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N-carbamylglutamate
supplementation improves laying
performance of layers by
regulating
hypothalamic-pituitary-ovarian
axis

Xiao-Bing Peng', Qing-Yue Wang', Yan Zhang, Na Liu, Wei Ma
and Chun-Qiang Wang*

College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China

This study aimed to investigate the effects of dietary supplementation of
N-carbamylglutamate (NCG) on the laying performance of layers and explore
the underlying endocrine mechanism involving the hypothalamic-pituitary-ovarian
(HPO) axis. Ninety-six 12-week-old layers of the Zhuanghe Dagu breed were divided
into two groups: CON and TRT, with four replicates and 12 birds per replicate. The
experimental period lasted 24 weeks, during which the CON group received a basal
diet while the TRT group received a basal diet supplemented with 0.12% NCG. The
results showed that NCG supplementation in the diet resulted in an increase in the
egg production rate and an advancement in the timing of egg-laying compared
to the CON group. To gain insights into the underlying molecular mechanisms,
transcriptomics analysis was conducted on the hypothalamus, pituitary, and ovary.
Differential gene expression analysis identified 156 differentially expressed genes
(DEGS) in the hypothalamus, 208 DEGs in the pituitary, and 229 DEGs in the ovary.
Pathway analysis revealed that these DEGs were enriched in 2 pathways in the
hypothalamus, 8 pathways in the pituitary, and 9 pathways in the ovary, all of
which are related to reproduction. Of particular interest, the expression of specific
genes involved in the HPO axis, such as FSHB and GNRH1 in the hypothalamus,
DHH and GNRHR in the pituitary, and RSPO1, ZP3, GSTA3, C140rf39, HOXA10,
and /RX5 in the ovary, was significantly regulated by NCG supplementation. These
findings were further validated by quantitative real-time polymerase chain reaction,
which confirmed the expression profiles of the aforementioned genes observed
in the RNA-seq results. Overall, these findings provide valuable insights into the
endocrine mechanisms underlying the improvement of laying performance in
layers through NCG supplementation.
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1 Introduction

Eggs are a globally consumed high-quality protein source free
from religious restrictions. The egg production rate is one of the key
indicators for evaluating the performance of laying hens. Animal
nutritionists have long been working to develop strategies to improve
egg production efficiency, meeting the people’s growing demand for
high-quality eggs. Key parameters such as the age at first egg-laying,
egg production rate, and egg weight are of particular interest as they
have significant economic implications for poultry farming (1). From
a physiological perspective, the hypothalamic-pituitary-ovarian
(HPO) axis play crucial roles in processing signals and precisely
regulating reproductive activities in layers, the production of eggs is
directly regulated by it. (2, 3).

N-Carbamylglutamate (NCG) has been shown to effectively
stimulate the synthesis of endogenous arginine (4). When added to
the diet, NCG has been found to have numerous positive effects on
the growth and reproductive performance of birds (5). In a previous
study, it was observed that feeding roosters a diet supplemented with
NCG increased circulating levels of reproductive hormones and
enhanced the development of sexual organs (6). Furthermore, NCG
supplementation has been reported to promote follicle development
(7). In a recent study by Ma et al. (8), a transcriptomic analysis of the
uterus in layers revealed that NCG supplementation improves
production performance and enhances egg quality by regulating
uterine function.

In avian species, the HPO axis plays a central role in regulating
reproductive processes. Specifically, the hypothalamus secretes
gonadotropin-releasing hormone-I (GnRH-I), which stimulates the
pituitary gland (adenohypophysis) to release follicle-stimulating
hormone (FSH) and luteinizing hormone (LH). These hormones, in
turn, promote ovarian secretion of estradiol (E2) and progesterone
(P4), essential for ovulation. While previous studies have explored the
molecular mechanisms underlying hen egg-laying performance, the
differential gene expression and key signaling pathways governing this
process across the HPO axis remain poorly understood. To address
this gap, we investigated how dietary supplementation with NCG
modulates egg-laying performance via the HPO axis. Our study
combined phenotypic assessment of laying efficiency with
transcriptomic profiling of the hypothalamus, pituitary, and ovaries to
elucidate the regulatory mechanisms involved.

2 Materials and methods

The protocol of this study was proposed according to the ARRIVE
guidelines' for the reporting of animal experiments and was reviewed
and approved by Jinzhou Medical University Animal Care and Use

1 https://arriveguidelines.org/arrive-guidelines/experimental-animals

Abbreviations: NCG, N-carbamylglutamate; HPO, hypothalamic-pituitary-ovarian;
DEGs, differentially expressed genes; FCR, feed conversion ratio; ADFI, average
daily feed intake; KEGG, Kyoto Encyclopedia of Genes and Genomes; LH, luteinizing
hormone; FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing

hormone; ECM, extracellular matrix.
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Committee. All experimental procedures and methods were approved
by the Ethics Committee of Jinzhou Medical University and were
conducted in accordance with the relevant guidelines established by
the Ministry of Agriculture of the People’s Republic of China.

2.1 Experimental design

A total of 96 12-week-old Zhuanghe Dagu layers were utilized in
a 24-week feeding trial. The birds were randomly assigned to two
groups: CON and TRT, with each group consisting of 4 replicates, and
12 birds per replicate. The CON group received a basal diet, while the
TRT group received a basal diet supplemented with 0.12% NCG. The
basal diet was formulated based on Nutrient Requirements of Poultry
provided by the National Academic Press (9) and was provided in
mash form (Table 1). The NCG used in this study was obtained from
Anhui Pusheng Pharmaceutical Co. Ltd., a commercial company. The
dosage of NCG was determined based on our previous study
conducted by Ma et al. (8).

The layers were housed in a well-ventilated room with
programmable lighting and natural ventilation. They were reared in
adjacent steel cages equipped with nipple drinkers, common trough
feeders, and an egg collection plate. Throughout the experimental
period, the average room temperature was maintained at 23 °C. The
lighting program followed a schedule of 16 h of light and 8 h of
darkness. All layers had ad libitum access to feed and water.

TABLE 1 Composition and nutrient levels of the experimental basal diet,
(%, as-fed basis).

Ingredients, %

Corn 63.18
Soybean meal 25.60
Calcium bicarbonate 1.30
Limestone 8.70
NaCl 0.26
Baking soda 0.20
Vitamin and trace mineral premix’ 0.50
Methionine 0.23
Lysine 0.03
Total 100.00
Analyzed composition, %

Metabolizable energy, MJ/kg 11.03
Crude protein 16.50
Calcium 3.41
Phosphorus 0.32
Lysine 0.80
Methionine 0.51
Total sulfur amino acid 0.80
Tryptophan 0.18

'Provided per kg of complete diet: Cu 20 mg, Fe 70 mg, Zn 70 mg, Se 0.5 mg, Vitamin A
7,000 IU, Vitamin D; 2,500 IU, Vitamin E 30 mg, Vitamin K; 1 mg, Vitamin B1 1.5 mg,
Vitamin B2 4 mg, Vitamin B6 1.5 mg, Niacin 30 mg, folic acid 0.55 mg, D-pantothenic acid
10 mg, Vitamin B12 0.02 mg, biotin 0.16 mg, choline 400 mg.
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2.2 Sampling and measurements

2.2.1 Production performance

The day of starting egg-laying was determined as the first day
when at least 6 layers within a replicate began laying eggs (10).

From weeks 26 to 36 of age, the number and weight of eggs, as well
as the feed intake, were recorded on a daily basis for each replicate.
These data were used to calculate the average daily feed intake (ADFI)
and egg production rate. The feed conversion ratio (FCR) was
calculated by dividing the ADFI by the total egg weight.

On the final day of the study, all birds were euthanized via
intravenous injection of 1cc Euthasol. Tissue samples of the
hypothalamus, pituitary, and ovarian were then collected from the
carcasses, all the hypothalamus, pituitary labeled, and preserved in
liquid nitrogen for subsequent experiments; regarding ovarian tissue,
a random selection of 8 ovaries per group was used for follicle
classification and measurement, the remaining ovaries were properly
labeled and cryopreserved in liquid nitrogen for subsequent
experimental procedures.

Follicles were classified according to established morphological
and size-based criteria (11). The ovaries were placed in ice-cold
PBS. Visible follicles (>1 mm diameter) were gently separated from
stromal tissue using fine forceps under a stereomicroscope (Leica
M380, 10x magnification). Follicle classification followed established
standards: Small White Follicles (SWE 1-2 mm), Large White
Follicles (LWE 2-5 mm), Small Yellow Follicles (SYF, 5-8 mm), Large
Yellow Follicles (LYFE, 8-12 mm), and Hierarchical Follicles (>12 mm).

2.2.2 Transcriptomics analysis of tissues

In this study, 6 chickens were randomly selected in each group,
and their hypothalamus, pituitary, and ovary were collected for
study, approximately 0.2 g of hypothalamic, pituitary, and ovarian
tissue was collected and used for total RNA extraction using Trizol
reagent. The integrity of the RNA was assessed by agarose gel
electrophoresis, and its purity was evaluated using a Nanodrop 2000
spectrophotometer. The concentration of RNA was accurately
quantified using the Qubit 2.0 system, and RNA integrity was
assessed using the Agilent 2100 Bioanalyzer. For each sample, a
total of 3 pg of RNA was used as input material for RNA sample
preparations. Sequencing libraries were generated using the
NEBNext Ultra RNA Library Prep Kit for Illumina, following the
manufacturer’s instructions. Index codes were added to attribute
sequences to each sample. The quality of the libraries was assessed
using the Agilent Bioanalyzer 2100 system.

The libraries were sequenced using the Illumina HiSeq 2500
platform. Quality control of the reads was performed using custom
scripts. The raw data in Fastq format were processed using in-house
Perl scripts, which involved removing reads containing adapters,
poly-N sequences, and low-quality reads. Quality metrics such as Q20,
Q30, and GC content were calculated for the clean data. All subsequent
analyses were performed using the high-quality clean data. The
paired-end sequencing strategy with PE 150 was employed in this
study. The chicken genome sequence (version 90) was obtained from
the genome website.” The reference genome index was built using

2 https://mart.ensembl.org/Gallus_gallus/Info/index
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Hisat2 v2.0.5, and the paired-end clean reads were aligned to the
reference genome using Hisat2 v2.0.5. The gene expression level was
estimated using the fragments per kilobase of transcript per million
fragments mapped method. Differential expression analysis between
the groups was performed using the DESeq2 R package (version
1.16.1) based on the read count data. Functional annotation and
pathway enrichment analysis were conducted using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.> The
statistical enrichment of differentially expressed genes in KEGG
pathways was assessed using the ClusterProfiler R package.

2.2.3 gRT-PCR verification

To validate the transcriptome sequencing data obtained through
RNA-seq, the expression levels of specific genes, including FSHB,
GNRHI1, POSTN and SCNNIB in the hypothalamus, POSTN,
SCNN1B and GNRHR in the pituitary, and COL6A2, FN1 POSTN
and SCNNIB in the ovary, were measured using quantitative real-
time PCR. Total RNA was extracted from the tissue samples using a
total RNA reverse transcriptase kit (Takara, Dalian, China).
Subsequently, cDNA synthesis was performed. Real-time PCR was
conducted on an ABI 7500 Fast Real-Time PCR system using SYBR
premix Ex TaqTM II (Takara). The optimized cycling conditions
consisted of an initial denaturation step at 94 °C for 5 min, followed
by 45 cycles of denaturation at 94 °C for 15s, and annealing/
extension at 55 °C for 15 s. Each sample was tested in triplicate to
ensure the reliability of the results. The relative expression levels were
determined using the 274 method (12), with B-actin serving as the
internal control for data normalization. The primer sequences used
for amplifying the target genes were specifically designed based on
GenBank  database

the sequences available in the

(Supplementary Table S1).

2.3 Statistical analysis

The statistical analysis of the data was performed using SPSS
software (Version 21.0). An independent samples t-test was used to
compare the data between the two groups. Prior to conducting the
t-test, the normality of the data was assessed using the Shapiro-Wilk
test and Quantile-Quantile plots. The replicate was considered as the
experimental unit for analysis. A probability value (p-value) below
0.05 was considered statistically significant, indicating a significant
difference between the groups.

3 Results

3.1 Laying performance of layers as
affected by NCG supplementation

The findings of the present study are consistent with previous
reports by Ma et al. (7, 8, 13), which demonstrated that including

NCG in the diet of layers can lead to improvements in production
performance. Specifically, our results showed that layers fed with a diet

3 http://www.genome.jp/kegg/
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Effects of N-carbamylglutamate supplementation on production performance of layers. ADFI, average daily feed intake; FCR, feed conversion ratio.
CON was defined as layers fed with basal diet. NCG was defined as layers fed with basal diet supplemented with 0.12% N-carbamylglutamate.

ADFI, g/bird FCR

TABLE 2 Effects of dietary NCG supplementation on age at first egg and production performance.

Day of start Egg production

rate (%)

laying (d)

Egg weight (g) ADFI (g/bird)

CON 60.750 + 2.569"

173.74 £ 0.39*

57.725 £ 0.519° 129.750 + 1.707¢ 3.360 £ 0.115°

NCG 166.93 + 0.50° 68.182 + 1.089*

56.985 + 1.007¢ 123.00 + 1.660* 3.170 £ 0.168*

ADF], average daily feed intake; FCR, feed conversion ratio.

Values within a column bearing different superscript letters differ significantly (p < 0.05), whereas shared letters indicate no statistical significance.

CON was defined as layers fed with basal diet.
NCG was defined as layers fed with basal diet supplemented with 0.12% N-carbamylglutamate.

containing NCG exhibited a significant increase in egg production
rate (p <0.05) and an advancement in the timing of egg-laying
(p < 0.05). However, no significant effects were observed on egg
weight, ADFI, and FCR (Figure 1; Table 2).

3.2 Ovarian follicle classification and
measurement

Dietary supplementation with 0.12% NCG significantly
altered follicular hierarchy in Dagu hens compared to controls
(p < 0.05). NCG increased SYF count by 32.2% (11.5 vs. 15.2), LYF
by 33.3% (5.1 vs. 6.8), and Hierarchical Follicles by 30.2% (4.3 vs.
5.6). No significant differences occurred in SWF or LWF
(p > 0.05). This shift indicates enhanced transition from early-
stage (LWF) to developmentally critical follicles (SYF/LYF)
(Table 3).

3.3 Overview of RNA-seq as affected by
NCG supplementation

A total of 18 ¢cDNA libraries were constructed from the
hypothalamus-pituitary-Ovary of laying hens, and the raw reads of
each library is more than 47 million. After filtering to remove
low-quality and linker sequences, more than 46 million clean reads
remained. The average GC content in each group was approximately
50%. Moreover, the average percentages of Q20 and Q30 bases were
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higher than 98 and 94%, respectively, as shown in
Supplementary Table S2. These parameters strongly affirm the

reliability of the sequencing data obtained in this study.

3.4 ldentification of differentially expressed
genes as affected by NCG supplementation

The RNA-seq results for the 3 tissues revealed the following: in the
hypothalamus, a total of 156 DEGs in response to NCG
supplementation, among these DEGs, 79 genes were significantly
upregulated, while 77 genes were significantly downregulated
(p < 0.05), Interestingly, among the DEGs, 94 genes were identified as
novel genes (Supplementary Data Sheet 1), potentially representing
previously uncharacterized genes involved in the response to NCG
supplementation; in the pituitary, a total of 208 DEGs in response to
NCG supplementation, among these DEGs, 123 genes showed
significant upregulation, while 85 genes showed significant
downregulation in response to NCG supplementation (p < 0.05).
Furthermore, out of the identified DEGs, 122 genes were found to
be novel genes (Supplementary Data Sheet 2); in the Ovary, a total of
229 DEGs were identified, among these DEGs, 95 were significantly
upregulated and 134 were significantly downregulated by NCG
supplementation (p < 0.05). Furthermore, a total of 152 genes were
identified as novel genes (Supplementary Data Sheet 3) (Figure 2A).
The volcano plot of DEGs in hypothalamus, pituitary and Ovary is
shown in Figures 2B,C; The hierarchical clustering map of TPM
depicted the gene expression patterns in the hypothalamus, pituitary

frontiersin.org
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TABLE 3 Ovarian follicle population in control and NCG-supplemented Dagu hens.

Follicle class Small white Large white N EIRYZE Y Large yellow Hierarchical
follicles (1-2 mm)  follicles (2-5 mm) follicles (5-8 mm) follicles (8— follicles (>12 mm)
12 mm)

CON 283+ 1.52 20.6 + 1.1a 11.5+0.7b 5.1+0.4b 43+0.3b ‘

NCG 258 +1.2a 22.4+09a 152£0.9a 6.8 +0.52 5.6 +0.4a ‘
CON was defined as layers fed with basal diet.
NCG was defined as layers fed with basal diet supplemented with 0.12% N-carbamylglutamate.

A B D

€_vs_N.volcano

DEGS IN HPO AXES

FIGURE 2

ovarian (G).

€_vs_N.volcano

Distribution of DEGs. DEGs identified in 3 tissues (A). Volcano plot of differentially expressed genes in hypothalamic (B), pituitary (C), and ovarian (D);
Hierarchical clustering of DEGs in the hypothalamus (E), hierarchical clustering of DEGs in the pituitary (F), hierarchical clustering of DEGs in the

and Ovary between CON and TRT, which showed the reliability of the
genesets (Figures 2E-G).

To further explore the functional relevance of the DEGs,
we conducted screening using the GeneCards database. As
reproduction is of particular interest in this study, we focused on the
genes, which are known to be related to reproductive processes. In the
hypothalamus, NCG supplementation significantly upregulated the
expression of FSHB (p = 0.003), GNRHI (p = 0.049) and POSTN
(p=0.003), and significantly downregulated the expression of
SCNNIB (p = 0.017); In the pituitary, the expression of POSTN and
SCNNI1B were significantly upregulated by NCG supplementation
(p <0.001), and the expression of GNRHR (p =0.019), COL6A2
(p =0.004), ENI(p = 0.007)were also significantly upregulated, MMP
(p = 0.012) was downregulated; In the ovary, NCG supplementation
led to a significant upregulation in the expression of POSTN
(p=0.003), while the expression of SCNNI1B (p=0.008) was
significantly downregulated, as shown in Table 4. These findings

4  https://www.genecards.org/
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suggest that NCG supplementation may exert its effects on the HPO
axis, potentially influencing reproductive processes in layers.

3.5 Functional enrichment analysis of DEGs

To further elucidate the function of DEGs, we used GO
enrichment analysis to annotate DEGs and to study their distribution.
In the hypothalamus, GO functional enrichment is concentrated in
neuronal differentiation extracellular region part, immunoglobulin
complex, endonuclease activity. In the pituitary gland, it is
concentrated in the collagen containing extracellular matrix
extracellular matrix, DNA packaging complex, extracellular space,
extracellular region, cell adhesion, biological adhesion. In the ovaries,
it is concentrated in the regulation of ion transmembrane transport
regulation of ion transport, transmembrane transporter complex,
transporter complex, ion gated channel activity (Figures 3A-C).

To further identify the major biochemical, metabolic, and signal
transduction pathways of the DEGs, we performed a KEGG pathway
enrichment analysis. A total of 29, 17, and 22 KEGG pathways were
enriched in the hypothalamus, pituitary, and ovary, respectively

frontiersin.org
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TABLE 4 Differentially expressed genes involved in reproductive function from different tissues.

Gene symbol Description p value Log,FC Expression level

Hypothalamus

FSHB Follicle stimulating hormone beta 0.003 3.137 Up
subunit

GNRH1 Gonadotropin releasing hormone 1 0.049 1.064 Up

POSTN Periostin 0.003 1.676 Up

SCNNIB Sodium channel epithelial 1 beta subunit 0.017 —1.004 Down

Pituitary

GNRHR Gonadotropin-releasing hormone 0.019 1.357 Up
receptor

POSTN Periostin 0.007 1.555 Up

SCNNIB Sodium channel epithelial 1 beta subunit 0.002 1.207 Up

FN1 Fibronectin 1 0.007 1.031 Up

Ovary

POSTN Periostin 0.003 2.348 Up

SCNN1B Sodium channel epithelial 1 beta subunit 0.008 —1.234 Down

(Supplementary Data Sheets 4-6). In the hypothalamus, two
pathways, namely butanoate metabolism (p = 0.014) and calcium
signaling pathway (p = 0.034), showed significant enrichment, in the
pituitary, butanoate metabolism (p =0.009), ECM-receptor
interaction (p = 0.001), PI3K-Akt signaling pathway (p = 0.018), taste
transduction (p = 0.039), the prolactin signaling pathway (p = 0.046),
neuroactive ligand-receptor interaction (p = 0.031), GnRH secretion
(p = 0.034), the notch signaling pathway (p = 0.037), and the hedgehog
signaling pathway (p = 0.026), showed significant enrichment; in the
ovary, alpha-Linolenic acid metabolism (p = 0.013), ECM-receptor
interaction (p = 0.010), thyroid hormone synthesis (p = 0.024), linoleic
acid metabolism (p = 0.023), retrograde endocannabinoid signaling
(p=0.034), steroid biosynthesis (p=0.039), insulin secretion
(p = 0.039), taste transduction (p = 0.005), and neuroactive ligand-
receptor interaction (p = 0.003), showed significant enrichment. These
findings suggest that these pathways are potentially involved in the
molecular processes and signaling networks associated with 3 tissue
function (Table 5; Figure 4).

3.6 gRT-PCR validation

To validate the accuracy of the RNA-seq results, 7 DEGs were
selected for qRT-PCR. genes FSHB, GNRHI, POSTN, SCNNIB,
GNRHR, COL6A2 and FNI were included. Taking b-actin and
GAPDH as reference genes, the expression levels of the genes were
consistent with the RNA-seq results (Figure 5).

4 Discussion

The time of starting egg-laying in layers is closely linked to the
degree of maturation of their sexual organs, as highlighted by Shi et al.
(14). Early maturation of sexual organs indicates the initiation of the
animals’ productive phase, and an earlier onset of maturation is
associated with higher overall production potential. In the case of layers,
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the advancement of starting egg-laying reflects the precocity of their
sexual organs. Previous studies have demonstrated that the
supplementation of NCG can enhance the maturation of sexual organs
in birds. For instance, Ma et al. (6) fed roosters with a diet containing
NCG and observed improvements in parameters related to seminiferous
tubules, as well as increased levels of serum gonadotropin-releasing
hormone and testosterone, along with the development of secondary
sexual characteristics. Furthermore, a transcriptomics analysis conducted
on the testicles of these roosters revealed the regulation of genes involved
in gonadal function maintenance, steroid hormone biosynthesis, and
metabolism under NCG supplementation. Additionally, Ma et al. (8)
reported that NCG supplementation upregulated the expression of genes
associated with vitamin A metabolism, nutrient transport, protein
synthesis, and calcium transport in the ovaries of layers, resulting in
increased egg production rate and improved egg quality. Therefore, the
advancement of starting egg-laying observed with NCG supplementation
may be attributed to its ability to promote the development of
sexual organs.

Notably, yellow follicles constitute the fundamental basis of
egg-laying potential, with both their quantity and quality exerting
direct effects on reproductive performance, as highlighted by Brady
et al. (15, 16). Previous research has demonstrated that the
supplementation of NCG can promote the development of ovarian
follicles by enhancing angiogenesis in the ovaries of layers, as
reported by Ma et al. (13). Avian egg production is determined by
both the number of follicles available for ovulation and the oviduct’s
capacity to transform oocytes into hard-shelled eggs. In addition to
environmental and metabolic factors, follicular growth and
development are regulated by a complex interplay of endocrine,
paracrine, and autocrine factors, including gonadotropins, sex steroid
hormones, and growth factors. In poultry, reproductive endocrine
activity and ovarian function are tightly controlled by the HPO axis
(17). The hypothalamus regulates reproduction by releasing
neurohormones to the pituitary gland. In response, the pituitary
synthesizes and secretes gonadotropins that act on the gonads,
stimulating both gonadal development (spermatogenesis and
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biological processes (BP), cellular components (CC), and molecular functions (MF).
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oogenesis) and the secretion of gonadal steroid hormones. Within the
ovary, granulosa cells serve as the primary site of estrogen production
while also providing endocrine signals to other tissues. These ovarian
cells support oocyte growth and development, preparing for the LH
surge that triggers the physiological cascade of ovulation. This
process involves promoting meiosis, steroidogenesis, follicular
development, cumulus cell expansion, luteinization, and progesterone
19).
Therefore, the observed increase in SYF, LYF and egg production rate

production, ultimately leading to oocyte maturation (18,

in this study may be attributed to NCG’s regulatory effects on
follicular development through the HPO axis.

Furthermore, egg weight is an important economic parameter
that influences consumer acceptance of eggs. Additionally, the
FCR is a measure of nutrient absorption efficiency, and a lower
FCR indicates improved production performance (1). However, in
the current study, NCG supplementation did not have a significant
effect on egg weight or FCR. This suggests that the improvement
in laying performance observed with NCG supplementation may
not be attributed to enhanced nutrient absorption. Other
mechanisms, such as the regulation of reproductive hormones,
ovarian follicle development, or other physiological processes,
may be involved in the observed improvement in laying
performance in layers. Further research is needed to elucidate the
underlying mechanisms of NCG supplementation on egg
production and performance in layers.
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Based on the findings of this study, it is evident that NCG
supplementation positively impacts the laying performance of layers.
Since the reproductive performance of layers is regulated by the HPO
axis, it is crucial to investigate the specific effects of NCG supplementation
on this axis. To gain further insights into the endocrine mechanisms
underlying the improvement in laying performance induced by NCG
supplementation, a comprehensive transcriptomics analysis was
conducted on the hypothalamus, pituitary, and ovary. This analysis
aimed to uncover the molecular and genetic changes associated with
NCG supplementation and shed light on the specific pathways and genes
involved in regulating the laying performance of layers.

As reproduction is of particular interest in this study,
we focused on the differentially expressed genes FSHB and
GNRH Iin the hypothalamus, GnRHR in the pituitary, and POSTN
and SCNNIB, which are known to be in the
reproductive process.

FSHB, which encodes the beta subunit of follicle-stimulating
hormone (FSH), plays a pivotal role in ovarian follicle production
(20). FSH, secreted by the pituitary gland and regulated by the
hypothalamus, consists of an alpha subunit and the hormone-specific

involved

beta subunit.’> Abnormal expression of FSHB has been linked to

5 https://en.wikipedia.org/wiki/FSHB
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TABLE 5 Functional annotation of differentially expressed genes by KEGG database for different tissues.

Tissues Pathway ID Description p value Enriched genes (part)
map00650 Butanoate metabolism 0.014 Metazoa_SRP
Hypothalamus
map04020 Calcium signaling pathway 0.034 P2RX4
map00650 Butanoate metabolism 0.009 Metazoa_SRP
COL6A2
map04151 PI3K-Akt signaling pathway 0.018
EN1
GABRAS
map04742 Taste transduction 0.039
HTRIB
04917 Prol 1 h 0.046 Pl
ma rolactin signaling pathwa .
p ) g P y SOCS3
Hypophysis
GABRA5
map04080 Neuroactive ligand-receptor interaction 0.031
P2RYS8
KCNN1
map04929 GnRH secretion 0.034
TRPC5
map04330 Notch signaling pathway 0.037 HES5
04340 Hedgeh 1 h 0.026 pHH
maj edgehog signaling pathwa .
p gehog sig g P Y HHIP
map00592 alpha-Linolenic acid metabolism 0.013 PLA2G4F
COL9A2
map04512 ECM-receptor interaction 0.009
EN1
TTR
map04918 Thyroid hormone synthesis 0.024
TPO
map00591 Linoleic acid metabolism 0.023 PLA2G4F
GABRA3
map04723 Retrograde endocannabinoid signaling 0.034
CACNAIB
Ovary
DHCR7
map00100 Steroid biosynthesis 0.039
CYP24A1
GCG
map04911 Insulin secretion 0.039
STXIA
SSTR3
map04080 Neuroactive ligand-receptor interaction 0.003
GLRB
SCNNIB
map04742 Taste transduction 0.005
GABRA3

hypogonadism, a condition characterized by impaired reproductive
function (21). FSHB is widely recognized as a key gene involved in
stimulating folliculogenesis (22). Studies comparing the sequences of
genes related to follicular development in different goat breeds have
identified variations in the amino acid sequences of FSHB, suggesting
its potential role in determining reproductive capacity (23). In
zebrafish, knockout experiments targeting FSHB have demonstrated
that it is crucial for ovary growth and the activation of follicles, as its
suppression resulted in inhibited ovary growth and complete blockade
of follicle activation (24, 25).

The GNRHI gene encodes a family of gonadotropin-releasing
hormone peptides, including gonadoliberin-1 and GnRH-associated
peptide 1, which play important roles in reproductive processes.
Gonadoliberin-1 specifically stimulates the release of luteinizing
hormone (LH) and FSH, crucial hormones involved in reproduction.
Abnormal expression of GNRH1 has been linked to hypogonadism, a
condition characterized by impaired reproductive function (26). Due
to its relevance to fertility, GNRH1 is frequently examined in animal
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experiments (27, 28). In a study by Fan et al. (29) involving female
Bama miniature pigs, supplementation with estradiol valerate resulted
in an increase in the age of puberty and a decrease in estrus ratio.
These changes were associated with the downregulation of the GNRH1
gene in the hypothalamus.

The GNRHR gene encodes the receptor for type 1
gonadotropin-releasing hormone (GnRH). Upon binding of
GnRH, the receptor interacts with G-proteins, leading to the
activation of a phosphatidylinositol-calcium second messenger
system. This activation ultimately results in the release of LH and
FSH, key hormones involved in reproductive processes. Abnormal
expression of GNRHR has been identified as a cause of
hypogonadotropic hypogonadism, a condition characterized by
reduced gonadal functio (30). A specific case study reported
homozygous partial loss-of-function mutations in the GNRHR
gene associated with constitutional delay of growth and puberty
(31). Additionally, Lovell et al. (32) observed an increase in
pituitary mRNA levels of GNRHR during the preovulatory surge
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KEGG pathway enrichment analysis. Pathway enrichment analysis of differentially expressed genes (DEGs) in hypothalamic (A), pituitary (B), and ovarian
(C). The x-axis represents rich factor (rich factor = number of DEGs enriched in the pathway/number of all genes in the background gene set). The
y-axis represents the enriched pathway. Color represents enrichment significance, and the size of the bubble represents the number of DEGs enriched
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FIGURE 5
Comparison gene expression between gRT-PCR and RNA-seq. The
data represent the logarithm of the gene expression level in the TRT
group compared to its expression level in the CON group. Values
represent the means of 5 replicates per group (n = 5).

in layers, indicating its involvement in the regulation of
reproductive processes. The upregulation of GNRHR expression in
the pituitary following NCG supplementation in this study suggests
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a potential mechanism for the improvement in reproductive
performance observed in layers.

The HPO axis is the core neuroendocrine system that regulates
the reproductive function of poultry, and POSTN (periodin) and
SCNNIB (epithelial sodium channel g subunit) as common
differentially expressed genes in this axis may affect the reproductive
performance of chickens through multi tissue synergy.

POSTN (Periostin) gene encodes an extracellular matrix protein,
which belongs to the osteoblast specific factor 2 (OSF-2) (33), family
and plays an important role in tissue development, damage repair and
reproductive regulation. High levels of Periostin have been detected
in human ovaries (34). The protein functions as a ligand for AVB 3
and AVB 5 integrins to support the adhesion and migration of ovarian
epithelial cells (35), In chicken, the postn gene consists of 23 exons
and encodes a polypeptide of 841 amino acids (36), Previous studies
have demonstrated that in mesenchymal cells undergoing
differentiation, the expression of postn is significantly increased in
response to the growth factor signaling of bone morphogenetic
protein 2/4 (BMP 2/4) and transforming growth factor B (TGF-b)
(37), BMP 2/4 and tgf-p genes are both involved in the development
of hen ovary (36, 38, 39), and there are research results supporting the
postn gene the polymorphisms were associated with egg production
and egg weight or body weight (40). The upregulation of POSTN
expression observed in the HPO axis in response to NCG
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supplementation in this study suggests that NCG may have a positive
impact on the regulation of gonadal development and function.

SCNNI1B gene (full name: sodium channel epithelial 1 beta
subunit), which encodes an important component of epithelial
sodium channel (ENaC), is involved in regulating intracellular
and extracellular sodium ion balance, fluid homeostasis and
transmembrane signaling (41, 42), Previous studies have shown
that scnnla, scnnlb, and scnnlg are highly expressed in the uterus
during eggshell formation (43, 44), While scnnlg expression
increased rapidly during the eggshell formation stage. Genes that
are highly specifically expressed in specific tissues may contribute
to their development and function (45). Genetic studies have
shown that the scnnl gene family has tissue-specific expression
and is significantly correlated with eggshell traits and age at the
start of production (46), In this study, scnnlb gene was
significantly expressed in three tissues of HPO axis, and the
previous research results of the research group showed that the
age at the beginning of production and eggshell strength of NCG
supplemented group were better than those of the control group
(47), It shows that the addition of NCG can regulate the expression
of scnnl gene family of HPO axis and positively regulate the
laying performance of laying hens.

The functional annotation of DEGs in three tissues using the
KEGG database revealed, the butyric acid metabolism pathway is
significantly enriched in the hypothalamus and pituitary gland,
the ECM receptor interaction pathway is significantly enriched in
the pituitary gland and ovary, and the taste transduction pathway
is significantly enriched in the hypothalamus and ovary, These
pathways may play important roles in the regulatory mechanisms
influenced by NCG supplementation in the HPO axis.

The involvement of butanoate metabolism pathway in the
regulation of reproductive processes has been observed in
previous studies. For instance, the production of butyrate, a
metabolite generated during butanoate metabolism, has been
shown to induce the acetylation of histone H3K9, leading to the
activation of steroidogenesis in ovarian granulosa cells. This
activation occurs through the involvement of pathways such as
PPARy and PGCla (48).

Furthermore, Zhang et al. (49) conducted an RNA-seq analysis
to investigate the variation of DEGs in the hypothalamus between
polytocous and monotocous sheep during the luteal phase. They
discovered that DEGs from the hypothalamus of polytocous sheep
were significantly enriched in the butanoate metabolism pathway.
These findings suggest the potential involvement of butanoate
metabolism in the regulation of reproductive processes and its
relevance to the observed effects of NCG supplementation on the
hypothalamus and pituitary in the present study.

The extracellular matrix (ECM) plays a pivotal role in regulating
various cellular processes essential for follicle growth and oocyte
maturation. It exerts both promoting and inhibitory effects on
cellular activities, including proliferation, differentiation, and
survival. Proteins encoded by ECM genes have been found to have
a significant impact on the morphology, survival, proliferation, and
steroidogenesis of granulosa cells, follicles, and whole ovaries in
culture, as demonstrated by Berkholtz et al. (50). Their study
elucidated the influence of these ECM proteins on the cellular
dynamics within the ovary, highlighting their crucial involvement
in ovarian function. The ECM provides structural support and
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organization to ovarian follicles, contributing to the regulation of
within  the
microenvironment. By modulating cellular processes, the ECM

cellular behavior and interactions ovarian
plays a vital role in the proper development and maturation of
follicles and oocytes.

Taste receptors, which are commonly associated with the
perception of flavors, have been found to be expressed in various
sexual organ (51). However, our understanding of the effects of taste
transduction on reproduction is still limited. A recent study by
Semplici et al. (52) shed light on the potential role of bitter taste
receptors in the female reproductive system. Their findings indicated
that the activation of taste receptors was associated with improved
fertility. These results suggest a possible link between taste
transduction and reproductive processes, highlighting the need for

further research in this area.

5 Conclusion

In summary, our findings provide compelling evidence that
NCG modulates laying performance in hens by regulating key
genes (including FSHB, GNRHR, and RSPO1) within the HPO
axis, offering new insights into its beneficial effects on follicular
development and egg production efficiency. Building upon these
discoveries, future research should focus on: optimizing NCG
dosage regimens and administration protocols to establish
precision nutritional strategies; employing multi-omics
approaches to elucidate the critical signaling pathways through
which NCG regulates the reproductive axis; and identifying novel
molecular targets for poultry breeding programs. These
advancements will provide both theoretical foundations and
technical support for developing innovative feed additives and
implementing sustainable,

high-efficiency poultry

production systems.
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