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Pig behavior recognition serves as a crucial indicator for monitoring health
and environmental conditions. However, conventional pig behavior recognition
methods are limited in their ability to effectively extract image features
and analyze long sequence dependencies, ultimately reducing pig behavior
recognition performance. To address these challenges, we proposes a pig
behavior recognition model S_TransNeXtM which leverages both spatial and
temporal information underlying the video. Specifically, an innovative backbone,
named TransNeXtM, has been developed for the spatial domain. It incorporates
a bio-inspired Aggregated Attention Mechanism, a Convolutional GLU, and a
Mamba unit, which allows the model to capture more discriminative global
and local features. For the temporal domain, the sLSTM is proposed to process
sequence data by utilizing an exponential gating mechanism and a stabilizer
state. This design allows the model to establish longer temporal sequence
dependencies, outperforming conventional GRU and LSTM. Based on the
above insights, the S_TransNeXtM enhances the performance of pig behavior
recognition. Experimental results demonstrate that the proposed S_TransNeXtM
model achieves the state-of-the-art performance in pig behavior recognition
task. Consequently, the S_TransNeXtM attains an accuracy of 94.53%, marking
an improvement of up to 11.32% over previous benchmarks.
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Highlights

• Conventional pig behavior recognition methods are limited in their ability to
effectively extract image features and analyze long sequence dependencies, ultimately
reducing pig behavior recognition performance.

• A S_TransNeXtM model for precise pig behavior recognition, by jointly optimizing
both spatial and temporal domains.

• We first develop a new TransNeXtM module to deal with the spatial features
underlying pig behavior videos.

• We ingeniously employ the sLSTM to investigate the temporal features of the
corresponding pig behavior videos.

1 Introduction

Pig behavior recognition plays an important role in feeding management (1).
Through accurate identification of pig behavior, we can understand its
physiological and psychological needs, and then targeted adjustment of the
feeding environment and feeding formula, improve production efficiency (2).
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Therefore, pig behavior recognition is not only a key link
in improving the level of feeding management, but also an
important means of promoting the sustainable development of
animal husbandry.

Traditional pig behavior recognition methods mainly rely on
manual observation and sensor technology (3). While manual
observation is intuitive, it is subjective, time-consuming, and limits
the depth of exploration into pigs’ physiological and psychological
needs (4, 5). Sensor technology, using speed, infrared, and sound
sensors, accurately captures pig movement for precise behavior
identification and monitoring. However, sensor layout is complex
and prone to detachment, potentially affecting data accuracy and
continuity, and posing risks to pig growth and health.

Therefore, with the progress of science and technology, more
and more researchers began to explore the use of computer vision,
deep learning and other advanced technologies for pig behavior
recognition (6, 7). These methods improve the accuracy and
efficiency of identification, and provide strong technical support for
the optimization of feeding management.

Hengyi et al. (8) pioneeringly integrated the Temporal
Shift Module (TSM) into various mainstream 2D convolutional
neural network architectures, including ResNet50, ResNeXt50,
DenseNet201, and ConvNeXt-t. This innovation significantly
enhanced the model’s capability to recognize pig aggression
behaviors, achieving an impressive accuracy rate of 95.69%
in experiments.

Yue et al. (9) focused on behavior analysis within video
sequences by introducing a hybrid model that integrates
Convolutional Neural Networks (CNNs) with Gated Recurrent
Units (GRUs). This model effectively leverages the spatial feature
extraction capabilities of CNNs and the temporal sequence
processing strengths of GRUs, achieving an accuracy rate of 94.8%
in experiments.

Lili et al. (10) delved into pig expression recognition,
integrating ASPP and CReToNeXt modules into the ASP-YOLOv5
model. This innovation optimized feature extraction and fusion
processes, resulting in a mean Average Precision (mAP) of 93.2%.

Junjie et al. (11) focused on classifying interactive behaviors
among pigs by designing a deep learning framework that fused
Convolutional Neural Networks (CNNs) with Long Short-Term
Memory (LSTM). Under fixed training set sizes, the framework was
validated through multiple methods, including random validation,
temporal blocking validation, and feeder blocking validation,
achieving an average accuracy of 96.8%.

Ma et al. (12) achieved remarkable results in model
optimization, proposing the optimized M-YOLOv4-C network
model. This model adopted the lightweight MobileNet-v3 as
its core architecture and incorporated depthwise separable
convolution into YOLOv4’s feature extraction network. This
innovation not only boosted the model’s accuracy to 98.15% but
also achieved a detection speed of 106.3 frames per second while
keeping the model size at 44.74 MB, enabling real-time applications
for pig behavior recognition.

Zhang et al. (13) proposed a Transformer-based Neural
Network (TNN) model that leveraged attention heatmap
visualization techniques to precisely pinpoint and analyze critical
image regions, demonstrating exceptional performance in piglet
behavior recognition. Notably, even with reduced parameter

counts and computational complexity, the TNN model maintained
outstanding recognition efficacy.

Despite some progress in deep learning for pig behavior
recognition, challenges remain in accurately extracting
image features and simultaneously analyzing long temporal
sequence data.

The key contributions of this paper are 3 fold:

• This paper introduces a S_TransNeXtM model for precise
pig behavior recognition, by jointly optimizing both spatial
and temporal domains. Specifically, it leverages TransNeXtM
to capture more abundant global and local discriminative
features in the spatial domain, facilitating the discrimination
of subtle pig behavioral differences. Additionally, sLSTM
(spatial Long Short-Term Memory) is creatively employed in
the temporal domain to handle long sequence dependencies.

• We first develop a new TransNeXtM module to deal with the
spatial features underlying pig behavior videos. Concretely,
the module incorporates the Aggregated Attention
Mechanism and Convolutional GLU (Convolutional
Gate-controlled Linear Unit) for capturing global and local
features, respectively. To further enhance its discriminative
capability, the Mamba unit is innovatively introduced
into the module. This design promotes the filtering of
noise and redundant information that may interfere with
discrimination. Consequently, it enable the model to capture
subtle differences in pig behavior, thereby significantly
improves the performance of the model.

• In this paper, we ingeniously employ the sLSTM to investigate
the temporal features of the corresponding pig behavior
videos. This module can effectively capture the long temporal
dependencies through exponential gating and stabilized states.
Thus, a notable enhancement of the model’s performance can
be obtained.

2 Materials and methods

2.1 Dataset

The pig behavior recognition data is collected from the pig
breeding base of Nonglvyuan Agriculture Co., LTD., Xiangfen
County, Linfen City, Shanxi Province. Specifically, the data
collection range from August 12, 2022 to September 25, 2022.
The farm comprises six pig houses, each housing 6-month-old
ternary breed pigs, with an average of 10 pigs per house. Concretely,
cameras have been installed in all six pig houses, employing the
Hikvision DS-2DE3Q120MY-T/GLSE. These cameras are mounted
at a 45-degree angle to the side of each pig house, 3 meters above the
ground. They are capable of capturing RGB color space video with
a resolution of 1,920*1,080 pixels and a sampling rate of 25 frames
per second. A visual depiction of the camera’s view inside one of the
pig houses is presented in the Figure 1.

Finally, after data collection, we obtain 1.5 TB of pig video
data, which covers more than 5,000 video files. Subsequently, video
clips with durations ranging from 5 to 10 s are selected. After
this video preprocessing, we identify six pig behavior categories:
Drinking, Eating, Fighting, Exploring, Lying, and Walking, as
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FIGURE 1

View of the camera inside some pig houses.

shown in Figure 2. Specifically, Drinking was characterized by oral
suction at water sources. Eating by head-in-trough mastication.
Fighting by aggressive pushing or biting for resource competition.
Exploring constitutes sustained active contact exceeding 3 s
with environmental elements (14). Lying by resting postures
with extended or curled limbs. Walking by limb-alternation
displacement for spatial movement (15).

Each category comprised approximately 450 videos, with the
total dataset containing 2,755 videos. Each video consists of 24
image frames, which are arranged in temporal order to form
a complete video segment. The inter-frame difference method
was used to detect blurry frames, and a total of 3.7% of low-
quality segments in the original data were eliminated. Within each
category, the training and test sets were partitioned in an 8:2 ratio.
Further, the detailed statistics of the number of each pig behavior
are presented in Table 1.

2.2 S_TransNeXtM

In order to improve the performance of pig behavior
recognition, this paper proposes a novel model, S_TransNeXtM,
which leverages both spatial and temporal information. Specifically,
the S_TransNeXtM model which comprised of two modules: the
TransNeXtM and the sLSTM(spatial Long Short-Term Memory)
respectively, as shown in Figure 3. Following, we will elaborate on
these two modules in detail.

2.2.1 TransNeXtM module
This subsection introduces a novel pig behavior recognition

backbone module, named TransNeXtM, aiming to capture spatial
information in the corresponding task.

As shown in Figure 4, the TransNeXtM mainly contains
a four-stage hierarchical architecture (16). Specifically, the first
three stages utilize the MAACG Block, which incorporates a
Mamba (17) unit, an Aggregated Attention Mechanism, and
a Convolutional GLU (Convolutional Gate-controlled Linear
Unit) (18), respectively. Additionally, the MMHSACG Block is
employed in the final stage, which includes a Mamba unit, a
Multi-Head Self-Attention Mechanism (19), and a Convolutional
GLU. Notably, in the fourth stage, the small size of the
feature maps makes the application of Multi-Head Self-Attention
mechanism particularly suitable. This mechanism can effectively
capture more abundant features without significantly increasing
the computation time.

2.2.1.1 Mamba
In order to enhance the discrimination of the model in pig

behavior recognition task, we introduce the Mamba (17) unit into
the MAACG and MMHSACG Blocks of the TransNeXtM module,
as show in Figure 4, aiming to filter out irrelevant and redundant
information. The Mamba unit we utilized can be formulated as
follows:

ht = Aht−1 + Bxt (1)

A = exp(�A) (2)

B = (�A)−1(exp (�A) − I) · �B (3)

where ht and ht-1 represent the state at the current and previous time
steps, respectively. The parameters (Ā, B̄) are discrete parameters
transformed by (�, A, B), as show in Equations 2, 3. Specifically, �
denotes sampling time-scale, A indicates the state transition matrix,
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FIGURE 2

Examples of six pig behavior categories.

TABLE 1 Statistical of the number of videos for different categories in the dataset.

Behavior category Drinking Eating Fighting Exploring Lying Walking

Number 426 489 438 485 474 443

Training 341 391 350 388 379 354

Test 85 98 88 97 95 89

FIGURE 3

The pipeline of the S_TransNeXtM.

B is the transition matrix for input features, and I stands for the
identity matrix.

yt = Cht (4)

where yt represents the output feature, and the matrix C determines
how the ht is transformed into the yt .

2.2.1.2 Aggregated Attention
This mechanism aims to combine local sliding window

attention and global pooling attention through a dual-path
design (20). It simulates the flexibility of eye movements and
the capacity to process multi-scale information. Consequently, it

enables the model to obtain more comprehensive features. The
formulation of this mechanism is presented as follows:

FAA(X(i,j)) = (Z(i,j)∼ρ(i,j) + Q̂(i,j)T)Vρ(i,j) + Z(i,j)∼σ (X)Vσ (X) (5)

where (i, j) indicates the coordinates of a center pixel, ρ(i, j) defines
a set of pixels within a sliding window centered at (i, j), this
representation specifically focuses on local region. On the other
hand, σ (X) represents a feature set obtained from a whole pooled
feature map, which covers the information of the global region.
Z(i,j)∼ρ(i,j) and Z(i,j)∼σ (X) respectively represent attention weight
matrices computed based on the sliding window and the pooled
features. Q̂ is the query matrix, T denotes a learnable token, and V
stand for the value matrix.
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FIGURE 4

Diagram of the TransNeXtM module.

Z(i,j)∼ρ(i,j), Z(i,j)∼σ (X) = Split(Z(i,j)) with size[k2, HpWp] (6)

where k×k represents the fixed window size, and Hp×Wp indicates
the pooling size.

Z(i,j) = softmax(τ log N ∗ Concat(S(i,j)∼p(i,j), S(i,j)∼σ (X)) + B(i,j))(7)

where τ is a learnable variable initialized to 1
0.24 . N denotes the

count of effective keys each query interacts with, and Concat stands
for concatenation (21). S(i,j)∼p(i,j) and S(i,j)∼σ (X) reflect the relevance
of local and global features, respectively. Additionally, B represents
the bias.

S(i,j)∼ρ(i,j) = (Q̂(i,j) + QE)K̂T
ρ(i,j) (8)

S(i,j)∼σ (X) = (Q̂(i,j) + QE)K̂T
σ (x) (9)

where Q̂ and K̂ stand for the query matrix and the key matrix,
respectively. QE denotes the learnable parameter matrix.

2.2.1.3 Multi-Head Self-Attention
The Multi-Head Self-Attention mechanism maps the input

sequence into multiple distinct representation heads (19). Each
head then independently performs self-attention calculations on
the input sequence. Consequently, this approach allows the
mechanism to capture diverse levels of information within the
input, thereby enhances the model’s feature extraction capabilities.

The Multi-Head Self-Attention is calculated by the
following equations.

headu = Attention(QWQ
u , KWK

u , VWV
u ) (10)

FIGURE 5

An illustration of the Convolutional GLU.

Attention(Q, K, V) = soft max

(
QKT√

dk

)
V (11)

MultiHead(Q, K, V) = Concat(head1, . . . , headu)WO (12)

where WQ
u , WK

u , WV
u , and WO denote the learnable weight matrix,

dk indicates the dimension of the key vector. Additionally, u is the
number of heads.

2.2.1.4 Convolutional GLU
The Convolutional GLU integrates the Gated Linear Unit

(GLU) with Depthwise Convolution (DW Conv), as shown in
Figure 5. It enables each token to perform channel attention
computation based on the image features of its nearest neighbors,
thereby enhancing the model’s capability in capturing local features.
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2.2.2 sLSTM module
The temporal sequence module selected in this paper is

sLSTM (22), as extended variant of LSTM (23). Its core
improvement lies in the introduction of an exponential gated
activation function (24) and a normalized state, enabling the
sLSTM model to excel in capturing long temporal sequence
dependencies. The specific formula is as follows:

ct = ftct−1 + itzt (13)

where ct represents the state held by the cell at time step t, ft and it

correspond to the forget gate and the input gate, respectively.

zt = ϕ(z̃t) , z̃t = wT
z xt + rzht−1 + bz (14)

where zt denotes the unit input, which is a candidate unit state
calculated based on the current input and the previous state. Here,
ϕ represents the activation function of the unit input gate, z̃t is an
intermediate variable, w denotes the weight matrix, r indicates a
learnable parameter, and b represents the bias.

nt = ftnt−1 + it (15)

where nt denotes the normalized state, which represents equivalent
to adding a large denominator to prevent overflow, as the
exponential activation function may produce excessively
large values.

ht = oth̃t , h̃t = ct/nt (16)

where ht represents the hidden state and ot denotes the output gate,
while h̃t indicates an intermediate variable. The nt is employed to
prevent overflow issues.

Subsequently, we proceed to introduce the output gates, input
gates, and forget gates.

ot = σ (õt) , õt = wT
o xt + roht−1 + bo (17)

where õt indicates an intermediate variable.

it = exp(log(i′t) − mt) ,

i′t = exp(ĩ′t) , ĩ′t = wT
i xt + riht−1 + bi (18)

where it denotes the stabilized input gate adjusted by mt. exp
indicates the exponential function. Since the exponential function
grows faster than the sigmoid function and is more sensitive to
input changes, so that the model can capture the changes in input
information faster. ĩ′t represents an intermediate variable.

ft = exp(log(f ′t ) + mt−1 − mt) ,

f ′t = σ (f̃ ′t ) , f̃ ′t = wT
f xt + rf ht−1 + bf (19)

where ft indicates the stabilized forget gate, it is also adjusted
according to the value of mt. σ represents the gated activation
function sigmoid, and f̃ ′t denotes an intermediate variable.

mt = max(log(f ′t ) + mt−1, log(i′t)) (20)

where mt denotes the stabilizer state. log indicates the exponential
inverse operation, which is equivalent to using log to degrade i′t and
f′t to avoid overflow.

2.3 The loss function

To effectively train the proposed model S_TransNeXtM, the
common loss function for recognition tasks are employed. The
detailed definition of the loss can be presented as follows:

Loss = −
N∑

n=1

M∑
m=1

pm
n log(̂pm

n ) (21)

where N and M represent the number of samples and categories,
respectively. pm

n indicates the true label for the respective
sample, and p̂m

n demonstrates the prediction label for the
corresponding sample.

3 Experiments and analysis

A series of comprehensive experiments were conducted to
evaluate the proposed model from multiple perspectives, with
detailed designs and documentation systematically presented. All
experimental procedures were executed on a hardware system
configured with 125 GB RAM, an Intel i7-7800X CPU operating at
3.50 GHz, and an NVIDIA TITAN Xp GPU equipped with 12GB
GDDR5X memory. The Ubuntu 20.04.6 LTS operating system
was employed as the software foundation, while Python 3.12.4
served as the primary programming environment. Key libraries
included PyTorch 2.1.2, Transformers 4.35.0, NumPy 2.0.1, and
Pandas 2.2.2. Hyperparameters were systematically set as follows:
batch size was configured to 4, initial learning rate was established
at 0.001, and training was conducted over 200 epochs using the
Adam optimizer.

In this experiment, all images were uniformly resized to 224
× 224 pixels. The input is [4, 24, 3, 224, 224], which represents
batch_size, num_frames, channels, height and width respectively.
The output is [4, 6], which represents batch_size and num_class,
corresponding to the classification results of the pig behaviors.

3.1 Evaluate the effectiveness of the
Mamba unit

To verify the performance of the Mamba (17) unit in
S_TransNeXtM, comparisons are conducted between models that
with and without the Mamba unit. Specifically, several basic models
such as Swin Transformer, ConvNeXt, and TransNeXt are utilized.
Comparison results are presented in Table 2, where models with the
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TABLE 2 Comparison of different models with and without Mamba.

Model Accuracy (%) Loss

Swin Transformer 90.51 0.4902

SwinM Transformer 92.00 0.4690

ConvNeXt 91.20 0.4880

ConvNeXtM 92.35 0.4564

TransNeXt 92.88 0.4777

TransNeXtM 93.25 0.4521

The bold values indicate that the performance of this model is the best.

TABLE 3 Comparison of different models with and without the Aggregate
Attention Mechanism.

Model Accuracy (%) Loss

wo_AggAttn 93.04 0.4665

w_AggAttn 93.20 0.4521

The bold values indicate that the performance of this model is the best.

Mamba unit are written as SwinM Transformer, ConvNeXtM, and
TransNeXtM, respectively.

Table 2 demonstrates that models with Mamba unit outperform
their counterparts without it. Specifically, the SwinM Transformer
achieves 92.00% accuracy, making a 1.49% improvement
compared to the Swin Transformer. The accuracy of the
ConvNeXtM is 92.35%, surpassing the ConvNeXt by 1.15%. The
TransNeXtM demonstrates the highest accuracy of 93.25%, a
0.37% increase compared to the TransNeXt. Furthermore, the
loss values of the SwinM Transformer, the ConvNeXtM, and
the TransNeXtM are 0.4690, 0.4564, and 0.4521, respectively,
representing reductions of 0.0212, 0.0316, and 0.0259 compared to
their non-Mamba counterparts.

Models with Mamba unit achieve superior accuracy in pig
behavior recognition. This is attributed to Mamba’s ability to filter
noise and redundant information. Consequently, the model with
Mamba unit is able to capture more discriminative features, leading
to superior performance in the pig behavior recognition task.

3.2 Evaluate the effectiveness of the
Aggregate Attention Mechanism

In order to assess the performance of the Aggregate
Attention Mechanism in S_TransNeXtM, a comparative analysis
is carried out between models with and without this mechanism.
Comparison results are demonstrated in Table 3, where the
model with the Aggregate Attention Mechanism is denoted as
w_AggAttn(TransNeXtM) and the model without it is written as
wo_AggAttn, respectively.

The results in Table 3 indicates that the w_AggAttn model
demonstrates superior performance compared to the wo_AggAttn
model. Specifically, the accuracy of the TransNeXtM(w_AggAttn),
which employed the Aggregate Attention Mechanism, reached
93.20%, marking a 0.16% improvement over the wo_AggAttn
model. Furthermore, the loss value of the TransNeXtM is 0.4521,
a reduction of 0.0144 compared to the wo_AggAttn model.

TABLE 4 Comparison of different models with and without the
Convolutional GLU.

Model Accuracy (%) Loss

wo_Convolutional GLU 92.29 0.4760

w_Convolutional GLU 93.20 0.4521

The bold values indicate that the performance of this model is the best.

The model utilizing the Aggregate Attention Mechanism
demonstrates superior performance. This mechanism mimics
the biological visual system, effectively processes information
across various scales, and enhances the model’s global perception
capabilities. Consequently, it enhances the model’s performance in
pig behavior recognition task.

3.3 Evaluate the effectiveness of the
Convolutional GLU

This subsection focuses on validating the impact of
Convolutional GLU in the S_TransNeXtM for pig behavior
recognition. Specifically, we employ models both with and without
the Convolutional GLU for this validation. The comparison
results are presented in Table 4, where the model without the
Convolutional GLU is written as wo_Convolutional GLU, and the
model with the Convolutional GLU is denoted as w_Convolutional
GLU(TransNeXtM). Notably, the wo_Convolutional GLU model
utilizes the original MLP module.

Table 4 shows that the w_Convolutional GLU model performs
better than the wo_Convolutional GLU model. Specifically, the
accuracy of the TransNeXtM is 93.20%, which is 0.91% higher
than that of the wo_Convolutional GLU model. The loss of the
TransNeXtM is 0.4521, decreasing by 2.39% compared to the
wo_Convolutional GLU model.

In Figure 6a, the TransNeXtM exhibits superior accuracy
compared to the model without the Convolutional GLU. Figure 6b
illustrates that the loss of the TransNeXtM is lower. In conclusion,
the TransNeXtM demonstrates improved performance in the task
of pig behavior recognition.

The model with the Convolutional GLU outperforms the one
that without, because the Convolutional GLU integrates the GLU
with DW Conv. This integration enables each token to perform
channel attention computation based on the image features of its
nearest neighbors. Consequently, this mechanism enhances the
model’s ability to capture local features, thereby improving overall
performance in pig behavior recognation task.

3.4 Evaluate the effectiveness of temporal
sequence module

In this section, we design two experiments to verify
the effectiveness of the temporal sequence module. The
first experiment is aimed at evaluating the effectiveness of
different temporal sequence modules. The second experiment
focuses on comparing models with and without the temporal
sequence module.
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FIGURE 6

The accuracy and loss curves under different epochs for models with or without the Convolutional GLU. (a) Is for accuracy and (b) is loss.

TABLE 5 Comparison results of different temporal sequence modules.

Model Accuracy (%) Loss

TransNeXtM 93.25 0.4521

TransNeXtM_GRU 93.42 0.5981

TransNeXtM_LSTM 93.38 0.6579

S_TransNeXtM 94.53 0.3350

The bold values indicate that the performance of this model is the best.

3.4.1 Evaluate the effectiveness of different
temporal sequence modules

To evaluate the effectiveness of different temporal sequence
module, several models with diverse temporal module (GRU (18),
LSTM (23) and sLSTM (22)) are utilized for comparative analysis.
Specifically, these models are denoted as TransNeXtM_GRU,
TransNeXtM_LSTM and S_TransNeXtM(TransNeXtM_sLSTM).
The results are shown in Table 5.

Table 5 illustrates that the S_TransNeXtM outperforms all
other models in pig behavior recognition task. Specifically, the
S_TransNeXtM model reaches 94.53% accuracy, which is 1.11%
and 1.55% higher than those of the TransNeXtM_GRU and
the TransNeXtM_LSTM. Furthermore, its loss value is 0.3350,
which is lower than those of the TransNeXtM_GRU and the
TransNeXtM_LSTM.

To further validate the effectiveness of different temporal
sequence modules, Figure 7 reports the accuracy and loss values of
these models under different training epochs.

Figure 7a demonstrates that the accuracy of the S_TransNeXtM
exceeds those of both the TransNeXtM_GRU and the
TransNeXtM_LSTM. Additionally, Figure 7b shows that the
loss of the S_TransNeXtM model during training epochs is
the lowest among the three models. This further confirms the
effectiveness of the sLSTM temporal sequence module.

From now on, we will default to considering the temporal
sequence module mentioned as the most effective sLSTM.

3.4.2 Evaluate the effectiveness when with or
without the temporal sequence module

This subsection focuses on validating the impact of temporal
sequence module for pig behavior recognition. Concretely, several
models including the SwinM Transformer, the ConvNeXtM, and
the TransNeXtM, with or without temporal sequence module, are
employed for this validation. The comparison results are detailed in
Table 6.

Table 6 indicates that those models with temporal sequence
module perform better than those without. Specifically, the
accuracy of the S_SwinM Transformer is 92.70%, exceeding the
SwinM Transformer by 0.7%. The S_ConvNeXtM achieves 93.70%
accuracy, outperforming 1.35% compared to the ConvNeXtM.
The S_TransNeXtM achieves 94.53% recognition accuracy,
representing an increase of 1.28% compared to the TransNeXtM.
Furthermore, the S_SwinM Transformer demonstrates a loss
value of 0.4382, which is 0.0308 lower than that of the SwinM
Transformer. The loss value of the S_ConvNeXtM is 0.3900,
a reduction of 0.0664 compared to the ConvNeXtM. The
S_TransNeXtM’s loss value is 0.4521, representing a decrease of
0.0256 compared to the TransNeXtM.

The reason why S_TransNeXtM achieves superior accuracy in
analyzing pig behavior recognition is because the sLSTM with an
exponential gated activation function and normalized state, which
enables the model to effectively capture longer temporal sequence
dependencies underlying the video. In contrast, although the GRU
and the LSTM are also tools for processing temporal sequence data,
they fail to reach the level of the sLSTM in terms of the depth
of utilizing temporal dependency relationships, thereby affecting
overall performance. Meanwhile, this unique design of sLSTM
enhances the accuracy of the model’s data processing capabilities,
making models with the sLSTM achieve superior accuracy in pig
behavior recognition.

In summary, for the task of pig behavior recognition,
models with the sLSTM outperforms other models with different
temporal sequence modules in terms of performance. Additionally,
models with temporal sequence modules tend to exhibit better
performance than without.
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FIGURE 7

The accuracy and loss curves under different epochs for models with different temporal sequence modules. (a) Is for accuracy and (b) is loss.

TABLE 6 Comparison results of models with or without temporal
sequence module.

Model Accuracy (%) Loss

SwinM Transformer 92.00 0.4690

S_SwinM Transformer 92.70 0.4382

ConvNeXtM 92.35 0.4564

S_ConvNeXtM 93.70 0.3900

TransNeXtM 93.25 0.4521

S TransNeXtM 94.53 0.3350

The bold values indicate that the performance of this model is the best.

3.5 Evaluate the effectiveness of different
models

To verify the effectiveness of our proposed model,
S_TransNeXtM, several popular models, including ViT (Vision
Transformer) (25), Swin Transformer (26), ConvNeXt (27),
TransNeXt (20), EfficientViT (28), TransNeXtM and CNN-
LSTM (11) are employed for comparison. The comparison results
are shown in Table 7.

Table 7 demonstrates that our proposed S_TransNeXtM model
achieves the best performance across all evaluation criteria.
Specifically, the S_TransNeXtM achieves a top accuracy of 94.53%,
surpassing ViT (83.21%), Swin Transformer (90.51%), ConvNeXt
(92.52%), TransNeXt (92.88%), EfficientViT (90.51%), CNN-LSTM
(90.00%) and TransNeXtM (93.20%) by margins of 11.32%, 4.02%,
2.01%, 1.65%, 4.02%, 4.53% and 1.33% respectively. Furthermore,
the S_TransNeXtM attains the lowest loss value of 0.335, showing
61.04%, 31.66%, 13.09%, 29.87%, 27.43%, 38.43% and 25.9%
relative reductions compared to ViT (0.8597), Swin Transformer
(0.4902), ConvNeXt (0.3991), TransNeXt (0.4777), EfficientViT
(0.4616), CNN-LSTM (0.4291) and TransNeXtM (0.4521). In terms
of Precision, Recall, and F1-Score, the S_TransNeXtM achieved
94.52%, 94.54%, and 94.51%, respectively, which were 1.36% to

10.37%, 1.43% to 11.1% and 1.41% to 10.61% higher than the
other models.

To further validate the effectiveness of the S_TransNeXtM,
Figure 8 shows the accuracy and loss curves of the comparison
models under different epochs.

In Figure 8a, the accuracy of the S_TransNeXtM surpasses
that of the ViT, Swin Transformer, ConvNeXt, TransNeXt
and EfficientViT models. Furthermore, in Figure 8b, the
S_TransNeXtM model achieves the lowest loss. These results
further validate the effectiveness of the S_TransNeXtM.

Table 8 demonstrates the superior performance of the
S_TransNeXtM model in six behavioral recognition tasks for
pigs. Specifically, this model achieved the highest accuracy
in recognizing the three behaviors of “Eating,” “Lying,” and
“Walking.” For the recognition of “Drinking,” “Fighting,” and
“Exploring” behavior, although the result was slightly inferior to
the other models, it still reached a suboptimal level. The accuracy
gap in these three categories arises from inherent challenges.
Specifically, “Drinking” involves subtle spatiotemporal patterns
with minimal head movement and short duration, leading to
weaker feature distinguishability. “Fighting” recognition accuracy
is constrained by limited data quality, as video blur weakens the
model’s ability to capture key motion features of pigs. “Exploring”
is difficult to distinguish from “Walking” due to their similar
characteristics. Despite these category-specific limitations, the
S_TransNeXtM effectively captures dominant behavioral features,
ensuring robust overall performance.

The superiority of the S_TransNeXtM model for pig behavior
recognition can be attributed to the following reasons. Firstly,
the S_TransNeXtM is with two modules: the TransNeXtM and
the sLSTM. The bio-inspired Aggregate Attention Mechanism
in TransNeXtM enables the model to capture global features
effectively. Secondly, the Mamba unit in TransNeXtM allows the
model to capture more discriminative features. Furthermore, the
exponentially gated mechanism in sLSTM permits the model
to establish long temporal sequence dependencies within the
corresponding video. Consequently, the promising capabilities
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TABLE 7 Comparison result of S_TransNeXtM with different transformer models.

Model Accuracy (%) Loss Precision (%) Recall (%) F1-Score (%)

ViT 83.21 0.8597 83.79 83.44 83.99

Swin Transformer 90.51 0.4902 90.88 90.32 90.40

ConvNeXt 92.52 0.3991 92.48 92.52 92.74

TransNeXt 92.88 0.4777 92.87 92.87 92.86

EfficientViT 90.51 0.4616 90.57 90.57 90.50

CNN-LSTM 90.00 0.4291 90.14 89.92 89.82

TransNeXtM 93.25 0.4521 93.25 93.21 93.20

S_TransNeXtM 94.53 0.3350 94.52 94.54 94.51

The bold values indicate that the performance of this model is the best.

FIGURE 8

The accuracy and loss curves of S_TransNeXtM with different transformer models. (a) Is for accuracy and (b) is loss.

of global feature extraction and the establishment of long
temporal sequence dependencies enhance the performance of pig
behavior recognition.

3.6 Ablation experiments

In this section, a series of ablation experiments are conducted
to systematically assess the effectiveness of the Mamba and sLSTM
modules. Specifically, separate introduction of the Aggregation
Attention Mechanism or Convolutional GLU module leads to a
drawback. The model fails to simultaneously and effectively capture
global and local image features. Consequently, the performance of
the model declines markedly in the task of pig behavior recognition.
Therefore, this experiment adopts the model introducing both of
these two modules as the baseline (Index 1).

Based on Table 9, when both Mamba and the Aggregated
Attention Mechanism are introduced (Index 2), shows no
performance gain over baseline. While Mamba excels at capturing
global information from sequential data, it struggles with extracting
local features. Similarly, the Aggregated Attention Mechanism
emphasizes global features. Due to the lack of the ability to precisely

capture local features, consequently impacts performance of the
model in pig behavior recognition tasks.

The combination of the Mamba and Convolutional GLU
modules (Index 3), it demonstrates a 0.16% increase in accuracy,
and a 2.34% decrease in loss. These two modules are respectively
adept at capturing global and local features, and the Mamba is more
capable than the Aggregation Attention Mechanism in handling
long temporal sequence dependencies. Therefore, compared with
the baseline, the performance of the model has been improved.

When the Mamba unit is added (Index 4) in baseline, it
exhibits a 0.32% increase in accuracy and a 5.36% decrease
in loss compared to the baseline (Index 1). Furthermore, the
introduction of Mamba facilitates the filtration of noise and
redundant information, enabling the model to extract more
discriminative pig behavioral features, which in turn improves the
model’s performance.

When the sLSTM modules is introduced (Index 5), it
demonstrates a 1.1% increase in accuracy, a 19.2% decrease in loss.
Due to the unique design of sLSTM featuring exponential gating
activation functions and normalized state, the model can effectively
capture longer temporal sequence dependencies in videos, improve
the accuracy of its data processing, and thus achieve higher
accuracy in pig behavior recognition.
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TABLE 8 Comparison of the recognition performance of different models in six pig behavior categories.

Model Metric Category Avg Prec Avg Rec Avg F1

Drinking Eating Fighting Exploring Lying Walking

Vit Precision 88.30 91.67 86.05 80.00 94.12 62.62 83.94 83.21 83.28

Recall 97.65 90.72 85.06 65.98 85.11 76.14

F1-Score 92.74 91.19 85.55 72.32 89.39 68.72

Swin
Transformer

Precision 96.47 95.92 94.94 78.95 94.79 84.21 90.77 90.51 90.44

Recall 96.47 96.91 86.21 92.78 96.81 72.73

F1-Score 96.47 96.41 90.36 85.31 95.79 78.05

ConvNeXt Precision 93.41 95.96 96.43 90.72 94.44 83.91 92.52 92.52 92.49

Recall 100.00 97.93 93.10 90.72 90.43 82.95

F1-Score 96.59 96.94 94.74 90.72 92.39 83.43

TransNeXt Precision 96.43 97.87 88.89 90.63 95.79 87.64 92.94 92.88 92.90

Recall 95.29 94.85 91.95 89.69 96.81 88.64

F1-Score 95.86 96.34 90.40 90.16 96.30 88.14

Efficient Vit Precision 95.45 97.89 87.64 93.10 91.49 77.89 90.73 90.51 90.55

Recall 98.82 95.88 89.66 83.51 91.49 84.09

F1-Score 97.11 96.88 88.64 88.04 91.49 80.87

CNN-LSTM Precision 92.22 93.75 85.26 84.11 97.67 87.84 90.18 89.96 89.87

Recall 97.65 92.78 93.10 92.78 89.36 73.86

F1-Score 94.86 93.26 89.01 88.24 93.33 80.25

TransNeXtM Precision 97.65 93.00 92.22 94.44 95.79 86.36 93.27 93.25 93.23

Recall 97.65 95.88 95.40 87.63 96.81 86.36

F1-Score 97.65 94.42 93.79 90.91 96.30 86.36

S_TransNeXtM Precision 94.38 97.94 91.95 91.75 95.83 90.69 94.11 94.53 94.29

Recall 98.82 97.94 91.95 91.75 97.87 88.64

F1-Score 96.55 97.94 91.95 91.75 96.84 89.65

Total Sample 85 97 87 97 94 88

The bold values indicate that the performance of this model is the best.

TABLE 9 Performance comparison of the models with different module combinations.

Index Block sLSTM Accuracy (%) Loss

Mamba Aggregate
Attention

Convolutional
GLU

1 × � � × 92.88 0.4777

2 � � × × 92.29 0.4760

3 � × � × 93.04 0.4665

4 � � � × 93.20 0.4521

5 × � � � 93.98 0.3860

6 � � � � 94.53 0.3500

The bold values indicate that the performance of this model is the best.

Finally, when the Mamba and sLSTM are simultaneously
added (Index 6), the S_TransNeXtM achieves peak performance
with a 1.65% increase in accuracy, a 26.7% decrease in loss
compared to the baseline. This combination maximizes the
utilization of their complementary strengths. Specifically,

the Mamba suppresses noise and effectively captures the
characteristics of pigs. Additionally, sLSTM handles long temporal
sequence dependence.

By leveraging the synergistic effects among these modules, the
S_TransNeXtM model addresses the limitations of traditional pig
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behavior recognition models in effectively extracting image features
and analyzing long temporal sequence dependencies.

4 Conclusions

This paper proposes a novel pig behavior recognition model,
S_TransNeXtM, which leverages both spatial and temporal
information underlying the video. Specifically, for the spatial
domain, the TransNeXtM is initially introduced, leveraging a
Aggregated Attention Mechanism, a Convolutional GLU, and a
Mamba unit to capture more discriminative global and local
features. This allows the model to perceive more subtle differences
in the pig’s behavior. Additionally, in the temporal domain,
sLSTM’s exponential gating and stabilized states provide improved
capability for processing long temporal sequence dependencies.
Consequently, the S_TransNeXtM enhances the performance of
pig behavior recognition. We conducted numerous experiments
to validate the effectiveness of the proposed model. Experimental
validation demonstrates the state-of-the-art performance with
94.53% accuracy, surpassing the mentioned methods by 0.55%–
11.32% and reducing loss by 52.47%.

In the future work, we will focus on processing longer
temporal sequence data to further improve the performance of
pig behavior recognition, via optimizing the architecture of the
model. Additionally, we will work on developing an adaptive
learning mechanism that enables the model to automatically adjust
its parameters. Thus, it can cope with the diversity and dynamic
changes of pig behavior under different environmental conditions.
Furthermore, we will invest more resources into collecting high-
quality, diverse, and representative datasets of pig behavior under
various conditions.
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