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Feline oral squamous cell carcinoma (FOSCC) is the most common oral malignancy
in cats, characterized by aggressive local invasion, high metastatic potential, and
poor clinical outcomes. Its etiology is multifactorial, involving genetic mutations
(notably TP53), viral infections (such as papillomavirus), environmental exposures
to xenobiotics and chronic oral inflammation, though definitive causal relationships
remain unclear due to limited studies. FOSCC primarily affects older, non-pedigree
cats, with no clear sex or breed predisposition, and most frequently arises in the
gingiva, sublingual region, and tongue. FOSCC presents with non-specific signs
like weight loss, oral ulceration, and difficult eating, often leading to late diagnosis.
FOSCC displays highly infiltrative growth with marked cellular pleomorphism and
frequent bone invasion. Recent advances have identified various biomarkers, such as
Ki-67, Cyclin D1, Bmi-1, and EMT-related proteins, that enhance diagnostic accuracy
and prognostic assessment, while emerging research into tumor mutational burden
and metabolic pathways offers promising therapeutic targets. Prognosis remains
poor, with median survival times typically under 2 months and limited response
to conventional treatments; however, surgical intervention and novel targeted
therapies show potential for improved outcomes. This review synthesizes recent
progress in understanding FOSCC etiology, pathology, and therapeutic strategies,
and highlights ongoing challenges and future directions in the management of
this devastating feline cancer.
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1 Introduction

Cancer poses serious health challenges in domestic animals, with feline oral squamous
cell carcinoma (FOSCC) being the most common and aggressive oral cancer in cats. FOSCC
exhibits rapid local invasion and metastasis, driven by complex genetic, structural,
environmental, and infectious factors. Advances in veterinary oncology have revealed key
molecular mechanisms and biomarkers, enabling new targeted and immunotherapeutic
strategies (1-8). Despite progress, gaps remain in understanding specific risk factors and
treatment resistance (9-11). This review emphasizes recent advances in FOSCC research in
terms of etiology, epidemiology, prognosis, pathology and explores future perspectives,
including new therapeutic approaches and molecular diagnosis, that could further enhance
understanding and treatment of this challenging feline cancer.

01 frontiersin.org


https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2025.1663990&domain=pdf&date_stamp=2025-10-13
https://www.frontiersin.org/articles/10.3389/fvets.2025.1663990/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1663990/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1663990/full
mailto:florentinabocaneti@yahoo.com
https://doi.org/10.3389/fvets.2025.1663990
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2025.1663990

Tutu et al.

2 Etiology
2.1 Viral infection

Several viruses, including FcaPV (Felis catus papillomavirus), FIV
(Feline immunodeficiency virus), FeLV (Feline leukemia virus), and
EBV (Epstein-Barr virus) have been investigated for their role in
FOSCC (10-17).

Feline papillomaviruses have been detected in tumor samples,
particularly Felis catus papillomavirus type 2 (FcaPV-2) (9, 13-15,
17-25). The viral oncoproteins E6 and E7 contribute to oncogenesis
by disrupting key tumor suppressor pathways, specifically p53 and
PRb, thereby promoting cancer development (22, 26, 27). High viral
DNA loads correlate with elevated E6 and E7 expression, indicating
that FcaPV-2 can actively drive tumor growth in affected cases (28—
31). The overexpression of pl6, a surrogate biomarker linked to
E7-mediated pRb disruption, may be involved in FcaPV-related
FOSCC, although its exact role requires more investigation (13, 17,
25). Disruption of the viral E2 gene, which normally regulates viral
transcription, leads to unchecked expression of these oncogenes
(22). Notably, the occasional co-expression of L1 capsid protein
alongside E6/E7 in tumors suggests ongoing viral replication,
maintaining a persistent immune response that fosters a
pro-tumorigenic inflammatory microenvironment through tissue
damage and cytokine release (25, 28, 32). Interestingly, recent studies
indicate that different FcaPV types are detectable in in situ carcinoma
of the oral cavity, suggesting a viral-driven multi-step carcinogenesis
and providing additional evidence of their role in FOSCC
development (33). Due to pathological similarities with human head
and neck squamous cell carcinoma (HNSCC) associated with high-
risk human papillomavirus infection, FcaPV-positive FOSCC is
proposed as a relevant animal model for HPV-driven HNSCC
(34-37).

FIV, a lentivirus causing immunosuppression similarly to human
HIV, infects the oral cavity, creating a viral reservoir that promotes
chronic inflammation and immune dysfunction. This environment
facilitates cellular dysregulation, increasing neoplastic risk and
contributing to FOSCC development (16). The immunosuppressive
effects of FIV promote repeated cellular turnover and damage, critical
steps in carcinogenesis (38).

FeLV, a retrovirus known for causing lymphomas and sarcomas,
may also contribute to FOSCC through insertional mutagenesis,
impairing oncogenes and tumor suppressor genes and triggering
malignant transformation (39, 40). Therefore, FeLV-induced immune
dysregulation and chronic inflammation may further increase
susceptibility to FOSCC.

Additionally, EBV has been detected in one FOSCC case, but
further research is needed to understand better the possible role of this
virus in the etiopathogenesis (12, 41).

Dated studies presented conflicting results regarding detection of
viral infection in FOSCC. Variability in sample size and viral detection
methods may justify this apparent inconsistency with most recent
research. Techniques differ widely, from PCR-based viral DNA
detection and immunohistochemistry to in situ hybridization, each
with varying sensitivity and specificity. Standardization of
methodological approaches represents a significant challenge to
be addressed in future research in order to definitely clarify the role of
viral infections in FOSCC etiology.
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2.2 Environmental and lifestyle factors

Exposure to environmental tobacco smoke (ETS) has been
investigated as a risk factor for FOSCC. However, studies have not
found a statistically significant correlation, despite some
suggesting a twofold increased risk in exposed cats (1-3, 42).
Unlike in humans, no dose-response relationship was observed
between exposure to cigarette smoke and cancer development
(1-3, 42). Dietary factors have also been investigated, with wet
food consumption, especially canned tuna, being associated with
a 3.6-fold increased risk. This association may be due to nutrient
differences in these foods or because high canned food intake
leads to poor dental hygiene, promoting tartar buildup, bacterial
oral inflammation,

though

toxins, and potentially neoplastic

transformation, statistical was not
established (1, 2).

The use of ectoparasite control methods, such as flea collars, has

significance

been linked to an increased risk (5.3-fold), where chronic exposure to
chemical compounds in these products may induce cellular damage,
oxidative stress, or immune disruption, potentially contributing to
carcinogenesis, but evidence remains inconclusive (1, 2). Clumping
clay cat litter and flea collar use were reported as significant risk
factors (ORs 1.66 and 4.48, respectively), possibly related to
carcinogenic substances such as crystalline silica in clay litters and
tetrachlorvinphos in flea collars (43). These findings suggest
environmental chemical exposures may play a role in FOSCC
development and warrant further research.

2.3 Chronic inflammation and
comorbidities

Chronic oral conditions such as periodontal disease (PD), feline
chronic gingivostomatitis (FCGS), and other oral inflammatory
conditions may contribute to carcinogenesis, though studies directly
linking them to FOSCC are lacking (9, 44-47). In humans, chronic
inflammation is known to induce genetic mutations and epigenetic
alterations, leading to cancer (48). The involvement of inflammatory
mediators like cytokines, prostaglandins, and metalloproteinases,
which promote tumor progression, has been demonstrated in both
human and feline SCC (5, 7, 48-51). Additionally, a case of
Trichinella spp. infection was reported in an FOSCC sample, but its
carcinogenic role remains unclear, further research is required
(44, 52).

2.4 Genetic and molecular events

Genetic mutations, particularly in the TP53 gene, are commonly
found in FOSCC and are thought to play a critical role in tumor
development (2, 17, 25, 53, 54). Increased expression of the tumor
suppressor protein p53 has been observed in some ETS-exposed cats,
no direct link to tobacco exposure was confirmed (2, 3). The
overexpression of pl6, a biomarker for cell senescence, has been
assessed in several studies, but no statistically significant correlation
with papillomavirus infection was found, more studies are needed in
this area (13, 17, 20, 25, 31, 55, 56). Other molecular pathways, such
as cyclooxygenase (COX), signal transducer and activator of
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transcription 3 (STAT3), epidermal growth factor receptor (EGFR),
and vascular endothelial growth factor (VEGF), have been implicated
in tumor progression, suggesting a complex interplay of molecular
alterations in FOSCC development (5, 7, 49, 51, 57).

2.5 Development and structural factors

It has been proposed that FOSCC may originate from dental
structures, such as the dental lamina and enamel organ epithelium,
similar to dentigerous cyst-associated SCC in humans (58, 59). While
this hypothesis remains speculative, it aligns with observations in
other species, suggesting a possible developmental contribution to
the disease.

2.6 Microbial influences and oral flora

Human studies show that imbalances in oral bacteria can promote
oral cancer by increasing inflammation (60). In cats, infection with
FIV is associated with harmful shifts in oral bacteria, increasing the
risk of oral squamous cell carcinoma (61). Differences in oral
microbiota between healthy cats and those with periodontitis indicate
that bacterial imbalance may also raise cancer risk in felines,
paralleling findings in humans (62).

10.3389/fvets.2025.1663990

The influence of oral microbiota on the development of FOSCC
is an area of ongoing research. Exploring the role of microbial profiles
in oral health and disease could identify specific pathogens as potential
risk factors for feline oral cancer.

Understanding the causes of FOSCC is limited due to few studies,
many with small sample sizes or case series (1-3). Using owner-reported
data for exposure to ETS may cause bias, as smoking households with
affected cats might be underrepresented (1-3). The lack of standard
methods for virus detection and missing information about the patient
health status may also underestimate the role of infection (9-11, 63).
Future research should involve larger, well-controlled studies to better
clarify how these factors contribute to FOSCC development (Figure 1).

3 Epidemiology

FOSCC is the most common malignant oral tumor in cats,
accounting for 46-61.2% of all oral neoplasms in multiple surveys (64,
65). Epidemiological studies have been conducted worldwide, with
data collected from the USA, UK, Italy, New Zealand, Slovenia, and
Japan, encompassing hundreds of cases (38). Most studies are
retrospective and based on histopathological review of biopsy samples,
this limitation may influence the possibility in establishing a direct
causal relationship between the neoplasia and the potential etiologic
factors described in chapter 2 (17, 38, 66-68).
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Schematic representation of feline oral squamous cell carcinoma etiologic factors. Created in BioRender. Tutu, P. (2025) https://BioRender.com/
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3.1 Breed and demographics

Non-pedigree (domestic) cats represent the majority of FOSCC
cases, 84-96% in several studies, with domestic shorthair being the
most common, purebred cats are less affected, but breeds such as
Burmese, Maine Coon, Persian, Chartreux, and Siamese are known to
be affected (38, 50, 66-68). The median age at diagnosis typically
ranges from 11 to 13.5 years, with reported ranges spanning 1 to
21 years (17, 50, 64, 67, 68). Both sexes are affected, with studies
reporting near-equal or slightly higher female representation (17,
50, 67-69).

3.2 Anatomical sites and tumor
characteristics

FOSCC most frequently arises in the gingiva (mandibular and
maxillary), sublingual region, and tongue (17, 68-70). The tongue is
more commonly affected in younger cats (mean age 11.9 years), while
gingival tumors occur in slightly older cats (mean age 13.6 years).
Tumors are often invasive, with frequent bone involvement
(osteolysis), especially in maxillary (48%) and mandibular (33%) cases
(68, 70).

4 Pathology
4.1 Histopathology

Oral squamous cell carcinomas in domestic animals consist of
invasive nests of cancerous epithelial cells penetrating the submucosa,
with basaloid outer cells and larger eosinophilic central cells. These
tumors show abnormal maturation, keratinization irregularities, and
solid masses with intercellular bridges (71). They grow aggressively,
often spreading single cells beyond the main tumor (Figure 2A),
causing ulceration, inflammation, and sometimes bone invasion with

10.3389/fvets.2025.1663990

surrounding fibrous tissue. Tumors vary in differentiation, influencing
prognosis, and may contain abnormal nuclei, necrosis indicating
aggressiveness, multinucleated cells, and lymphocyte infiltration,
while stromal fibrosis is generally minimal (71-73).

Several distinct histological subtypes can be identified in FOSCC
based on criteria adapted from HNSCC classifications. These subtypes
primarily include well-differentiated keratinizing squamous cell
carcinoma, poorly differentiated non-keratinizing squamous cell
carcinoma, and basaloid squamous cell carcinoma. The well-
differentiated subtype is characterized by the presence of keratin
pearls and an organized arrangement of squamous cells (Figure 2B),
indicative of maintained differentiation. Poorly differentiated variants
lack these organized features, often exhibiting a higher degree of
pleomorphic cells, which can result in more aggressive clinical
behavior (66, 74).

The basaloid variant, although less frequent, presents a distinct
histological profile with high cellularity and minimal keratin
formation. This subtype can exhibit a pattern similar to that of adenoid
cystic carcinoma, which poses diagnostic challenges as it might
be misidentified without careful histopathological evaluation (66). The
presence of such variants in FOSCC suggests the need for meticulous
histological examination and classification, as they correlate strongly
with clinical outcomes and prognostic indicators (34, 75).

In both cats and humans, OSCC is the most common oral cancer,
characterized by invasive malignant keratinocytes. A key difference is
that keratin pearls, common in human OSCC, are rare in cats,
reflecting faster progression in felines (74).

4.2 Clinical appearance

FOSCC is an aggressive neoplasm that can arise in various
locations within the oral cavity, most commonly affecting the
mandibular (Figure 3A), maxillary, and sublingual regions (50, 70,
76). Less frequently, tumors develop on the hard palate, soft palate,
larynx, pharynx, or lips, although these sites account for less than 2%

FIGURE 2

Histopathological representation of feline oral squamous cell carcinoma. (A) Irregular, columnar, diffuse tumor infiltration in the deep layers of the skin
with the formation of keratin-rich tumor islands (HE X100). (B) Tumor islet with high keratin content in the profound layer of the skin (HE X100).
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FIGURE 3

the tongue.

Feline oral squamous cell carcinoma—clinical presentation. (A) Ulcerated and infected nasal and mandibular lesion. (B) Ulcerated lesion at the base of

of cases (70). Regardless of location, SCC tend to be locally invasive
and destructive, leading to severe clinical signs.

In the initial stages, FOSCC may appear as a small, raised, fleshy mass
or as an ulcerated lesion with little visible proliferation. Despite their
relatively subtle appearance on physical examination, these tumors often
invade surrounding tissues extensively. Affected cats commonly exhibit
nonspecific signs such as reduced appetite, weight loss, lethargy, halitosis,
excessive drooling, and decreased grooming. Owners frequently report
difficulty in eating, and veterinarians may observe loose or mobile teeth
in the affected area. While tooth extraction may temporarily improve
appetite, the extraction site often fails to heal, forming a persistent ulcer.
Tumors that develop in the sublingual and lingual areas (Figure 3B) can
look like a foreign body invading the tongue aggressively. This leads to a
firm thickening of the tongue, reduced movement, ulceration, and in
severe cases necrosis due to poor blood supply. As these tumors grow; the
tongue may stick out of the mouth, which can cause trauma, bleeding, and
make eating difficult. Maxillary SCC are highly destructive, spreading into
bone and causing bone loss with large lesions. Tumors located toward the
back of the upper jaw may interfere with eye movement, while those at
the front often cause teeth to become loose or fall out, even if the gums
appear healthy (71).

Mandibular SCC show similar signs, including ulceration, loose
teeth, and in some cases, new bone formation and bone loss even
without visible ulceration. Occasionally, tumors originate within the
jawbone itself, resembling intraosseous carcinoma (77).

4.3 Biomarkers

The potential role of biomarkers as immunohistochemical
markers in feline tumors is a subject of current exploration. A number
of significant biomarkers have been evaluated in FOSCC,
demonstrating correlations with their counterparts in HNSCC,
indicating shared molecular pathways and disease mechanisms.

These biomarkers are classified into several categories, including
proliferation markers, epithelial-mesenchymal transition (EMT) factors,
immune checkpoints, angiogenesis-related proteins, stromal remodeling
elements, genetic alterations, and metabolic regulators. Among these, p53,

Frontiers in Veterinary Science

pl6, EGFR, VEGF and COX-2 have been the most studied (2-8, 17, 25,
54, 66, 78-89). However, there are some new markers, particularly Ki67,
Bax, Bcl2, Caspase3, NQO1 and TERT, which offers new insights and new
perspectives into the FOSCC molecular evolution and targetability
(Figure 4; Table 1) (5, 79, 80, 90-92).

The analysis of biomarkers in FOSCC and their correlation with
HNSCC presents the notion of using FOSCC as a valuable naturally
occurring model for studying in human’s counterparts. The substantial
similarity in biomarker profiles indicates the feasibility of translational
research, whereby feline cancer studies could provide insights that
inform human medicine, particularly in the context of exploring novel
therapeutic strategies and preventive measures (5, 34, 83).
Furthermore, given the similarity in the pathways of tumour evolution
exhibited by both cancers, interventions targeting shared biomarkers
may result in advancements in treatment outcomes across species.

5 Prognosis

FOSCC poses significant challenges in veterinary medicine due to
its aggressive nature and poor prognosis. Understanding the
prognostic factors associated with FOSCC is critical for enhancing
treatment strategies and overall outcomes. Much like HNSCC, various
biomarkers, clinical indicators and treatment modalities influence the
clinical course and therapeutic response of FOSCC.

5.1 Treatment modalities

FOSCC carries a poor prognosis, with median survival times
(MST) of 44 to 60 days and a one-year survival rate of 5-10% (50, 63,
78, 93). Surgical excision, especially mandibulectomy, can improve
survival, with MST reported up to 420 days, though recurrence rates
remain high at 38% (94, 95). Traditional radiation and chemotherapy
are generally ineffective, accelerated radiation combined with
carboplatin has extended MST to around 163 days (96). FOSCC is
notably resistant to conventional therapies, with mechanisms of
resistance still not well understood (94, 95, 97, 98).
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FIGURE 4

Key biomarkers and targeted treatments in feline oral squamous cell carcinoma. Carcinogens activate receptor tyrosine kinases (RTK) such as VEGFR
and EGFR, triggering signaling cascades including JAK/STAT3/5, PI3K/AKT/mTOR, and TGF-f receptor/Smad pathways. These pathways regulate
cellular processes such as proliferation (COX2, VEGF), survival (MMP), invasion (Snail), apoptosis, senescence, and cell cycle arrest (p53, pl16, p21, CDK,
Cyclins, E2F, pRB). COX2 activation involves GPCR and Src kinase signaling leading to MMP activity promoting the invasive activity of the tumor. The
inset shows cell cycle control through pRB phosphorylation and CDK regulation (5, 8, 25, 102, 139, 144-146). The figure also depicts pharmacological
inhibitors targeting these molecules, including Toceranib, Gefitinib, Cetuximab, Gemcitabine, Carboplatin, and others, used in the treatment of FOSCC
(4,46, 91, 96, 115, 116, 124, 125, 128, 135, 142). Created in BioRender. Tutu, P. (2025) https://BioRender.com/3hns4gp.

5.2 Tumor location

Tumor site influences prognosis. Cats with maxillary SCC tend to
have longer survival compared to other oral locations (63).
Oropharyngeal SCCs show longer MSTs than sublingual or other sites,
possibly linked to differences in cancer-associated fibroblasts (87).
Bone invasion does not seem to affect prognosis significantly,
reflecting the highly invasive nature of these tumors regardless of
histology (17). Metastasis drastically worsens survival, with MST of
24 days for cats with multiple lymph node or distant metastases versus
90 days for non-metastatic cases (63, 93, 94).

5.3 Molecular markers

Several molecular markers have prognostic relevance. Diffuse
cyclooxygenase-1 (COX-1) expression correlates with longer survival
(50). The Ki67 proliferation index shows mixed results: some studies
link high Ki67 to worse outcomes, but this is not confirmed in other
studies (78, 79). EGFR expression generally does not correlate
significantly with survival, though lower survival trends imply

Frontiers in Veterinary Science

potential as a therapeutic target (78, 79). Tumor vascularization
assessed by microvessel density (MVD) lacks strong survival
correlation, despite higher MVD in tongue tumors (99, 100).

Immunohistochemical markers like p16 associate with longer
survival independently of papillomavirus infection (101, 102), while
p53 expression is unreliable for prognosis, suggesting diverse
oncogenic pathways in FOSCC development (13, 17, 103, 104).
Histologic differentiation and invasion patterns have not consistently
predicted outcomes (105-107).

FOSCC remains a highly aggressive neoplasm with limited
treatment success. The identification of molecular markers may
enhance prognostic predictions and guide treatment decisions.
Future studies should focus on refining prognostic markers and
exploring targeted therapies to improve clinical outcomes for
affected cats.

6 Therapy

FOSCC remains a challenging disease. Radiation therapy,
chemotherapy, and surgery are standard treatments, often used
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TABLE 1 Biomarkers frequently used in the evaluation of feline oral squamous cell carcinoma.

10.3389/fvets.2025.1663990

Biomarker category Biomarker Activity Relevance to FOSCC References
Proliferation markers Ki-67 Indicator of cell proliferation Increased expression — (79, 80, 140)
aggressive tumor, poor
prognosis
Cyclin D1 Regulates cell cycle progression Dysregulation — uncontrolled (81)
tumor growth
plé Cell cycle inhibitor Decreased expression — rapid (5,11, 29, 30)
tumor progression
pRb Tumor suppressor, regulates cell Inactivated in many cancers, (25,71, 82,102)
cycle leading to uncontrolled cell
growth
Apoptotic markers Bdl-2 Inhibits apoptosis Increased expression — (90)
aggressive tumors, treatment
resistance
Bax Promotes apoptosis Decreased expression — (90)
accelerated tumor growth
Caspase-3 Induces apoptosis Reduced expression — tumor (5,90,91)
resistance to cell death
Angiogenesis and invasiveness CD31 & CD34 Markers of new blood vessel Increased expression — (147)
markers formation enhanced tumor
vascularization
VEGF Vascular endothelial growth Increased expression — (4-8)
factor angiogenesis and invasiveness
MMP-2 & MMP-9 Degrade extracellular matrix Increased expression — (31,82)
promotes invasion and
metastasis
B-catenin Involved in cell adhesion Dysregulation — increased (81, 148)
invasiveness
CD147 Involved in tumor progression Increased expression — (149)
and invasion associated with metastasis
CD146 Cell adhesion and signaling Upregulated in invasive (148)
tumors
Inflammation and tumor COX-2 Mediates inflammation Increased expression — (50, 57, 66, 148-150)
microenvironment markers stimulates tumor progression
TGE-p Growth factor and Increased expression — (6, 66, 70, 83, 86)
immunosuppressor promotes immune evasion
mPGES-1 Enzyme involved in Elevated expression in (8)
prostaglandin E, synthesis adjacent epithelium; potential
role in tumor progression
TNF-a Pro-inflammatory cytokine Elevated levels — contributes (83)
to tumor growth and immune
evasion
1L-6 Pro-inflammatory cytokine Increased levels — linked to (83)
chronic inflammation and
tumor progression
Cancer-associated fibroblast CAF Stromal fibroblasts supporting Increased presence — (86, 87)
tumor progression associated with tumor
aggressiveness
SMA (a-SMA) Myofibroblast marker, involved Increased expression — CAF (86, 87)

in stromal remodeling

activation, promoting invasion
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TABLE 1 (Continued)

Biomarker category Biomarker Activity Relevance to FOSCC References
Immune system markers CD3 T-cell marker Helps assess immune response (66, 86)
Oxidative stress markers in tumors
CD4 Helper T-cell marker Increased expression may (66)
correlate with immune
infiltration
CD79%a B-cell marker Used for identifying immune (66)
responses
CD20 B-cell marker Potential role in immune (66, 86)

response and tumor

environment

CTLA-4 Immune checkpoint inhibitor Increased expression — (66)

immune evasion, potentia.l

immunotherapy target
STAT3 Transcription factor, regulates Increased activation — (5)
gene expression promotes tumor cell survival

and immune suppression

8-OHdG Oxidative stress marker Increased levels — linked to (92)

DNA damage and tumor

progression
NQO1 Detoxification enzyme, protects Upregulated in many tumors, (92)
against oxidative stress may contribute to

chemotherapy resistance

Metastasis and prognostic PD-1/L1 Inhibits immune response Increased expression — (6, 66, 84, 85, 151)
markers immune evasion, potential
immunotherapy target
Cell adhesion and prognostic E-cadherin Regulates cell adhesion Decreased expression — (6, 148)
markers increased invasiveness and
metastasis
EGFR Epidermal growth factor receptor | Increased expression — (49, 78, 79, 135, 140)

accelerated tumor
proliferation, potential

therapeutic target

p53 Tumor suppressor Altered expression — loss of (2,3,17,25,53, 54, 83, 83)

cell cycle control

CD44 Cell surface glycoprotein Overexpression — associated (148)
involved in cell adhesion and with cancer stem cells and
migration metastasis
Telomere and senescence TERT Catalytic subunit of telomerase, Overexpression — linked to (90)
markers maintains telomere length tumor proliferation and
immortalization
Monocarboxylate transporter MCT1 Involved in tumor metabolism Altered expression — (89)
MCT4 and lactate transport inhibits tumour growth

together to control the disease and improve quality of life. Emerging 6.1 Radiation therapy

approaches such as metabolic therapy, bisphosphonates, stem cell

therapy, immunotherapy, tyrosine kinase inhibitors (TKI), analgesics, Radiation therapy for FOSCC demonstrates clinical feasibility
and gene therapy are being explored to enhance outcomes (Table 2).  through various protocols that offer symptom relief and tumor
Traditional treatments focus on tumor control, while newer therapies  control, but outcomes and tolerability vary considerably. Stereotactic
attempt to target tumor growth, manage pain, and improve survival, ~ Radiation Therapy (SRT) provides rapid symptom improvement with
aiming at the diversification and enrichment of the arsenal against this ~ an overall response rate of 38.5% and median survival around
aggressive cancer. 106 days. However, factors such as high tumor microvascular density
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TABLE 2 Therapies reported to be used in FOSCC.

10.3389/fvets.2025.1663990

Treatment Purpose Survival Efficiency References

Stereotactic radiation therapy (SRT) | Radiation 106 days 38.5% response rate (79)

Accelerated hypofractionated Radiation 174 days 23% (PFS), 41% (LPFS), 29% (108)

radiation therapy (08)

Coarse fractionation radiotherapy Radiation 60 days Limited palliative effect (97)

Coarse fractionated megavoltage Radiation 92-127 days 65% improved QoL (109)

radiation therapy

Accelerated radiation protocol Radiation 86-298 days Manageable toxicity (110)

Gemcitabine + palliative Chemotherapy 111.5 days Partial/complete responses in (115)

radiotherapy some cases

Toceranib Targeted therapy 123 days (treated) vs. 56.5% response rate (46, 128)

45 days (untreated)

Carboplatin Chemotherapy Varies Enhances radiation efficacy (96, 116, 117)

USMB-enhanced chemotherapy Radiation and Chemotherapy Limited data Improves tumor perfusion (118)

IB-DNQ Chemotherapy Not specified Targets NQO1-overexpressing (92)
tumors

Maxillectomy Surgery Up to 2 years 83% two-year survival rate (121)

Radical mandibulectomy Surgery 712 days 6/8 cats resumed feeding (152)

MD-1 Therapy Metabolic therapy Limited data Reduces tumor growth (89)

Zoledronate + Meloxicam Bisphosphonates Not specified Inhibits osteolysis, (4, 124)
angiogenesis

Pamidronate Bisphosphonates Not specified Stable disease in select cases (125)

Microbrachytherapy Internal radiation 113-296 days 55% local response (111)

Stem cell therapy Cellular therapy <1 month Temporary symptom relief (128)

L-NDDP Chemotherapy Poor survival No tumor response (119)

LAK cell transplantation Immunotherapy Not extended Safe but ineffective (129)

ECEA Ablation Not viable Transient tumor reduction (120)

Tyrosine kinase inhibitors Targeted therapy Not specified Dual inhibition of FOSCC (126, 135)
pathways

DFMO Metabolic therapy Not specified Reduces tumor polyamine (122, 123)
levels

Gene therapy Genetic targeting Not specified Partial response in one cat (127)

Viscum album extracts Plant-base therapy Not specified Induce apoptosis and cell cycle (153)
arrest

Cold atmospheric plasma Reactive oxygen and nitrogen Not specified Effective antitumor activity in (154)
SCC tumor

and keratinization negatively impact survival, and complications like
mandibular fractures can impair quality of life (80). Accelerated
hypofractionated radiation (4.8 Gy x 10) shows promising tumor
responses and extended progression-free and overall survival with
generally manageable mucositis and some late effects, although long-
term toxicity remains a concern (108).

Coarse Fractionation Radiotherapy (8 Gy x 3) offers limited
palliation and shorter median survival (60 days) but poses substantial
risks including mucositis, pain, and dysphagia, which can affect
clinical tolerability (97). A similar coarse fractionated megavoltage
protocol (24-40 Gy in 3-4 fractions) improves quality of life in a
majority of cats, with median survival ranging near 92 days (109). The
accelerated protocol (3.5 Gy x 14 over 9 days) is moderately tolerable
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and achieves a median survival of 86 days, while cats achieving
complete response may survive substantially longer (110).
Microbrachytherapy with holmium-166 microspheres shows
encouraging local control rates (55%) and minimal side effects,
allowing for less extensive surgery in some cases and improved
survival in responders (111).

Despite initial radiosensitivity, FOSCC frequently develops
radioresistance over time, driven by mechanisms such as enhanced
DNA repair, cancer stem cell activation, EMT, and tumor
microenvironment changes. These adaptations reduce long-term
treatment efficacy and contribute to the overall poor prognosis (112-
114). Current limitations include variable survival benefits, toxicities
affecting quality of life, and the inevitability of radioresistance. Future
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directions emphasize the development of multimodal strategies that
integrate radiation therapy with surgery, systemic treatments, or
molecular targeted therapies to overcome resistance and improve
clinical outcomes (112-114).

6.2 Chemotherapy

Chemotherapy shows clinical feasibility with several agents
explored, though overall efficacy remains limited and survival benefits
modest. Low-dose gemcitabine combined with palliative radiotherapy
achieves partial or complete responses in some cats, with a median
survival time of 111.5 days (115).

Carboplatin acts as a radiosensitizer in accelerated radiation
protocols, particularly benefiting tonsillar SCC with manageable
toxicity and modest antitumor activity (96, 116, 117). Ultrasound and
microbubble-enhanced chemotherapy (USMB) using bleomycin is a
clinically feasible and safe approach to improve drug delivery and
tumor perfusion but has shown limited clinical efficacy in cats (118).
The novel agent IB-DNQ, targeting NQO1 to generate cytotoxic
reactive oxygen species, presents promising targeted therapeutic
potential (92). Conversely, liposomal cisplatin (L-NDDP) proved
ineffective, yielding no tumor responses and poor survival despite
acceptable toxicity (119). Ethyl Cellulose-Ethanol Ablation (ECEA),
which combines chemotherapy with localized electric pulses to retain
ethanol intratumorally, produced transient tumor shrinkage but poor
functional outcomes in lingual and sublingual SCC, limiting its
applicability to these sites (120).

Limitations of chemotherapy include generally modest survival
improvements, inconsistent tumor responses, and treatment-related
toxicities that affect quality of life (118-120). Future directions should
focus on refining multimodal protocols integrating chemotherapy
with radiation, surgery, and novel targeted agents to enhance efficacy.
Continued research into innovative drug delivery systems and
molecularly targeted therapies is essential to overcome current
therapeutic challenges and improve prognosis in FOSCC.

6.3 Surgical interventions

Surgical interventions include maxillectomy and mandibulectomy.
These are aggressive procedures but offer a potential curative approach
if the tumor is localized and able to extract (94, 121).

Maxillectomy is an effective treatment for FOSCC, achieving good
local tumor control and extended survival times. The procedure
includes various techniques, such as unilateral rostral, bilateral rostral,
segmental, caudal, and total unilateral maxillectomy. While
intraoperative complications occur in 16.7% of cases, postoperative
complications are more common, with hyporexia and incisional
dehiscence affecting 20% of cats. Despite these challenges, survival
rates are promising, with a two-year survival rate of 83% for FOSCC
cases. Poor prognostic factors include a high mitotic index, the need
for adjuvant chemotherapy, and local recurrence, which significantly
impact survival (121).

Radical mandibulectomy is another aggressive surgical approach
for managing extensive FOSCC. The procedure involves removing 75
to 90% of the mandible, necessitating feeding tube placement in all
cases. While some cats experience local recurrence, others achieve
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long-term survival, with some living beyond 1 year. The mean
estimated survival time following mandibulectomy is 712 days.
Importantly, six out of eight cats were able to resume independent
food intake postoperatively. With appropriate perioperative supportive
care, radical mandibulectomy is a viable option for treating extensive
feline oral neoplasia and can result in prolonged survival for selected
patients (94).

Future directions should focus on minimizing surgical morbidity,
improving perioperative care, and integrating multimodal therapies
to address local recurrence and metastatic disease. Investigating less
invasive techniques or adjunct treatments to enhance surgical success
and quality of life is warranted.

6.4 Metabolic therapy

Metabolic therapy represents a clinically feasible and innovative
approach by targeting cancer-specific energy and nutrient metabolism.
MD-1 therapy disrupts glycolytic and mitochondrial metabolism,
particularly oxidative phosphorylation (OXPHOS), effectively killing
FOSCC cell lines and reducing tumor growth in both subcutaneous
and orthotopic models. These promising in vitro and in vivo findings
position MD-1 as a potential novel treatment for FOSCC and possibly
HNSCC (89).

Another metabolic strategy targets polyamine synthesis using
2-Difluoromethylornithine (DFMO), which lowers tumor polyamine
levels essential for proliferation. While DFMO monotherapy can
reduce tumors, notable toxicities such as ototoxicity and subclinical
thrombocytopenia present limitations that require further
optimization (122, 123). The combination of DFMO with MQT 1426
is feasible and safe, yielding modest clinical benefits like stable disease
or tumor regression; however, dosing adjustments are necessary to
reduce vestibular toxicity.

Although metabolic therapies show promise by exploiting tumor-
specific metabolic vulnerabilities, challenges remain regarding toxicity
and optimal dosing protocols. Future directions should involve
refining such metabolic interventions, integrating them with
conventional therapies, and expanding translational research to
improve outcomes for FOSCC and related human cancers.

6.5 Bisphosphonates

Bisphosphonates are useful for managing bone-invasive
FOSCC. They work by blocking osteoclastic bone resorption and
angiogenesis, which helps reduce pain. Zoledronate can slow tumor
growth and reduce bone damage. It lowers levels of serum VEGF and
C-terminal telopeptide (CTx), markers linked to tumor activity. When
given with meloxicam, zoledronate is well-tolerated. Meloxicam helps
slow tumor growth, while zoledronate prevents bone breakdown
(4, 124).

Pamidronate is another bisphosphonate that also blocks bone
resorption and blood vessel growth. A small study in eight cats with
bone-invasive cancers, including FOSCC, found pamidronate to
be safe and feasible. It showed modest benefits, like stabilizing the
disease in some cats. However, no direct tumor shrinkage was seen.
Still, pamidronate’s ability to inhibit tumor cells in lab tests and ease
bone-related symptoms supports further research (125).
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Bisphosphonates mainly offer palliative benefits rather than
curing the disease. More studies are needed to improve their use,
possibly combining them with other treatments. This could help
improve quality of life and clinical outcomes in cats with bone-
invasive FOSCC.

6.6 Emerging therapies

Emerging therapies, such as TKI, stem cell therapy and gene
therapy were used in FOSCC patience as alternative treatments.

Mastinib, a TKI, is effective at slowing cancer cell growth. This
approach targets important pathways and works in both cats and dogs
(126). Gene therapy using TBG-RNAi-fCK2aa’ is safe and shows
some signs of shrinking tumors (127). Both treatments appear feasible
and deserve further trials (126, 127). Toceranib, a TKI, offers modest
efficacy, extending median survival to 123 days compared to 45 days
in untreated cats, with a biological response rate of 56.5%. Improved
outcomes are noted when combined with NSAIDs, yet long-term
survival is still poor (128).

Stem cell therapy using feline umbilical cord MSCs can reduce
symptoms for a short time (128). However, the benefits are temporary,
and disease quickly worsens. Immunotherapy with lymphokine-
activated killer (LAK) cells is safe even in older cats, but it has not
been shown to extend survival or slow cancer (129).

All therapies have limited or inconsistent effects. Stem cell
treatment only relieves symptoms briefly without improving survival
(128). Immunotherapy is well tolerated but lacks proof of effectiveness
(129). Gene therapy needs better dosing and more reliable results
(127). The TKI data come from small studies and need stronger
evidence from larger trials (126).

More research with larger, prospective studies is needed.
Combining TKI with other treatments might improve results. Gene
therapy should be fine-tuned for dosing and timing. Immunotherapy
approaches must identify better targets and boost immune responses.
Using multiple therapies together could offer better tumor control and
longer survival. Developing biomarkers will help make treatments to
individual cats for better outcomes.

7 Future perspectives
7.1 New areas of interest

Research in FOSCC is advancing by focusing on several promising
areas. Tumor mutational burden (TMB), defined as the number of
somatic mutations per megabase in tumor DNA, is emerging as a
biomarker to predict response to immune checkpoint inhibitor
therapy. FOSCC shows a high TMB (>5.0), similar to HNSCC,
suggesting potential responsiveness to future immune checkpoint
therapies (83, 130).

Genomic studies have identified polyamine-related signatures
that influence tumor metabolism and the microenvironment,
offering new therapeutic targets (131). Additionally, EMT-related
genes such as SNAI1, TWIST1, ZEB1, ZEB2, and mesenchymal
markers FN1, VIM, and CDH2 are enriched in FOSCC and
contribute to metastasis (83). Although immune checkpoint
inhibitors like PD-L1 and CTLA-4 are not yet available for FOSCC
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treatment, they remain promising candidates for immunotherapy
trials (6, 66, 83-85). Metabolic targeting approaches, including dual
MCT1/MCT4 inhibitors and pathways regulated by hypoxia-
inducible factors such as HIF-1a, are being explored as potential
therapies (89).

The focus on molecular and metabolic factors, such as high TMB
and EMT gene expression, that highlight tumor vulnerabilities,
appears to be effective in the FOSCC research. These findings support
immune checkpoint inhibitors and metabolic targeting as promising
therapeutic strategies because they address key mechanisms driving
tumor growth and spread.

7.2 New therapeutic frontiers

FOSCC is an aggressive malignancy with poor prognosis and
novel treatment approaches are challenging. Recent advances are
related to innovative strategies enhancing therapeutic outcomes.

7.2.1 Electrochemotherapy (ECT)

Electrochemotherapy (ECT) has emerged as a promising localized
treatment for FOSCC. Studies have demonstrated its efficacy,
particularly in combination with bleomycin. One study reported an
81.8% complete response rate in superficial SCC lesions, with some
responses lasting over 3 years, highlighting its durability and
tolerability (132). Another study showed that ECT with bleomycin
significantly outperformed bleomycin alone, achieving an 89% overall
response rate and a median progression-free survival of 30.5 months,
compared to 3.9 months in the control group (133). These findings
underscore ECT’s potential for managing advanced SCC in critical
areas like the head.

7.2.2 Targeted molecular therapies

Targeted molecular therapies for FOSCC include EGFR-
targeted agents, telomerase inhibitors, nanobody-targeted
photodynamic therapy, and bone-targeted treatments, each
designed to interfere with specific pathways involved in tumor
growth and progression.

EGFR is a key driver in epithelial cancers due to its frequent
overexpression or mutation, which leads to persistent activation
of signaling pathways that promote tumor cell proliferation,
survival, invasion, and metastasis, making it a critical molecular
target for therapies such as TKI and monoclonal antibodies
(134-139).

Cetuximab, an anti-EGFR monoclonal antibody used as
therapeutic agent against HNSCC, has demonstrated efficacy in
FOSCC cell lines. It inhibits EGFR activation and downstream
signaling pathways such as Akt, reducing proliferation, promoting
apoptosis, and impairing invasion by downregulating matrix
metalloproteinases (MMP-2/-9) and EMT markers (82, 135). These
findings suggest that Cetuximab could be a valuable addition to feline
cancer therapy.

Gefitinib, an EGFR TKI, has been shown to suppress cell
proliferation and migration in FOSCC. Resistance to gefitinib can
occur, not due to mutations in its kinase domain. RNA interference
(RNAI) targeting EGFR has demonstrated potential in overcoming
this resistance and exhibits an additive effect when combined with

radiation therapy (140).
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7.2.3 Immunotherapy

The potential of immunotherapy in FOSCC treatment is being
explored, with particular focus on immune checkpoint inhibitors.
Nivolumab, an anti-PD-1 antibody approved for recurrent or
metastatic HNSCC in humans, has demonstrated significant survival
benefits over standard therapies. While its application in FOSCC is
under investigation, its success in human oncology suggests a
promising translational opportunity (141).

7.2.4 Chemotherapeutics

Several chemotherapeutic agents used for other cancers have
demonstrated efficacy against FOSCC. Methotrexate, actinomycin D,
and CDK inhibitors such as dinaciclib and flavopiridol have shown
strong anti-proliferative effects on FOSCC cell lines while sparing
normal fibroblasts. These agents induce apoptosis and alter cell cycle
progression, making them viable candidates for further clinical trials
in feline oncology (91, 142). Additionally, methotrexate’s established
efficacy in HNSCC supports its potential use in FOSCC (143). The
utilization of these agents in the human oncology field, accompanied
by their results in FOSCC cell lines, makes them promising targets in
FOSCC future therapy.

8 Conclusion

FOSCC remains the most common and aggressive oral malignancy
in cats, posing significant challenges for both diagnosis and treatment.
Its multifactorial etiology highlights the complexity of this disease and
the need for a holistic approach to both research and clinical
management. Despite advances in our understanding of the molecular
and cellular mechanisms of FOSCC, the prognosis for affected cats
remains poor, with median survival times rarely exceeding few months.

Recent research has revealed some promising opportunities for
improving the diagnosis, prognosis, and treatment of FOSCC. The
identification of key biomarkers, such as Ki-67, Cyclin D1, Bmi-1, and
EMT-related proteins, has improved our ability to diagnose and
prognosticate FOSCC, while studies on genetic mutations and
molecular pathways (including TP53, COX, STAT3, EGFR, and
VEGF) have provided valuable insights into tumor behavior and
potential therapeutic targets. New areas of interest, such as TMB and
immune checkpoint molecules, suggest that immunotherapy and
metabolic targeting may play a future role in treatment.

FOSCC is characterized by its rapid local invasion, and destructive
nature, often leading to severe oral discomfort and a marked decline
in quality of life. While surgical excision offers the best chance for
prolonged survival, it is rarely feasible due to the tumor’s location and
extent at diagnosis. Traditional therapies, including radiation and
chemotherapy, have shown limited efficacy, though novel protocols
and combination treatments show some promise.

Progress in the management of FOSCC will depend on early
detection, larger and better epidemiological studies, and applying
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