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Saudi Arabia

Ticks are known vectors of various pathogens and are increasingly recognized as
carriers of antimicrobial-resistant (AMR) bacteria. However, the role of camel ticks
in AMR transmission remains poorly understood. In this study, we investigated
bacteria isolated from Hyalomma dromedarii hard ticks collected from dromedary
camels in Hail Province, Saudi Arabia, and assessed their AMR profiles. A total of
57 ticks were collected, yielding 29 bacterial isolates. The majority (79%; 23/29)
were Gram-negative bacteria, primarily Enterobacter cloacae complex (n = 21)
and Pseudomonas putida (n = 2). Gram-positive isolates (21%; 6/29) included
Staphylococcus sciuri (n = 4) and Staphylococcus xylosus (n = 2). All Gram-
negative isolates were resistant to cefazolin, 91% to amoxicillin/clavulanic acid,
and 8.7% to trimethoprim/sulfamethoxazole, while remaining susceptible to
higher-generation cephalosporins, carbapenems, and aminoglycosides. Among
Gram-positive isolates, resistance to fusidic acid was universal, with occasional
resistance to benzylpenicillin (33%) and erythromycin (17%). No multidrug resistance
across three or more antibiotic classes was observed. These findings highlight
the presence of clinically relevant AMR bacteria in camel ticks and underscore
the need for targeted AMR surveillance in arid livestock regions. Such efforts are
critical to understanding and mitigating AMR risks within the animal-human-
environment interface of the One Health framework.

KEYWORDS

Hyalomma dromedarii, antibacterial resistance, zoonotic pathogens, camel tick, Hail
province

Introduction

Antimicrobial resistance (AMR) has emerged as a significant global public health challenge
(1-3). The rise of AMR has made many conventional antibiotic therapies ineffective,
necessitating combination antibiotic regimens. This, in turn, contributes to the emergence of
multidrug-resistant (MDR) bacteria, perpetuating a vicious cycle of resistance development
(4). Global modeling for 2019 indicates that antimicrobial resistance was implicated in about
4.95 million deaths worldwide, including 1.27 million deaths directly caused by drug-resistant
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bacterial infections (5). AMR bacteria have been identified in humans,
animals, food, plants, and various environmental compartments,
including water, soil, and air (6, 7). These resistant organisms are
frequently transmitted from their natural reservoirs to humans and
animals, facilitating cross-species transmission (8, 9).

Although numerous studies have investigated various modes of
AMR transmission within the environment (10-13). There is limited
literature available on the transmission of AMR through arthropod
vectors (14, 15). Ticks are well-established vectors of various
pathogens affecting both humans and animals, and they represent a
significant threat to public and veterinary health (16, 17). Humans can
be infected with various tick-borne bacterial diseases, including
human granulocytic anaplasmosis caused by Anaplasma
phagocytophilum, Lyme disease, spotted fever caused by Spotted fever
group rickettsiae, Q-fever caused by Coxiella burnetti, and Tularemia
caused by Francisella tularensis (18-20). The composition of the tick
microbiome is complex, shaped by interactions between symbiotic
bacteria, the host, and the surrounding environment (21). During
blood-feeding, ticks can transmit pathogens and microorganisms and
may facilitate the transfer of AMRs between hosts (22). Given their
broad geographic distribution and ability to parasitize a wide range of
hosts, including domestic animals, wildlife, migratory birds, and pets,
ticks are increasingly recognized as potential reservoirs and vectors
for AMR dissemination (23, 24). Despite this, most existing research
has focused primarily on tick-borne pathogens, often overlooking the
potential public health risks associated with AMR transmission (14).
Furthermore, the effects of tick species, parasitic versus free-living life
stages, and intergenerational transmission on the distribution and
persistence of AMR remain poorly understood.

The present study aims to investigate the prevalence, diversity, and
potential AMR determinants of bacteria harbored by ticks infesting
camels, a major livestock species in Saudi Arabia. Despite the growing
importance of camels in regional food security and veterinary health,
the role of camel-associated ticks as reservoirs and vectors of AMR
bacteria remains poorly understood. By identifying tick species,
isolating bacterial communities, and characterizing antimicrobial
resistance patterns, this research aims to characterize the bacterial
communities and antimicrobial resistance profiles carried by camel
ticks, thereby providing a baseline for future studies focused on
transmission. The findings will contribute to national surveillance
systems, inform antimicrobial stewardship, and support targeted
interventions within the One Health framework. Ultimately, this study
aims to strengthen public and animal health, promote environmental
sustainability, and protect vital natural resources.

Materials and methods
Selection of study area

This research was done in Hail City, located in the northwestern
region of Saudi Arabia (Figure 1). Hail is characterized by its unique
topography, including mountains, deserts, and fertile agricultural
areas, supported by a semi-arid climate with moderate rainfall
compared to other regions of the Arabian Peninsula. These
environmental conditions foster crop cultivation and livestock
farming, making Hail a vital hub for agricultural and pastoral
activities. The region’s substantial camel population and frequent
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FIGURE 1
Geographic location of the study area. Map illustrating the Hail
Province (highlighted in red) in the northern region of Saudi Arabia,
where tick specimens were collected from dromedary camels.

human-animal interactions provided an ideal setting for investigating
tick-borne bacterial pathogens.

Collection and identification of ticks

A total of 57 ticks were collected from multiple sites within a
20-mile radius of Hail City, Saudi Arabia (27.42476° N, 41.73580° E)
during the months of October and November. Specimens were
manually obtained from 13 female dromedary camels at the Hail
Camels” Market by targeting preferred attachment sites such as the
perianal region, udder, and inner thighs. Each specimen was carefully
detached using fine-tipped forceps and immediately placed into a
sterile 20 mL plastic container with a perforated lid to ensure
adequate ventilation.

Post-collection, ticks were maintained under controlled
conditions with relative humidity ranging from 70 to 93% and
temperature between 20 and 26 °C to preserve their viability. Viability
assessments were conducted upon processing, and notable biological
observations were recorded, such as egg-laying in engorged females.

Morphological identification was carried out using a
stereomicroscope to examine structural features in detail, employing
taxonomic keys based on external morphology, developmental stage,
and sex-specific traits (25). Further species confirmation was achieved
through molecular identification targeting the mitochondrial 16S
rRNA gene. Genomic DNA was extracted using the Qiagen DNeasy
Blood & Tissue Kit, following the manufacturer’s instructions. A
partial fragment of the 16S rRNA gene was amplified using primers
described by Black and  Piesman  (26):
5-CTGCTCAATGATTTTTAAATTGCTGTGG-3" and Reverse
5-CCGGTCTGAACTCAGATCAAGT-3". PCR amplification was

performed in our laboratory in 20 pL reaction volumes, using thermal

Forward

cycling conditions adapted from Mangold et al.”’, with minor
modifications: an initial denaturation at 94 °C for 3 min, followed by
35 cycles of 94 °C for 30, 55°C for 30s, and 72 °C for 1 min,
concluding with a final extension at 72 °C for 5 min. PCR products
were visualized using 2% agarose gel electrophoresis and purified with
a commercial gel extraction kit. The purified amplicons were
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submitted to Macrogen, Inc. (Seoul, Republic of Korea) for
bidirectional sequencing.

Bacterial isolation from ticks

Ticks collected from camels were processed through multiple
steps to ensure effective bacterial isolation. Initially, each tick was
surface-sterilized by immersion in 70% ethanol for 5 min, followed by
three sequential washes with sterile phosphate-buffered saline (PBS)
to eliminate external contaminants. Internal tissues were then
aseptically extracted. Homogenization of tick tissues was performed
under aseptic conditions inside a Class II biosafety cabinet (Thermo
Fisher Scientific). Sterile disposable gloves, laboratory coats, and face
masks were used throughout the procedure. All instruments were
sterilized prior to use, and sterile PBS was employed. Tick tissues were
manually homogenized using autoclaved glass homogenizers;
although a tissue homogenizer machine could reduce human contact,
the manual method was adopted due to equipment constraints while
ensuring sterility at all times. The resulting homogenate was
transferred into a nutrient broth (Sigmaaldrich, Germany) for
enrichment and incubated at 37 °C incubator (Thermo Fisher
Scientific, US) with constant agitation at 250 rpm for 24 h. Following
enrichment, samples were cultured on blood agar and MacConkey
agar plates to facilitate the growth of a broad spectrum of bacterial
species. All media and broths, including nutrient broth, blood agar
(Oxoid, United Kingdom), and MacConkey agar (Himedia,
United States), were prepared according to standard microbiological
protocols (27). Media were sterilized by autoclaving at 121 °C and
15 psi for 15 min before use. Blood agar plates were prepared by
supplementing sterilized base agar with 5% defibrinated sheep blood
under aseptic conditions. Following the culturing, plates were
incubated for 24 h at 37 °C. Next day, colonies were selected based on
morphology and pigmentation. Finally, bacterial isolates were
preserved at —80 °C in glycerol stocks for further analysis.

Identification of bacterial isolates

For bacterial identification, the isolated microorganisms were
identified using the Gram staining technique to distinguish between
Gram-positive and Gram-negative bacteria. Following Gram staining,
bioMérieux Vitek 2 Compact System was used for both identification
and antimicrobial sensitivity testing. The BioMérieux Vitek 2 Compact
System with Gram-positive (GP) ID REF21342 and Gram-negative (GN)
ID REF21341 cards were used according to manufacturer guidelines.

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed on 29 bacterial
isolates using the Vitek 2 Compact System. Through specialized cards,
AST-N417 for GN and AST-P580 for GP, this system determines the
minimum inhibitory concentration (MIC) for various antibiotics against
the bacteria. The antibiotics tested represented multiple classes for both
Gram-positive and Gram-negative bacteria. The antibiotics used for
Gram-positive bacteria are benzylpenicillin, oxacillin, gentamicin,
tobramycin, levofloxacin, moxifloxacin, erythromycin, clindamycin,
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linezolid,  teicoplanin, tigecycline,
fusidic

sulfamethoxazole. For Gram-negative bacteria, the antibiotics used are

vancomycin, tetracycline,

nitrofurantoin, acid, rifampicin, and trimethoprim/
amoxicillin / clavulanic acid, piperacillin/tazobactam, cefazolin,
cefuroxime, cefuroxime axetil, ceftazidime, ceftriaxone, cefepime,
ertapenem, imipenem, meropenem, amikacin, gentamicin, ciproﬂoxacin,
fosfomycin, nitrofurantoin, and trimethoprim/sulfamethoxazole. After
analysis, the MIC cutoff values were used to distinguish each isolated
bacterium that may be sensitive, intermediate, or antibiotic-resistant. The

results were issued using Vitek 2 compact software.

Results

Collection and identification of the hard
ticks from the hail province, Saudi Arabia

A total of 57 ticks were collected from 13 female dromedary
camels within Hail Province, Saudi Arabia. The relatively low tick
burden observed during this period is likely attributable to the
moderately cool climatic conditions, as higher tick densities are
typically associated with the warmer summer months. The collected
ticks were categorized by developmental stage and engorgement status
into three groups: non-engorged adults (1 = 18, 31.6%), engorged
adults (n = 28,49.1%), and nymphs (n = 11, 19.3%). All ticks remained
viable until the time of experimentation, and oviposition was observed
in several engorged females. To confirm species identity, molecular
characterization was performed by targeting the mitochondrial 16S
rRNA gene. The sequences generated in this study have been deposited
in GenBank under accession numbers PV485260-PV485267. The
results identified all specimens as Hyalomma dromedarii, and their
evolutionary relationships are depicted in Figure 2.

Identification of the isolated bacteria from
the ticks

From the collected ticks, employing various microbial culturing
techniques, a total of 29 bacterial species were isolated. The isolated
bacteria were later subjected to Gram staining, followed by strain
identification using the Vitek 2 Compact system. The results revealed
that the bacterial isolates belonged to four different species. Of these,
approximately 79% (n = 23) were Gram-negative bacteria, and 21%
(n = 6) were Gram-positive bacteria (Figure 3A). The high-throughput
detection identified the prevalent Gram-positive bacteria as
Staphylococcus sciuri (n=4), followed by Staphylococcus xylosus
(n = 2; Figure 3B) which are reported potential pathogens to humans.
Among the Gram-negative bacteria, the most common species was
Enterobacter cloacae complex (n =21), followed by Pseudomonas
putida (n = 2; Figure 3C).

Determining the antimicrobial
susceptibility of the isolated bacteria
To identify the drug susceptibility pattern of these bacterial

isolates, all 29 bacterial isolates were tested for antimicrobial
susceptibility using the Vitek 2 compact system. The result showed that
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FIGURE 2

Evolutionary analysis by the Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood method and the
Tamura-Nei model (51). The tree with the highest log likelihood —3500.14 is shown. Initial tree(s) for the heuristic search were obtained automatically
by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Tamura-Nei model and then selecting the
topology with the superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This
analysis involved 31 nucleotide sequences. Of these, 6 sequences were generated in this study (GenBank accession numbers: PV485260, PV485261,
PV485263, PV485264, PV485266, PV485267), while the remaining 25 sequences were retrieved from GenBank. Codon positions included were

1%+ 27 + 3 + Noncoding. There was a total of 286 positions in the final dataset. The phylogenetic tree comprises seven distinct clades, color-coded
as follows: Clade R1 (green), Clade R2 (light green), Clade R3 (yellow), Clade R4 (yellow-orange), Clade R5 (orange), Clade R6 (dark orange), and Clade

R7 (red), each representing a separate evolutionary lineage. The following software was used for phylogenetic tree construction: iTOL version 7.2
(https://itol.embl.de/tree/15258218106142911744696289).

(A) (B) (c)

Pseudomonas putida
Gram-positive

Staphylococcus xylosus 9%

Staphylococcus sciuri

91%
Gram-negative

Enterobacter cloacae
FIGURE 3

Pie chart showing: (A) the percentage distribution of Gram-positive and Gram-negative bacteria identified from the total tick population. The
percentage distribution of major types of Gram-positive and Gram-negative bacteria is represented in (B,C), respectively.

both Gram-positive and Gram-negative bacteria exhibited resistance
to several antimicrobial agents (Figures 4, 5). The antibacterial
suitability test for the Gram-positive bacteria was as follows: For

Staphylococcus sciuri, 100% (n = 4/4) were resistant to fusidic acid,
33.3% (n = 2/4) were resistant to benzylpenicillin, and 16.7% (n = 1/4)
were resistant to erythromycin. About 50% (n = 2/4) of this isolate
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Antimicrobial Resistance Pattern in Gram-positive Bacteria
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FIGURE 4

Antibacterial susceptibility pattern. Bar diagram representing the antibiotic susceptibility profile of Gram-positive bacterial isolates tested against a
panel of commonly used antibiotics. The bar shows the percentage of isolates classified as resistant (R, blue), intermediate (I, orange), or susceptible (S,
green) to each antibiotic, respectively.

Antimicrobial Resistance Pattern in Gram-negative Bacteria
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FIGURE 5

Antibacterial susceptibility pattern. Bar diagram representing the antibiotic susceptibility profile of Gram-negative bacterial isolates tested against a
panel of commonly used antibiotics. The bar shows the percentage of isolates classified as resistant (R, blue), intermediate (I, orange), or susceptible (S,
green) to each antibiotic, respectively.

showed intermediate resistance to moxifloxacin and clindamycin.  xylosus, showed 100% (1 = 2/2) resistance to fusidic acid and 100%

100% (n = 4/4) of Staphylococcus sciuri were sensitive to oxacillin,

gentamicin, tobramycin, levofloxacin, linezolid, teicoplanin,

vancomycin, tetracycline, tigecycline, nitrofurantoin, rifampicin, and
trimethoprim/sulfamethoxazole. The other species, Staphylococcus

Frontiers in Veterinary Science

(n = 2/2) sensitivity to oxacillin, gentamicin, tobramycin, levofloxacin,

linezolid, teicoplanin, vancomycin, tetracycline, tigecycline,
nitrofurantoin, rifampicin, and trimethoprim/sulfamethoxazole

(Figure 4).
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TABLE 1 Antimicrobial susceptibility/resistance patterns of different Gram-positive bacteria isolated from ticks.
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S. xylosus

S. xylosus

Green represents Sensitive (S), Yellow represents Intermediate (I), and Red represents Resistant (R) isolates, respectively.
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For the Gram-negative bacteria, antimicrobial agent sensitivity
testing was as follows: Enterobacter cloacae complex showed 100%
(n=21/21) resistance to amoxicillin /clavulanic acid and cefazolin.
This isolate displayed intermediate resistance to three antibiotics,
including 100% (1 = 21/21) to cefuroxime and cefuroxime axetil, 95%
(n =20/21) to nitrofurantoin, and 4.7% (1/21) to fosfomycin. About
100% (21/21) of this isolate were sensitive to piperacillin/tazobactam,
ceftazidime, ceftriaxone, cefepime, ertapenem, imipenem,
meropenem, amikacin, gentamicin, ciprofloxacin, and trimethoprim/
sulfamethoxazole. The other species, Pseudomonas putida, showed
100% (n=2/2) resistance to cefazolin and trimethoprim/
sulfamethoxazole, 100% (n=2/2) intermediate resistance to
piperacillin/tazobactam, and 50% (n = 1/2) intermediate resistance
to ceftriaxone. 100% (n = 2/2) of this isolate were sensitive to other
antimicrobial agents includes amoxicillin / clavulanic acid,
cefuroxime, cefuroxime axetil ceftazidime, cefepime, ertapenem,
imipenem, meropenem, amikacin, gentamicin, ciproﬂoxacin,
fosfomycin, and nitrofurantoin (Figure 5). The antibiotic
susceptibility of each bacterium highlighted in the present study is
represented in Tables 1, 2.

Discussion

The issue of AMR is increasingly affecting human health, driven
by the widespread use of antibiotics in clinical settings and agriculture,
as well as the accumulation of antibiotics in the environment (28, 29).
Ticks, known vectors of various zoonotic diseases, harbor a complex
and diverse microbiota. Multiple factors, including tick species,
geographic location, environmental conditions, engorgement status,
and life stage, can influence the composition of this microbiota (30).
However, the role of ticks as potential reservoirs of AMR is an
emerging area of research (14). In this research, we investigated the
microbial diversity of camel ticks collected across Hail Province,
Saudi Arabia, and reported the presence of antimicrobial-resistant
bacteria within them.

The present study identified several clinically relevant bacterial
species from camel ticks, including Enterobacter cloacae complex,
Staphylococcus sciuri, Staphylococcus xylosus, and Pseudomonas
putida. While not traditionally classified as tick-borne pathogens,
some of these species can be associated with opportunistic
infections in both humans and animals (31-35). For instance,
Enterobacter cloacae are frequently reported in hospital-acquired
infections and are known to harbor multiple resistance mechanisms
(36, 37). Staphylococcus sciuri has been isolated from wound and
urinary tract infections and is recognized as a reservoir of
antimicrobial resistance genes (38, 39). The detection of these
species in Hyalomma dromedarii suggests that camel ticks may act
as incidental carriers of environmental or opportunistic pathogens.
This raises important questions regarding the acquisition and
potential dissemination of antimicrobial-resistant bacteria within
tick populations.

Although it remains unclear whether these bacteria are permanent
members of the tick microbiota or transient contaminants acquired
from the environment or host, similar genera have been reported in
previous studies (25, 40). Environmental conditions, geographical
location, and host exposure are likely to influence the microbial
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TABLE 2 Antimicrobial susceptibility/resistance patterns of different Gram-negative bacteria isolated from ticks.

Bacteria

E. cloacae

complex

E. cloacae

complex

E. cloacae

complex

E. cloacae

complex

E. cloacae

complex

P. putida

E. cloacae

complex

E. cloacae

complex

E. cloacae

complex

10

E. cloacae

complex

11

E. cloacae

complex

12

E. cloacae

complex

13

E. cloacae

complex

14

E. cloacae

complex

Clavulanic Acid

Piperacillin /
Tazobactam

Cefazolin

Cefuroxi

Cefuroxime Axetil

Ceftazidime

Ceftriaxone

Cefepime

Ertapenem

Meropenem

Amikacin

Gentamicin

Ciprofloxacin

Fosfomycin

Trimethoprim /
Sulfamethoxazole

(Continued)
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TABLE 2 (Continued)
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E. cloacae

E. cloacae

E. cloacae

E. cloacae

E. cloacae

E. cloacae

E. cloacae

E. cloacae

10.3389/fvets.2025.1662637

Colors indicate susceptibility status: green (Sensitive, S), yellow (Intermediate, I), and red (Resistant, R).
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communities associated with ticks (41-45). It is plausible that the
observed resistance patterns may reflect indirect exposure to
antibiotics administered for wound management in camels; however,
the absence of formal veterinary treatment records in this study limits
the ability to draw definitive conclusions.

As such, the true bacterial diversity harbored by Hyalomma
dromedarii may be broader than captured in this study. Additionally,
the choice of Hail Province as the study area may have influenced the
observed microbial composition, given its semi-arid climate, high
camel density, and frequent human-animal interactions. These
ecological and anthropogenic factors could contribute to the
environmental acquisition and potential dissemination of
antimicrobial-resistant bacteria by ticks. Future studies employing
high-throughput approaches such as 16S rRNA amplicon sequencing
or metagenomics will be required to capture the broader microbial
diversity of tick populations.

A previous study conducted in the Al-Jouf province of Saudi Arabia
profiled the microbiota of camel ticks and reported the predominance
of Staphylococcus lentus, Staphylococcus pseudintermedius, and
Sphingomonas paucimobilis (25). In contrast, our study did not detect
these bacterial species in the tick samples analyzed. Interestingly,
we observed a notable prevalence of the Enterobacter cloacae complex,
which may be attributed to geographical variation influencing
microbial diversity. Furthermore, unlike the earlier study, we did not
identify any bacterial isolates exhibiting complete resistance to the
bactericidal action of benzylpenicillin, oxacillin, clindamycin, or
vancomycin. Intermediate resistance phenotypes, such as those
observed for Enterobacter cloacae against cefuroxime, may reflect
intrinsic variability and are not necessarily predictive of clinical
treatment failure. Such findings should therefore be interpreted with
caution when considering their epidemiological and clinical relevance.

We believe this discrepancy may be explained by differences in
geographical topology and the timing of sample collection, which are
known to affect the distribution of antimicrobial-resistant bacteria
(14). Moreover, several studies on tick microbiomes from different
regions have demonstrated that the geographical location of the ticks
plays a crucial role in shaping their microbiome (44, 45). Alternatively,
studies have suggested that blood-feeding altered the diversity of the
tick microbiome and could reduce microbial abundance in ticks (46).
Therefore, we cannot exclude the possibility that the lifecycle and
feeding stages of the tick under study could contribute to discrepancies
in the observed microbial diversity.

Collectively, our study highlights the complex dynamics of
antimicrobial resistance mediated by ticks. While we identified
the presence of antimicrobial-resistant bacterial pathogens within
tick populations across the Hail province of Saudi Arabia, the
underlying mechanisms driving this resistance remain unclear.
Antibiotic resistance genes (ARGs) are increasingly recognized as
emerging environmental contaminants due to their potential for
horizontal transfer between bacterial species and across
ecosystems, thereby contributing to the emergence and
(47, 48).
We hypothesize, therefore, that these resistant bacteria harbor

dissemination of multidrug-resistant bacteria
ARGs that confer antimicrobial resistance, although their specific
identities and roles have yet to be elucidated. Furthermore, it is

plausible that ARGs are transmitted either vertically through
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genetic inheritance or horizontally via mobilizable genetic
elements (MGEs), facilitating the spread of resistance traits among
bacterial populations (49, 50).

Limitations

This study has several limitations. First, while antimicrobial
resistance phenotypes were characterized, the presence or
mobility of specific resistance genes was not confirmed at the
molecular level and should be investigated in future studies.
Second, reliance on culture-based methods may have selectively
favored fast-growing species and overlooked fastidious or
intracellular bacteria such as Rickettsia, Coxiella, and Anaplasma.
This reliance likely led to an incomplete representation of the tick
microbiome. Future studies should therefore incorporate high-
throughput methods such as 16S rRNA gene sequencing or
metagenomic approaches to capture a broader and more
comprehensive microbial profile. Third, the geographical focus on
Hail Province may limit the generalizability of the findings, as
bacterial diversity and resistance profiles can vary regionally.
Finally, the cross-sectional design precludes conclusions about
temporal dynamics of resistance. Addressing these limitations in
future research will provide deeper insights into the role of ticks
as reservoirs and disseminators of antimicrobial-resistant bacteria.
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