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Introduction: Bile acid (BA) metabolism by gut microbiota plays a crucial role in
host health by influencing nutrientabsorption, immune responses, and resistance
to pathogens. Elucidating how enteric infections disrupt the BA-microbiota axis
is crucial for advancing microbiota-based therapeutics, precision nutrition, and
post-antibiotic disease control strategies.

Methods: We reconstructed 9,990 high-quality microbial genomes from the
gut microbiota of chicken and performed genome-resolved metabolic profiling.
Comparative analyses were conducted across host species, including humans
and pigs. Also, 135 intestinal samples collected from different regions of the
chicken gut were analyzed. Additional samples from chickens infected with
Salmonella typhimurium and Eimeria tenella were included to assess infection-
associated alterations.

Results: Our results reveal that the phylum Bacillota_A is predominant,
with key BA-transforming enzymes, including bile salt hydrolase (BSH)
and 7a-hydroxysteroid dehydrogenase (7a-HSDH), present in a substantial
proportion of the genomes. Chickens harbored a higher proportion of BSH genes
compared to humans and pigs, with Ligilactobacillus and Alistipes identified
as major contributors. Region-specific analysis showed that BA-metabolizing
microbes are unevenly distributed along the intestinal tract, with the highest
diversity observed in the cecum and colon. Experimental pathogen challenges
revealed that S. typhimurium infection altered BSH gene abundance and
overall microbial community structure, whereas E. tenella infection increased
taxonomic richness but reduced community evenness.

Discussion: Together, these findings advance our understanding of microbial
contributions to BA dynamics in poultry and offer insights into the role of BA
metabolism in gut health and pathogen resistance.
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1 Introduction

Bile acids (BAs) are key regulators of gastrointestinal physiology.
Synthesized from cholesterol in the liver and secreted into the small
intestine, they facilitate lipid digestion, nutrient absorption and
metabolic signaling (1, 2). Beyond these host-mediated roles, BAs also
act as potent ecological agents in the gut, exerting antimicrobial
pressure that shapes microbial community structure and function
(3-5). In response, gut microbes have evolved enzymatic strategies to
transform BAs, beginning with bile salt hydrolase (BSH)-mediated
deconjugation and extending to more complex conversions such as
oxidation and 7o/f-dehydroxylation. These transformations are
catalyzed by enzymes including 7a-hydroxysteroid dehydrogenase
(7a-HSDH) and bile acid-CoA ligase (baiB) (3, 4, 6).

These microbial transformations alter BA structure, toxicity, and
receptor-mediated signaling, thereby influencing host physiology,
immune responses, pathogen resistance and metabolic health (7-9).
In mammals, particularly humans and pigs, BA transformation
pathways are increasingly recognized as central to gut homeostasis,
with implications for conditions such as inflammatory bowel disease
and metabolic syndrome (10, 67). In contrast, despite the economic
and scientific importance of poultry and growing interest in their gut
microbiota (1 1-15), the mechanistic understanding of BA-microbiota
interactions in birds remains limited. This disparity highlights a
critical knowledge gap in avian gut biology.

The chicken (Gallus gallus domesticus) serves as both a cornerstone
of global protein production and a valuable model for gut microbiome
research. Its distinctive gastrointestinal anatomy, including rapid
digesta transit (16) and paired ceca, create a unique ecological niche
for microbial colonization and metabolic specialization. However, the
diversity, distribution, and functional capacity of BA-transforming
microbes in chickens, particularly at the genome-resolved level,
remain poorly characterized. This limits efforts to harness the gut
microbiota for improved nutrient utilization, growth performance and
disease resistance. Interestingly, BA metabolism plays a crucial role in
shaping poultry health (17), with BAs modulating both innate and
adaptive immune responses via interaction with immune cells and
cytokines (18). Disruptions in BA signaling may therefore impair host
immunity and increase susceptibility to disease.

Among the most significant health challenges in poultry are
salmonellosis and coccidiosis. Salmonellosis remains a leading cause
of both acute and chronic systemic infections, resulting in major
economic losses to the poultry industry (19, 20). Coccidiosis,
traditionally managed using anticoccidial drugs, is becoming harder
to control due to rising drug resistance, driving interest in alternatives
such as medicinal plants (21-25). Infections caused by enteric
pathogens such as Salmonella typhimurium and Eimeria tenella can
disrupt gut microbial communities and alter BA composition and
availability, impairing digestion, immune signaling, and colonization
resistance (18, 26-28). Understanding how such infections perturb the
BA-microbiota axis is critical for developing next-generation
interventions, including microbiota-based therapies, precision
nutrition and post-antibiotic disease control strategies.

In this study, we present the most comprehensive genome-
resolved metagenomic analysis of the chicken gut microbiota to date.
By reconstructing and analyzing nearly 10,000 high-quality genomes,
we systematically characterized the taxonomic and functional
repertoire of BA-metabolizing microorganisms in the chicken
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intestine. We examined region-specific patterns of BA metabolism
along the intestinal tract, compared host-specific BA pathways across
chickens, humans, and pigs, and evaluated how common poultry
infections, such as S. typhimurium and E. tenella, affect the
BA-transforming potential of the gut microbiome. Our findings offer
new insights into the microbial ecology of BA metabolism in chickens
and identify key taxa and pathways linked to both health and disease.
This work establishes a foundation for microbiome-informed
strategies aimed at improving poultry resilience, productivity, and
welfare in the context of reduced antibiotic use and rising global
food demand.

2 Materials and methods
2.1 Data collection

We utilized 25,827 microbial genomes previously collected in our
laboratory from an in-house microbial genome database (29).
Additionally, 135 intestinal samples were obtained from multiple
anatomical regions of the chicken gut, including the duodenum,
jejunum, ileum, cecum, and colorectum (30, 66). To test the hypothesis
that enteric infections can disrupt the gut microbial community and
impair BA metabolism, we collected 10 samples from chickens
infected by S. typhimurium (31) and 8 samples from chickens infected
by E. tenella (32) (Supplementary Table 1).

2.2 Preprocessing and bioinformatic
analysis

To ensure high-quality sequencing data, raw reads from the
samples underwent quality control using fastp (33) (v0.23.0) with the
parameters: -q 20 -u 30 -n 5 -y -Y 30 -1 80 --trim_poly_g. Host-derived
sequences were removed by aligning the reads to the chicken reference
genome (NCBI RefSeq assembly: GCF_016699485.2) using Bowtie2
(34) (v2.5.0). Clean reads were retained for downstream analyses. The
25,827 genomes, including metagenome-assembled genomes (MAGs)
and cultured isolates, were evaluated for completeness and
contamination using CheckM2 (35) (v1.0.1). Genomes with >80%
completeness and <5% contamination were classified as high quality.
Strain-level dereplication was performed with dRep (36) (v3.4.3) at
99% average nucleotide identity (ANI), using the parameters: -pa 0.9
-sa 0.99 -nc 0.30 -cm larger --S_algorithm fastANI. Taxonomic
classification was conducted using the classify_wf workflow in
GTDB-Tk (37) (v2.3.2) with the GTDB reference database.

2.3 Functional analysis of BA-related
microbial genes

Open reading frames (ORFs) were predicted from the dereplicated
genomes using Prodigal (38) (v2.6.3). Functional annotation was
performed by aligning the predicted protein sequences to the KEGG
database using DIAMOND (39) (v2.1.8), selecting the top hit based
on the highest bit score. KEGG Orthologs (KOs) involved in
secondary BA biosynthesis (KEGG pathway: map00121) were
extracted for targeted analysis. Gene copy numbers and their genomic
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origins were determined from the KO annotations. To quantify gene
abundance, high-quality reads (20 million per sample) were mapped
to the nonredundant microbial gene catalog using Bowtie2. The read
counts were normalized to transcripts per kilobase million (TPM) by
accounting for both gene length and sequencing depth following the
standard procedure (40, 41).

2.4 Statistical analyses and visualization

All statistical analyses were performed in R (v4.2.2). Rarefaction
curves were generated using the vegan package (v2.6-4). Diversity
indices, including Shannon, Richness, and Simpson, were calculated
based on both taxonomic and functional gene abundance data.
p-diversity was evaluated via Principal Coordinate Analysis (PCoA)
using Bray-Curtis distance. Group differences were evaluated using
permutational multivariate analysis of variance (PERMANOVA). The
Wilcoxon rank-sum test was used to determine significant differences
in diversity indices and the relative abundance of taxa and functional
genes across groups. p-values for pairwise taxonomic comparisons
were adjusted for multiple testing using the false discovery rate (FDR)
method implemented in R with p.adjust (p, method = “fdr”). Sankey
plots were generated with the ggsankey package (v0.0.9), and all other
visualizations were produced using ggplot2 (v4.2.3) (42).

3 Results

3.1 Genomes involved in BA transformation
pathways in the chicken intestine

To establish a comprehensive genomic profile of the chicken gut
microbiota, a total of 25,827 genomes were initially retrieved. After
quality filtering (>80% completeness and <5% contamination), 12,908
genomes were retained. Dereplication at a 99% ANI threshold yielded
9,990 non-redundant, high-quality genomes for downstream analysis
(Figure 1A). These genomes ranged in size from 0.50 to 7.29 Mbp
(average: 2.23 Mbp), with GC content between 23.71 and 73.55%
(average: 50.29%) (Figure 1B). Mean completeness was 90.92% and
1.48%
Supplementary Table 2). Taxonomic classification revealed that these

mean  contamination  was (Figure  1C  and
genomes spanned 23 phyla, 192 families, and 708 genera. The most
dominant phylum was Bacillota_A (39.62%, n = 3,958), followed by
Bacteroidota (18.24%, n = 1,822) and Bacillota (12.59%, n = 1,258).
According to the Genome Taxonomy Database (GTDB), Bacillota and
Bacillota_A are distinct but phylogenetically related phylum-level
lineages. The “_A” suffix is used by GTDB to denote a separate clade
that was split from the original Bacillota to preserve monophyly based
on genome-wide phylogenetic analysis. At the family level,
Lachnospiraceae (10.88%, n =1,087), Ruminococcaceae (6.71%,
n = 670), and Lactobacillaceae (6.56%, n = 655) were most prevalent.
The leading genera included Ligilactobacillus (2.72%, n=272),
Alistipes (2.28%, n = 228), and Limosilactobacillus (2.28%, n = 228)
(Figure 1D and Supplementary Table 2). The broad range of genome
sizes and GC content supports the presence of both fast-growing
low-GC organisms and more genetically stable high-GC taxa. This
diversity serves as a foundation for the metabolic specialization
observed in BA transformation pathways.
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3.2 Role of genomes in BA metabolism in
the chicken intestine

Among the 9,990 genomes, 8,009 (80.17%) were annotated as
carrying genes involved in BA transformation pathways, including
deconjugation, oxidation and dehydroxylation (Figure 2A and
Supplementary Table 3). Specifically, 4,186 genomes encoded BSH, the
enzyme responsible for bile salt deconjugation. These BSH-carrying
genomes were distributed across 12 phyla, with Bacteroidota
(n =1,667), Bacillota_A (n = 1,223), and Bacillota (n = 717) being the
most abundant (Figure 2B). At the family level, Lachnospiraceae
(n =575), Bacteroidaceae (n = 513), and Lactobacillaceae (n = 463)
predominated. Genus-level analysis identified Ligilactobacillus
(n=238) and Alistipes (n=222) as key
(Supplementary Table 3). In contrast, fewer genomes encoded

contributors

enzymes involved in downstream BA transformations. Only nine
phyla harbored 7a-HSDH, which catalyzes hydroxyl oxidation. These
included Campylobacterota (n = 260), Bacillota_A (n =151), and
Pseudomonadota (n = 121) (Figure 2C). Additionally, baiB, involved
in 7o/ f-dehydroxylation, was detected in only three phyla: Bacillota_A
(n=25), Actinomycetota (n=9), and Pseudomonadota (n=1)
(Figure 2D). These findings indicate that while deconjugation is
widespread across the chicken gut microbiota, the capacity for
complete secondary BA modification is restricted to a relatively
narrow set of taxa.

3.3 Host-specificity of BA-metabolizing
microorganisms in chicken

To assess host-specific differences in BA-metabolizing microbiota,
we compared the 9,990 high-quality chicken intestinal genomes to
publicly available humans [2,294 MAGs; (43)] and pigs [1,411 MAGs,
(44)]. Functional annotation revealed 3,499 BA-related KOs in 1,741
MAGs and 2229 KOs in 1,162 pig MAGs
(Supplementary Table 4). Chickens exhibited the highest proportion
of BSH gene-related genes but the lowest proportion of baiA (K22605)
genes (Figure 3A). Across all three hosts, Bacillota_A was the

human

dominant BA-metabolizing phylum, comprising 49.63% of human,
63.68% of pig, and 44.64% of chicken genomes (Figure 3B). BSH genes
were widely distributed, present in 40.95% of human and 35.46% of
pig MAGs (Supplementary Table 4). At the family level,
Coriobacteriaceae was most abundant among BA metabolizers in
humans, while Lachnospiraceae dominated in pigs (Figures 3C,D). In
chickens, BSH gene-carrying genera such as Ligilactobacillus,
Parabacteroides, Phocaeicola, Alistipes, and Cryptobacteroides were
more prevalent compared to the human and pig datasets (Figure 3E).

3.4 Region-specific BA-metabolizing
potential along the chicken intestine

Microbial diversity and BA-metabolizing potential were analyzed
across five intestinal regions: duodenum, jejunum, ileum, cecum, and
colon. Rarefaction analysis confirmed sufficient sequencing depth
(Figure 4A). Alpha diversity (Shannon and richness indices) revealed
significantly lower microbial diversity in the small intestine compared
to the cecum and colon (p<0.05, Wilcoxon rank-sum test;
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FIGURE 1
Genomic overview of microbial communities analyzed. (A) Workflow illustrating the genome identification, quality control, and dereplication steps.
(B,C) Genomic characteristics of the final 9,990 high-quality genomes, including genome size, GC content, completeness and contamination.
(D) Taxonomic composition of genomes predicted to participate in BA transformation pathways. Each rectangle represents a taxonomic rank, with its
length proportional to the number of genomes assigned to that category.

Figures 4B,C). PCoA based on Bray-Curtis distances showed distinct
microbial community structures across regions (R*=0.2031,
p<0.001; Figure 4D), supported by PERMANOVA results
(Supplementary Figure 1A).

At the phylum level, Bacillota and Bacillota_A were dominant
across the intestinal tract. Bacillota was significantly more abundant
in the cecum and colon, while Bacillota_A was enriched in the
intestine (p < 0.05;
Figures 1C,D). Bacteroidota also showed higher relative abundance

small Figure 4E and Supplementary

in the large intestine (p < 0.05; Supplementary Figure 1E). Genus-
level analysis revealed reduced abundances of Ligilactobacillus,
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Limosilactobacillus, and Lactobacillus in the cecum and
colon (p<0.001 and p<0.05,
Figures 1F-H).

The potential for BA metabolism, assessed by the richness and

respectively; Supplementary

Shannon diversity of BA-related genes, varied substantially along the
intestinal tract (Supplementary Figures 2A-C). Shannon diversity was
highest in the cecum, and colon, whereas the duodenum exhibited the
lowest diversity. A similar trend was observed for gene richness, with
the ileum harboring the highest number of BA-metabolizing genes
and the duodenum again showing the lowest. These findings suggest
that BA-transforming potential is regionally specialized, with limited
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FIGURE 2
BA transformation potential across 8,009 genomes. (A) Taxonomic distribution of genomes carrying BA transformation genes. Taxonomic levels are
shown as rectangles, with lengths proportional to the number of genomes assigned to each category. (B—D) Proportions of genomes encoding key
enzymes involved in BA metabolism: (B) Bile Salt Hydrolase (BSH), (C) 7a-hydroxysteroid dehydrogenase (7a-HSDH), and (D) bile acid-CoA ligase
(baiB).

activity in the proximal small intestine and enhanced metabolic
capacity in the distal gut.

3.5 Alterations in BA-microbiota signature
following Salmonella typhimurium
infection

To investigate the impact of S. typhimurium infection on
BA-related microbiota, the gut metagenomes of infected chickens
were reanalyzed using the curated BA gene dataset. At the phylum
level, Bacillota_A and Bacteroidota remained the most abundant taxa
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(Figure 5A). Interestingly, Bacillota_A was significantly enriched in
infected chickens, whereas Pseudomonadota was reduced (p < 0.05;
Figures 5B,C). At the species level, Mediterranea pullorum and
Methanobrevibacter_A woesei were the most prevalent in infected
samples (Figure 5D). Conversely, Phocaeicola plebeius_A and
Limisoma sp900544305 were significantly reduced (p < 0.001;
3A,B),
intestinigallinarum and Mediterraneibacter excrementipullorum

Supplementary  Figures while  Faecalibacterium
showed increased abundance (p < 0.05; Supplementary Figures 3C,D).
PCoA revealed a clear separation between infected and control (CON)
groups (p = 0.043; Figure 5E), indicating infection-associated shifts in

community structure. In addition, the relative abundance of BSH
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genes differed significantly between groups (Supplementary Figure 3E),
suggesting that S. typhimurium infection alters not only taxonomic
composition, but also functional potential related to BA metabolism.
Further analysis revealed a decreased prevalence of BA biosynthesis
enzyme genes in the infected groups compared with the controls
(Supplementary Figure 3F). Alpha diversity analysis (richness indices)
showed that the richness of 7a-HSDH was significantly lower in the
infected groups than in the controls (p < 0.05, Wilcoxon rank-sum
test; Supplementary Figure 3G).

3.6 Impact of Eimeria tenella infection on
BA-related gut microbiota

To evaluate the impact of E. tenella infection on BA-associated gut
microbiota, we reanalyzed metagenomic data from a previous study
(32) using a curated BA biosynthesis gene set. Following infection,
alpha diversity metrics revealed a significant increase in richness but
a decrease in Shannon diversity, suggesting reduced community
evenness despite higher species count (Figures 6A,B). At the phylum
level, Bacteroidota was dominant, followed by Bacillota_A and
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Bacillota (Figure 6C). Importantly, Synergistota was significantly more
abundant in the control group (p < 0.05; Supplementary Figure 4A).
At the species level, Coprenecus pullicola, Mediterranea pullorum, and
Phocaeicola barnesiae were most prevalent, while Scatomorpha
stercorigallinarum was significantly enriched in controls (p < 0.05;
Supplementary Figures 4B,C). A similar trend was observed in BSH
gene-carrying genomes: Shannon diversity was lower in the infected
group, indicating reduced functional diversity related to bile salt
deconjugation (Figures 6D,E). The most abundant BSH gene-
harboring genera were Coprenecus, Phocaeicola, and Mediterranea
(Figure 6F). At the species level, Lactobacillus crispatus was also more
abundant in the control group (p < 0.05; Supplementary Figures 4D,E).
Further analysis revealed an increased abundance of 7a-HSDH in the
infected groups compared to the controls (Supplementary Figure 4F).

4 Discussion

We performed genome-resolved metagenomic and functional
profiling of BA-transforming microbiota in the chicken intestine. We
reconstructed 9,990 non-redundant genomes across 23 phyla and 708

06 frontiersin.org


https://doi.org/10.3389/fvets.2025.1669620
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Shang et al. 10.3389/fvets.2025.1669620
A B Shannon C Richness
6000 —_
M %x 1
6 - —]
T %%
5000 T 1 1
2000 :
o 4000 .
%]
(]
% 4
x 3000 .
2000 1000
2
1000
0 50 100 ol 3.
Number of samples
DUO ILE JEJ CEC COL DUO ILE JEJ CEC COL
Bray-distance PCoA
R?=0.2031p<0.001
D e 1.00
g Phyl
~ 0.4 ;Y ylum
8 § 0.75 Bacillota
< 3 [l Bacillota_A
© c [ Actinomycetota
5 g [0l Bacteroidota
R Pseudomonadota
300 2050 I Bacillota_C
o 3 Other
14 [ Desulfobacterota
= Bacillota_B
_ 0.25 Campylobacterota
0.4 B Halobacteriota
-05 0.0 05 0.00 %
PCoA1 (27.23%) DUO ILE JEJ CEC
FIGURE 4
Spatial variation of BA-metabolizing microbiota along the chicken intestine. (A) Rarefaction curves illustrating sequencing depth and species richness
across different intestinal regions. (B,C) Boxplots of Shannon diversity and species of microbial communities in five gut regions. (D) Principal
Coordinates Analysis (PCoA) based on Bray—Curtis distances showing microbial s-diversity by intestinal site. (E) Stacked bar plots representing phylum-
level taxonomic composition across the duodenum (DUO), jejunum (JEJ), ileum (ILE), cecum (CEC), and colon (COL). Statistical significance was
determined using Wilcoxon rank-sum test: *p < 0.05; **p < 0.01; ***p < 0.001.

genera. Our analyses reveal considerable spatial and taxonomic
variations, as well as functional diversity in BA metabolism. The
dominance of Bacillota_A, Bacteroidota, and Bacillota, with high
representation from Lachnospiraceae and Lactobacillaceae, supports
previous findings (45) and reflects adaptation to the avian gut
environment and its nutrient dynamics. These dominant phyla
contribute to BA metabolism through complementary functions:
Bacillota, including Lachnospiraceae and Lactobacillaceae, specialize
in fermentation, short-chain fatty acid production (which has anti-
inflammatory effects) (46) and bile salt metabolism, whereas
Bacteroidota focus on polysaccharide degradation and immune
signaling (47). Their synergy is driven by ecological complementarity,
not phylogenetic relatedness, and supports efficient fat digestion,
immune regulation, and resilience.

To understand the functional potential of the chicken gut
microbiome in BA metabolism, we assessed the genomic capacity for
BA transformation, focusing on key enzymes involved in bile salt
deconjugation and secondary BA synthesis. Functional annotation
analysis reveals that 80.17% of chicken gut genomes encoded genes
related to BA metabolism, particularly BSH genes, which were widely
distributed across 12 phyla and present in 4,186 genomes. However,
genes involved in downstream transformations, such as 7a-HSDH and
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baiB, were much less prevalent, with 7a-HSDH found in only nine
phyla and baiB limited to three phyla. This uneven gene distribution
indicates a critical bottleneck: while BA deconjugation is widespread,
full secondary BA biosynthesis is restricted to a small microbial subset.

This genomic distribution aligns with spatial patterns observed
along the chicken intestinal tract. Microbial diversity is higher in the
cecum and colon than in the small intestine, a pattern consistent with
previous studies and attributed to the longer retention times and
anaerobic conditions characteristic of the large intestine (48-51).
Along the intestinal tract, taxonomic composition shifts markedly:
Bacillota_A dominates the small intestine, while Bacillota and
Bacteroidota are more abundant in the cecum and colon (52). BSH-
positive genera such as Ligilactobacillus and Limosilactobacillus were
enriched in the proximal gut. This suggests that deconjugation activity
is highest near the point of bile entry, promoting early bile salt
modification and enhancing lipid solubilization. In contrast, the distal
gut, characterized by more anaerobic conditions, hosts microbial taxa
better suited for secondary BA synthesis (53), although their lower
genomic abundance may limit the overall production of signaling-
active BAs.

The widespread presence of BSH genes, particularly in genera
such as Ligilactobacillus and Alistipes, reflects evolutionary
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adaptation to bile salt pressure in the chicken gut, enabling stable
microbial colonization despite the antimicrobial properties of
conjugated BAs. Spatially, proximal small intestine microbiota favor
deconjugation, while the distal gut supports secondary BA synthesis,
which is limited in chickens. These patterns reflect evolutionary,
dietary, and physiological adaptations affecting nutrient metabolism,
immune regulation, and pathogen resistance. These spatial and
functional insights into BA metabolism have important implications
for host health because secondary BAs play key roles in regulating
lipid metabolism, immune responses, and pathogen resistance.
Therefore, understanding the distribution and limitations of
BA-transforming capabilities in the gut microbiome may inform
nutritional or probiotic strategies aimed at enhancing fat digestion,
modulating host metabolism, and promoting gut health. Specifically,
rye-based diets reduce conjugated BA concentrations in the chicken
small intestine and impair fat digestion through microbial shifts;
effects that can be reversed by supplementation with xylanase and
p-glucanase (54). The enrichment of BSH-carrying taxa such as
Ligilactobacillus and Limosilactobacillus in the small intestine aligns
with this site of physiological impact, suggesting that microbial
deconjugation activity directly influences host lipid metabolism and
intestinal absorption. Given the limited prevalence of downstream
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BA transformation genes, preserving conjugated BAs may
be especially critical in avian systems.

This microbial constraint on secondary BA synthesis is
underscored by recent findings that supplementation with secondary
BAs, such as hyodeoxycholic acid (HDCA), mitigates metabolic stress
effects in broilers (55). Chronic corticosterone induces fatty liver and
hepatic glucocorticoid receptor downregulation, but dietary HDCA
reverses these effects, improving lipid metabolism and stress resilience.
To place these findings in a broader context, we compared
BA-metabolizing gene repertoires across chickens, humans, and pigs.
This analysis revealed distinct host-specific profiles. Chickens had the
highest BSH gene prevalence, highlighting their dominant role in BA
metabolism, but the lowest baiA gene abundance, confirming a
functional bottleneck in secondary BA synthesis. Complementary
studies in pigs show that dietary BA supplementation modifies serum
and fecal BA profiles and host metabolism, even without significant
microbiome shifts (56). These findings support the concept that
exogenous BA supplementation can bypass microbial limitations and
enhance metabolic outcomes.

Broiler chicken studies further demonstrate that dietary BA
supplementation mitigates heat stress-induced hepatic lipid
accumulation by downregulating lipogenic gene expression, reducing
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liver triglycerides, and maintaining endogenous BA biosynthesis (57).
Swine-derived BA supplementation improves growth performance,
carcass traits, and intestinal lipase activity (58), while other studies
highlight reduced abdominal fat, lower serum triglycerides, favorable
lipid metabolism modulation, and enhanced hepatic fatty acid
oxidation (12, 59). BA supplementation also alters liver BA
composition and gut microbiota differently under low- and high-fat
diets, linking microbial shifts to improved lipid metabolism and liver
health. These findings not only enhance our understanding of BA
metabolism in poultry but also highlight the broader implications for
metabolic health, immune function, and disease resistance in livestock
systems. By modulating BA profiles, we may be able to influence the
gut microbiota’s capacity to regulate nutrient absorption and
inflammation, ultimately improving animal health and productivity.
Studies reveal dynamic crosstalk between BA metabolism and gut
microbiota in conditions such as non-alcoholic fatty liver disease in
chickens. Here, diet-induced microbial dysbiosis alters BA profiles and
liver health (13). Fasting also modulates BA metabolism through
negative feedback in liver and ileum, mediated by host-microbiota
metabolic interactions involving metabolites such as L-valine (14).
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Collectively, these findings underscore the complexity of
BA-microbiota-host interactions and the potential of dietary strategies
to optimize health and performance in poultry production.

The role of BA metabolism extends beyond microbial
composition; enteric infections, S. typhimurium or E. tenella can
disrupt BA metabolism, leading to dysbiosis and impaired nutrient
absorption (60). In agreement with previous studies (60, 61),
S. typhimurium challenge does significantly alter microbial & diversity,
but induce marked shifts in # diversity, indicating significant
restructuring of microbial community composition. Interestingly,
infected birds exhibited enrichment of Bacillota_A and a concurrent
depletion of Pseudomonadota, indicative of a shift toward Bacillota
These

accompanied by substantial turnover in BA-transforming taxa,

-dominated communities. taxonomic changes were
including, a reduction in key BSH-carrying species such as Phocaeicola
plebeius_A, alongside increases in Mediterranea pullorum and
Faecalibacterium intestinigallinarum.

Functionally, this dysbiosis corresponded with a loss of BSH
reduced BA

deconjugation capacity. Such impairments are likely to affect

gene diversity and abundance, suggesting
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micelle formation, lipid emulsification, and nutrient absorption.
More importantly, altered BA availability may disrupt host BA
receptor signaling (e.g., FXR, TGR5), with downstream effects on
metabolism, immune function, and inflammation (62, 63). These
disruptions to the BA-microbiota axis may compromise mucosal
integrity, promote inflammation, and exacerbate susceptibility to
dietary BA
supplementation has been shown to counteract S. typhimurium-

infection-associated pathology. Interestingly,
induced dysbiosis, restoring microbial balance, enhancing goblet
cell abundance and mucin MUC2 gene expression, and reducing
This highlights the therapeutic
potential of targeted BA interventions in mitigating pathogen-

pathogen colonization (60).

induced gut dysfunction.

Similarly, E. tenella infection induces alterations in microbial
composition and function, consistent with previous findings (26, 28,
30, 64). While a-diversity increased due to higher species richness,
there was a marked decline in evenness and BSH gene richness,
indicative of ecological imbalance and dominance of select taxa.
Although Bacteroidota remained the dominant phylum, substantial
losses were observed in beneficial taxa such as Caccocola and
Lactobacillus crispatus, known contributors to BA metabolism,
immune modulation, and epithelial homeostasis. These losses likely
impair the generation of free and secondary BAs, thereby weakening
their antimicrobial, anti-inflammatory, and barrier-supportive
functions (7, 8). Consistent with this, previous studies have also
reported reductions in Faecalibacterium, Ruminococcaceae UCG-013,
Romboutsia, and Shuttleworthia, together with increases in
opportunistic pathogens such as Enterococcus and Streptococcus (27).
These compositional shifts suggest a breakdown of the cecal microbial
ecosystem, potentially heightening vulnerability to secondary
infections and mucosal damage.

The contraction in functional redundancy for BA metabolism
during E. tenella infection underscores the importance of
microbial-derived BAs in maintaining intestinal homeostasis.
Dysregulation of BA receptor signaling further implicates these
metabolic disruptions in shaping host inflammatory responses (62,
63). Moreover, the parasite’s dependence on the microbiota
introduces a paradox: while E. tenella development appears to
require a functionally intact microbial community, infection itself
disrupts that very ecosystem. This is supported by evidence of
impaired parasite development in germ-free chickens (65), where
absence of microbiota, and hence BA metabolism, limits E. tenella
replication. Interestingly, even in germ-free birds with reduced
parasite burden, BSH activity remained disrupted, suggesting that
both infection-induced dysbiosis and microbiota absence converge
on shared metabolic vulnerabilities.

Collectively, these findings underscore the sensitivity of the
BA-microbiota axis to enteric infections and its central role in
host-pathogen interactions. The maintenance of microbial
functional capacity, particularly BSH gene diversity, appears crucial
for preserving gut homeostasis and host resilience. Interventions
that restore or sustain BA-transforming taxa, such as probiotics or
targeted nutritional strategies, may help break the cycle of
infection-induced dysbiosis, reduce disease severity, and support
intestinal health. Finally, while our data demonstrate strong
associations between infection, microbiota shifts, and functional
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outcomes, it remains essential to disentangle causality. Future
studies employing targeted metabolomics and in vitro validation
of microbial enzymatic activities are warranted to clarify the
mechanistic links between pathogen challenge, BA metabolism,
and host physiology.

5 Conclusion

This study highlights a fundamental constraint in the chicken gut
microbiome: the widespread ability to deconjugate bile salts contrasts
with a limited capacity for complete secondary BA synthesis. The
marked spatial variation in microbial communities, along with
infection-driven dysbiosis following exposure to S. typhimurium and
E. tenella highlights the finely tuned nature of BA metabolism to the
local intestinal environment and its vulnerability to disruption. These
findings highlight the importance of region-specific microbial
functions in maintaining metabolic homeostasis and reveal the
sensitivity of the BA-microbiota axis to perturbations caused by
infection, which may impact lipid digestion, immune responses, and
host-pathogen interactions. To enhance poultry health and
productivity, future research should focus on optimizing BA metabolic
pathways, including through nutritional interventions and
microbiome modulation. Since our study was based on known genes
from KEGG pathways, complementary efforts should aim to identify
novel BA-related enzymes through de novo gene discovery, which may
uncover previously unrecognized mechanisms shaping host-
microbiota interactions.
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