazolin, 
cefuroxime, cefuroxime axetil, ceftazidime, ceftriaxone, cefepime, 
ertapenem, imipenem, meropenem, amikacin, gentamicin, ciprofloxacin, 
fosfomycin, nitrofurantoin, and trimethoprim/sulfamethoxazole. After 
analysis, the MIC cutoff values were used to distinguish each isolated 
bacterium that may be sensitive, intermediate, or antibiotic-resistant. The 
results were issued using Vitek 2 compact software.

Results

Collection and identification of the hard 
ticks from the hail province, Saudi Arabia

A total of 57 ticks were collected from 13 female dromedary 
camels within Hail Province, Saudi Arabia. The relatively low tick 
burden observed during this period is likely attributable to the 
moderately cool climatic conditions, as higher tick densities are 
typically associated with the warmer summer months. The collected 
ticks were categorized by developmental stage and engorgement status 
into three groups: non-engorged adults (n = 18, 31.6%), engorged 
adults (n = 28, 49.1%), and nymphs (n = 11, 19.3%). All ticks remained 
viable until the time of experimentation, and oviposition was observed 
in several engorged females. To confirm species identity, molecular 
characterization was performed by targeting the mitochondrial 16S 
rRNA gene. The sequences generated in this study have been deposited 
in GenBank under accession numbers PV485260–PV485267. The 
results identified all specimens as Hyalomma dromedarii, and their 
evolutionary relationships are depicted in Figure 2.

Identification of the isolated bacteria from 
the ticks

From the collected ticks, employing various microbial culturing 
techniques, a total of 29 bacterial species were isolated. The isolated 
bacteria were later subjected to Gram staining, followed by strain 
identification using the Vitek 2 Compact system. The results revealed 
that the bacterial isolates belonged to four different species. Of these, 
approximately 79% (n = 23) were Gram-negative bacteria, and 21% 
(n = 6) were Gram-positive bacteria (Figure 3A). The high-throughput 
detection identified the prevalent Gram-positive bacteria as 
Staphylococcus sciuri (n = 4), followed by Staphylococcus xylosus 
(n = 2; Figure 3B) which are reported potential pathogens to humans. 
Among the Gram-negative bacteria, the most common species was 
Enterobacter cloacae complex (n = 21), followed by Pseudomonas 
putida (n = 2; Figure 3C).

Determining the antimicrobial 
susceptibility of the isolated bacteria

To identify the drug susceptibility pattern of these bacterial 
isolates, all 29 bacterial isolates were tested for antimicrobial 
susceptibility using the Vitek 2 compact system. The result showed that 
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both Gram-positive and Gram-negative bacteria exhibited resistance 
to several antimicrobial agents (Figures  4, 5). The antibacterial 
suitability test for the Gram-positive bacteria was as follows: For 

Staphylococcus sciuri, 100% (n = 4/4) were resistant to fusidic acid, 
33.3% (n = 2/4) were resistant to benzylpenicillin, and 16.7% (n = 1/4) 
were resistant to erythromycin. About 50% (n = 2/4) of this isolate 

FIGURE 2

Evolutionary analysis by the Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood method and the 
Tamura-Nei model (51). The tree with the highest log likelihood −3500.14 is shown. Initial tree(s) for the heuristic search were obtained automatically 
by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Tamura-Nei model and then selecting the 
topology with the superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This 
analysis involved 31 nucleotide sequences. Of these, 6 sequences were generated in this study (GenBank accession numbers: PV485260, PV485261, 
PV485263, PV485264, PV485266, PV485267), while the remaining 25 sequences were retrieved from GenBank. Codon positions included were 
1st + 2nd + 3rd + Noncoding. There was a total of 286 positions in the final dataset. The phylogenetic tree comprises seven distinct clades, color-coded 
as follows: Clade R1 (green), Clade R2 (light green), Clade R3 (yellow), Clade R4 (yellow-orange), Clade R5 (orange), Clade R6 (dark orange), and Clade 
R7 (red), each representing a separate evolutionary lineage. The following software was used for phylogenetic tree construction: iTOL version 7.2 
(https://itol.embl.de/tree/15258218106142911744696289).

FIGURE 3

Pie chart showing: (A) the percentage distribution of Gram-positive and Gram-negative bacteria identified from the total tick population. The 
percentage distribution of major types of Gram-positive and Gram-negative bacteria is represented in (B,C), respectively.
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showed intermediate resistance to moxifloxacin and clindamycin. 
100% (n = 4/4) of Staphylococcus sciuri were sensitive to oxacillin, 
gentamicin, tobramycin, levofloxacin, linezolid, teicoplanin, 
vancomycin, tetracycline, tigecycline, nitrofurantoin, rifampicin, and 
trimethoprim/sulfamethoxazole. The other species, Staphylococcus 

xylosus, showed 100% (n = 2/2) resistance to fusidic acid and 100% 
(n = 2/2) sensitivity to oxacillin, gentamicin, tobramycin, levofloxacin, 
linezolid, teicoplanin, vancomycin, tetracycline, tigecycline, 
nitrofurantoin, rifampicin, and trimethoprim/sulfamethoxazole 
(Figure 4).

FIGURE 4

Antibacterial susceptibility pattern. Bar diagram representing the antibiotic susceptibility profile of Gram-positive bacterial isolates tested against a 
panel of commonly used antibiotics. The bar shows the percentage of isolates classified as resistant (R, blue), intermediate (I, orange), or susceptible (S, 
green) to each antibiotic, respectively.

FIGURE 5

Antibacterial susceptibility pattern. Bar diagram representing the antibiotic susceptibility profile of Gram-negative bacterial isolates tested against a 
panel of commonly used antibiotics. The bar shows the percentage of isolates classified as resistant (R, blue), intermediate (I, orange), or susceptible (S, 
green) to each antibiotic, respectively.
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For the Gram-negative bacteria, antimicrobial agent sensitivity 
testing was as follows: Enterobacter cloacae complex showed 100% 
(n = 21/21) resistance to amoxicillin /clavulanic acid and cefazolin. 
This isolate displayed intermediate resistance to three antibiotics, 
including 100% (n = 21/21) to cefuroxime and cefuroxime axetil, 95% 
(n = 20/21) to nitrofurantoin, and 4.7% (1/21) to fosfomycin. About 
100% (21/21) of this isolate were sensitive to piperacillin/tazobactam, 
ceftazidime, ceftriaxone, cefepime, ertapenem, imipenem, 
meropenem, amikacin, gentamicin, ciprofloxacin, and trimethoprim/
sulfamethoxazole. The other species, Pseudomonas putida, showed 
100% (n = 2/2) resistance to cefazolin and trimethoprim/
sulfamethoxazole, 100% (n = 2/2) intermediate resistance to 
piperacillin/tazobactam, and 50% (n = 1/2) intermediate resistance 
to ceftriaxone. 100% (n = 2/2) of this isolate were sensitive to other 
antimicrobial agents includes amoxicillin / clavulanic acid, 
cefuroxime, cefuroxime axetil ceftazidime, cefepime, ertapenem, 
imipenem, meropenem, amikacin, gentamicin, ciprofloxacin, 
fosfomycin, and nitrofurantoin (Figure  5). The antibiotic 
susceptibility of each bacterium highlighted in the present study is 
represented in Tables 1, 2.

Discussion

The issue of AMR is increasingly affecting human health, driven 
by the widespread use of antibiotics in clinical settings and agriculture, 
as well as the accumulation of antibiotics in the environment (28, 29). 
Ticks, known vectors of various zoonotic diseases, harbor a complex 
and diverse microbiota. Multiple factors, including tick species, 
geographic location, environmental conditions, engorgement status, 
and life stage, can influence the composition of this microbiota (30). 
However, the role of ticks as potential reservoirs of AMR is an 
emerging area of research (14). In this research, we investigated the 
microbial diversity of camel ticks collected across Hail Province, 
Saudi Arabia, and reported the presence of antimicrobial-resistant 
bacteria within them.

The present study identified several clinically relevant bacterial 
species from camel ticks, including Enterobacter cloacae complex, 
Staphylococcus sciuri, Staphylococcus xylosus, and Pseudomonas 
putida. While not traditionally classified as tick-borne pathogens, 
some of these species can be  associated with opportunistic 
infections in both humans and animals (31–35). For instance, 
Enterobacter cloacae are frequently reported in hospital-acquired 
infections and are known to harbor multiple resistance mechanisms 
(36, 37). Staphylococcus sciuri has been isolated from wound and 
urinary tract infections and is recognized as a reservoir of 
antimicrobial resistance genes (38, 39). The detection of these 
species in Hyalomma dromedarii suggests that camel ticks may act 
as incidental carriers of environmental or opportunistic pathogens. 
This raises important questions regarding the acquisition and 
potential dissemination of antimicrobial-resistant bacteria within 
tick populations.

Although it remains unclear whether these bacteria are permanent 
members of the tick microbiota or transient contaminants acquired 
from the environment or host, similar genera have been reported in 
previous studies (25, 40). Environmental conditions, geographical 
location, and host exposure are likely to influence the microbial 
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TABLE 2  Antimicrobial susceptibility/resistance patterns of different Gram-negative bacteria isolated from ticks.
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Colors indicate susceptibility status: green (Sensitive, S), yellow (Intermediate, I), and red (Resistant, R).
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communities associated with ticks (41–45). It is plausible that the 
observed resistance patterns may reflect indirect exposure to 
antibiotics administered for wound management in camels; however, 
the absence of formal veterinary treatment records in this study limits 
the ability to draw definitive conclusions.

As such, the true bacterial diversity harbored by Hyalomma 
dromedarii may be broader than captured in this study. Additionally, 
the choice of Hail Province as the study area may have influenced the 
observed microbial composition, given its semi-arid climate, high 
camel density, and frequent human–animal interactions. These 
ecological and anthropogenic factors could contribute to the 
environmental acquisition and potential dissemination of 
antimicrobial-resistant bacteria by ticks. Future studies employing 
high-throughput approaches such as 16S rRNA amplicon sequencing 
or metagenomics will be required to capture the broader microbial 
diversity of tick populations.

A previous study conducted in the Al-Jouf province of Saudi Arabia 
profiled the microbiota of camel ticks and reported the predominance 
of Staphylococcus lentus, Staphylococcus pseudintermedius, and 
Sphingomonas paucimobilis (25). In contrast, our study did not detect 
these bacterial species in the tick samples analyzed. Interestingly, 
we observed a notable prevalence of the Enterobacter cloacae complex, 
which may be  attributed to geographical variation influencing 
microbial diversity. Furthermore, unlike the earlier study, we did not 
identify any bacterial isolates exhibiting complete resistance to the 
bactericidal action of benzylpenicillin, oxacillin, clindamycin, or 
vancomycin. Intermediate resistance phenotypes, such as those 
observed for Enterobacter cloacae against cefuroxime, may reflect 
intrinsic variability and are not necessarily predictive of clinical 
treatment failure. Such findings should therefore be interpreted with 
caution when considering their epidemiological and clinical relevance.

We believe this discrepancy may be explained by differences in 
geographical topology and the timing of sample collection, which are 
known to affect the distribution of antimicrobial-resistant bacteria 
(14). Moreover, several studies on tick microbiomes from different 
regions have demonstrated that the geographical location of the ticks 
plays a crucial role in shaping their microbiome (44, 45). Alternatively, 
studies have suggested that blood-feeding altered the diversity of the 
tick microbiome and could reduce microbial abundance in ticks (46). 
Therefore, we cannot exclude the possibility that the lifecycle and 
feeding stages of the tick under study could contribute to discrepancies 
in the observed microbial diversity.

Collectively, our study highlights the complex dynamics of 
antimicrobial resistance mediated by ticks. While we identified 
the presence of antimicrobial-resistant bacterial pathogens within 
tick populations across the Hail province of Saudi  Arabia, the 
underlying mechanisms driving this resistance remain unclear. 
Antibiotic resistance genes (ARGs) are increasingly recognized as 
emerging environmental contaminants due to their potential for 
horizontal transfer between bacterial species and across 
ecosystems, thereby contributing to the emergence and 
dissemination of multidrug-resistant bacteria (47, 48). 
We  hypothesize, therefore, that these resistant bacteria harbor 
ARGs that confer antimicrobial resistance, although their specific 
identities and roles have yet to be elucidated. Furthermore, it is 
plausible that ARGs are transmitted either vertically through 

genetic inheritance or horizontally via mobilizable genetic 
elements (MGEs), facilitating the spread of resistance traits among 
bacterial populations (49, 50).

Limitations

This study has several limitations. First, while antimicrobial 
resistance phenotypes were characterized, the presence or 
mobility of specific resistance genes was not confirmed at the 
molecular level and should be  investigated in future studies. 
Second, reliance on culture-based methods may have selectively 
favored fast-growing species and overlooked fastidious or 
intracellular bacteria such as Rickettsia, Coxiella, and Anaplasma. 
This reliance likely led to an incomplete representation of the tick 
microbiome. Future studies should therefore incorporate high-
throughput methods such as 16S rRNA gene sequencing or 
metagenomic approaches to capture a broader and more 
comprehensive microbial profile. Third, the geographical focus on 
Hail Province may limit the generalizability of the findings, as 
bacterial diversity and resistance profiles can vary regionally. 
Finally, the cross-sectional design precludes conclusions about 
temporal dynamics of resistance. Addressing these limitations in 
future research will provide deeper insights into the role of ticks 
as reservoirs and disseminators of antimicrobial-resistant bacteria.
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