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Introduction: Detecting lameness in dairy cows from an overhead view can 
effectively avoid occlusion caused by farm facilities or other animals, while 
suspended detection devices enable parallel monitoring without disturbing 
natural behaviors. However, existing methods from this perspective still face 
challenges in accuracy and generalization, largely due to the subtlety of back 
movement features and individual variability. To address these limitations, this 
study explores an overhead-view lameness detection approach based on 
RGB-D data.
Methods: We developed a high-precision keypoint detection method for 
the cow’s back that models long-range spatial dependencies and optimizes 
structural representation. On this basis, six lameness-related features were 
designed to capture posture and motion abnormalities, including four newly 
proposed indices. Their correlation in classifying sound, mildly lame, and 
severely lame cows was systematically analyzed. To further enhance robustness, 
the Gini importance index from Random Forest combined with a permutation 
importance correction method (PIMP) was applied to construct an unbiased 
feature selection framework.
Results: Experimental results demonstrate that the proposed keypoint detection 
network achieved a PCK@0.02 of 100.00% and an average precision of 95.89%, 
significantly outperforming the baseline model. In feature-based classification, 
back curvature, movement asymmetry index, and vertical oscillations of the 
back and head exhibited strong discriminative ability. Using multi-feature fusion, 
the lameness detection model attained an overall accuracy of 91.00%.
Discussion: These findings indicate that overhead RGB-D imaging, combined 
with precise keypoint detection and feature fusion, provides a reliable strategy 
for accurate lameness detection in dairy cows. The proposed method offers 
valuable theoretical and technical support for health monitoring and intelligent 
management in modern dairy farming.
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1 Introduction

Lameness is widely recognized as a significant health challenge in 
the dairy industry. A systematic review encompassing 53 studies 
across six continents, primarily drawing data from Europe and North 
America, revealed an average prevalence rate of 22.8% for lameness in 
dairy cows, with reported prevalence ranging from 5.1 to 45% across 
these studies (1). Recently, a comprehensive analysis of 38 studies 
conducted in tropical Asian countries indicated that the average 
prevalence of lameness in dairy cows in this region is 15.1% (95% 
confidence interval: 13.0–17.5%) (2). These findings suggest that the 
incidence of lameness in dairy cows remains high across various 
regions, presenting a serious challenge to the sustainable development 
of the industry. In practical production, lameness behavior in dairy 
cows is frequently grossly underestimated (3), leading to substantial 
economic losses, which can be  categorized into three primary 
components: milk production losses of about 40%, fertility impairment 
costs of approximately 30%, and treatment costs also around 30% (4). 
Given the traditional manual lameness detection methods, which are 
often highly subjective and time-consuming, there is an urgent need 
to develop an efficient and automated cow lameness detection system 
(5, 6). This can facilitate early lameness detection and enable timely 
manual intervention, thereby reducing economic losses for farms and 
enhancing the welfare standards of dairy cows.

Lameness in dairy cows leads to significant alterations in gait, 
typically characterized by an arched back, head nodding, abnormal 
gait, reduced walking speed, and loss of symmetry (7, 8). Cows 
affected by lameness usually adopt a series of motion changes to 
minimize claws or limbs loading and maintain body balance; these 
abnormal behaviors and postures become increasingly pronounced as 
the severity of lameness escalates. Based on the features utilized for 
lameness detection, automated lameness detection methods can 
be  classified into non-kinematic and kinematic categories. 
Non-kinematic methods focus on the indirect monitoring of 
physiological and production indicators, such as claws weight-bearing, 
local body temperature, milk production, and activity levels, to infer 
the occurrence of lameness. In contrast, Kinematic methods rely on 
changes in movement patterns caused by lameness, primarily 
employing motion sensors or computer vision technology to 
quantitatively analyze and differentiate specific movement 
characteristics of dairy cows (9–11).

In non-kinematic lameness detection methods, researchers have 
conducted studies based on claw weight-bearing and thermal imaging 
detection techniques. For instance, Liu et al. (12) utilized force plates 
to measure claw ground pressure and discovered that lame dairy cows 
exhibited significant differences from healthy individuals in terms of 
peak force and pressure parameter distribution. This finding suggests 
that weight-bearing distribution can serve as a crucial basis for 
lameness identification. Similarly, Lin et al. (13) employed infrared 
thermal imaging technology to monitor claw temperature, revealing 
that lame cows exhibited significantly higher claw temperatures than 
their healthy counterparts (p < 0.001), with temperature variations 
showing a strong correlation with clinical lameness scores. However, 

both methods have inherent limitations. Claw weight-bearing 
detection generally operates under the assumption that “dairy cows 
will transfer their weight from the affected limb to the healthy limb.” 
During the detection process, the individual must remain on the 
platform for a specified duration to obtain data such as peak force, 
average vertical force, and limb weight-bearing transfer frequency, 
which restricts its application in large-scale farms (14). The 
effectiveness of lameness detection using infrared thermal imaging 
relies on the premise that “lameness is accompanied by limb 
inflammation that generates local thermal signals,” but this premise is 
not universally applicable. Even in the presence of inflammation and 
fever, factors such as claw dirt coverage, limb moisture levels, and 
direct sunlight can interfere with the stability of temperature signals, 
thereby diminishing the reliability of detection (15–17).

Lameness detection based on motion sensors typically involves 
the attachment of sensors, such as accelerometers, to the limbs or neck 
of dairy cows to collect motion data. This data is subsequently 
combined with feature extraction and classification algorithms for the 
automatic identification of abnormal gait patterns (18). In early 
studies, Haladjian et al. (19) designed a wearable sensor system that 
successfully collected hind limb gait information from dairy cows, 
achieving a lameness detection accuracy of 91.1% under controlled 
experimental conditions. Research has gradually expanded from 
single-site signals to the fusion of multi-site signals and multi-source 
data. For instance, Gertz et al. (20) combined motion data from neck 
and leg sensors with farm health records, achieving an AUROC of 
86% and an F-Measure of 81% in real farming environments. These 
results indicate that multi-site monitoring and multi-source data 
fusion possess significant application potential on actual farms. 
Further research has begun to focus on critical issues such as the early 
detection and grading of lameness. Thorup et al. (21) analyzed leg 
movement data from 348 Holstein dairy cows across four commercial 
farms, discovering that variables such as walking duration and 
movement indices could effectively distinguish lameness grades at an 
early stage, providing empirical evidence for the use of movement 
characteristics in early lameness detection. Although motion sensor-
based methods offer certain advantages regarding accuracy, they 
necessitate the fitting of each cow with a device, which may induce 
stress in the animals. Additionally, these methods incur high labor and 
equipment costs and often suffer from poor sensor data stability. The 
indicators utilized to assess lameness primarily depend on gait or 
activity features, rendering them vulnerable to interference from other 
abnormal behaviors (22–25). Conversely, computer vision-based 
lameness detection has emerged as a prominent research focus due to 
its non-contact nature, capability to monitor groups, ease of 
integration with existing farm infrastructure, and excellent scalability. 
These methods capture walking images of dairy cows using 2D/3D 
cameras and extract lameness-related features, such as walking speed, 
stride length, back arch curvature, and key point movement 
trajectories, thereby facilitating the automatic identification of 
lameness behavior and the grading of its severity (26–29).

Existing computer vision-based lameness detection methods 
primarily utilize side posture and motion states in horizontal views for 
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analysis. This approach necessitates the creation of dedicated camera 
deployment spaces and is vulnerable to obstructions from fences and 
interference from complex backgrounds. In contrast, lameness 
detection from an overhead view offers several significant advantages, 
including a reduced equipment footprint, enhanced resistance to 
fouling, the absence of occlusion, and the ability to detect multiple 
targets in parallel. Recent attempts have been made to apply this 
method for detecting lameness behavior in cows. Studies have 
demonstrated that effective detection of cow lameness behavior can 
be achieved using RGB and Depth images from an overhead view. For 
instance, Zin et al. (30) extracted dorsal spine sequence information 
from overhead view depth data. They utilized the SVM algorithm to 
classify lameness based on the average height of the spine, achieving 
a discriminatory accuracy of over 70% between lame and non-lame 
cows. Tun et al. (31) reported a maximum detection accuracy of 81.1% 
by extracting the depth value of the highest point on the cow’s back 
and employing multiple machine learning classifiers for lameness 
discrimination. Xin et  al. (32) attained an accuracy of 88.7% in 
lameness detection through feature extraction and classification of 
spatio-temporal streaming fusion images using an improved 
PP-TSMv2 network. Zhang et al. (33) achieved lameness detection 
with an accuracy of 83.05% by identifying keypoints such as the hook 
bone and tail bone and analyzing their movement trajectories. 
Collectively, these studies validate the feasibility of lameness detection 
in dairy cows from an overhead view, while also observing that the 
accuracy of detection is typically low.

Compared to the horizontal viewpoint method, the lameness 
movement features of cows observed from an overhead view are 
relatively inconspicuous, which significantly limits the accuracy of 
detection. Furthermore, existing studies have shown a limited capacity 
to adequately express the features of motion changes and abnormal 
postures, which further impacts the accuracy of lameness detection. 
Overall, lameness detection in dairy cows from an overhead view 
predominantly relies on keypoint localization to extract features of 
motion changes and abnormal postures (34, 35); thus, the precise 
detection of keypoints is fundamental to enhancing lameness 
detection accuracy. Additionally, in practical production 
environments, cows often exhibit complex and varied postural and 
gait changes due to individual differences in pain  locations and 
motion change strategies (27, 36). A single feature may only reflect 
localized aspects of abnormal gait, making it prone to overlook or 
misjudge individuals with atypical features. Some researchers have 
proposed the use of multi-feature fusion to enhance the effectiveness 
of lameness detection (35). However, when too many features are 
included, the presence of invalid or redundant features may introduce 
noise, thereby diminishing the model’s accuracy and robustness (29). 
Consequently, accurately detecting the keypoints of a cow’s back from 
an overhead view, enhancing the feature expression of lameness, and 
conducting feature screening and multi-feature fusion for lameness 
classification have emerged as critical issues for a system for detecting 
cow lameness.

This paper proposes a method for detecting cow lameness based 
on RGB-D data captured from an overhead view. The main 
innovations are as follows:

	 1	 A high-precision cow back keypoint detection method based 
on an overhead view is introduced, establishing a foundation 
for quantifying motion change and abnormal posture features.

	 2	 Six types of lameness features are designed, four of which are 
proposed for the first time. The correlation of these features in 
classifying sound, mild lameness, and severe lameness cows is 
verified, providing a more accurate representation of the 
kinematic changes in cow lameness behavior.

	 3	 The Gini importance index of Random Forest is utilized to 
assess the significance of each feature. To address potential 
statistical bias, the PIMP correction method is introduced, 
constructing an unbiased feature screening system that 
identifies lameness behavior and severity. This method provides 
both theoretical and practical support for developing an 
efficient and robust automated system for detecting 
cow lameness.

2 Materials and methods

2.1 Criteria for evaluating lameness in dairy 
cows

The 5-point gait scoring system proposed by Sprecher et al. (37) 
is among the most widely utilized methods for assessing lameness in 
dairy cows. However, Zhao et al. (36) discovered that in practical 
production applications, the distribution of cows corresponding to 
different scores in the 5-point gait scoring method is highly uneven, 
with certain scores exhibiting extremely low sample proportions. 
Directly applying this method would lead to a significant bias in the 
model toward categories with larger sample sizes. To address the issue 
of sample imbalance and align the scoring system more closely with 
the actual needs of clinical interventions on dairy farms, Zhao et al. 
consolidated the 5-level scoring system into a 3-level system, where 
scores of 1–2 are classified as sound cows, scores of 3–4 indicate cows 
with mild lameness, and a score of 5 denotes cows with severe 
lameness. This classification strategy not only effectively enhances 
sample distribution and improves the stability of the classification 
model but also facilitates the direct mapping of classification results to 
intervention measures in production management, significantly 
increasing the practical value of the system. Consequently, this study 
also adopted a 3-level lameness evaluation standard, categorizing 
dairy cows into sound, mild lameness, and severe lameness, as 
illustrated in Table 1.

2.2 Dataset

2.2.1 Data collection and preprocessing
In this study, videos of cows walking under natural light 

conditions were collected between March 7 and April 16, 2025, at a 
large-scale dairy farm in Hohhot, Inner Mongolia. The farm houses 
approximately 6,800 Holstein cattle, including over 3,500 lactating 
cows. The experiment selected the passageway after milking as the 
data collection area. This passageway measures 28 meters in length 
and 4.5 meters in width. A RealSense D455 depth camera 
(manufactured by Intel Corporation, USA) was vertically installed 3.2 
meters above the center of the passageway to simultaneously capture 
RGB and depth video from an overhead view. The video resolution is 
1280 × 720, with a frame rate of 30 fps. The experiment was conducted 
by two livestock experts who manually screened cows that had finished 
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lactation in batches according to the criteria shown in Table 1. A cow 
was classified into one of three categories: sound, mild lameness, or 
severe lameness, only when both experts agreed on its lameness 
assessment. The cows were then guided into the data collection 
corridor, which allowed only one cow to pass through at a time; the 
majority of sound dairy cows exited through the right-hand guidance 
channel, as shown in Figure 1. During data collection, staff maintained 
a distance from the collection area to allow the cows to move at a 
natural pace. However, they manually removed any cows that lingered 
in the collection area for extended periods. A P52s laptop (Lenovo, 
China) was deployed on-site, utilizing Intel RealSense Viewer 
(v2.56.3) to record an independent .bag file for each cow, with data 
categorized and stored according to the severity of lameness.

For the collected RGB-D data, the following methods were 
employed for preprocessing.

	 1	 Data unpacking: The .bag file was unpacked using the 
pyrealsense2 library, defining a depth range of 1200mm to 
2600mm. RGB frames with a resolution of 1280 × 720 pixels, 
depth pseudo-color frames, and raw depth matrix data were 
exported sequentially. Ultimately, each video sequence 
featuring limping was transformed into sets of RGB image 
sequences, depth pseudo-color image sequences, and raw 
depth matrix data sequences.

	 2	 Data screening: Initially, each RGB image sequence was 
meticulously screened to retain only those frames in which the 
cow fully entered the field of view and moved at a natural gait. 
This process excluded abnormal sequences characterized by 
stuttering, prolonged stationary frames, rapid running, or 
slipping. Subsequently, the corresponding depth pseudo-color 
image sequences were scrutinized to eliminate abnormal 
sequences where the void rate in the cow’s body region was 
equal to or greater than 10%. Ultimately, a total of 741 cow 
walking sequences were selected, comprising 260 sound 
sequences, 237 mild lameness sequences, and 244 severe 
lameness sequences. From the remaining 538 sequences, 2,520 
usable RGB images were chosen for keypoint detection.

	 3	 Depth image preprocessing: Bilateral filtering (spatial domain 
s = 5, grayscale domain r = 0.1) was applied to the raw depth 
matrix data from 741 dairy cow sequences to suppress random 
noise. Subsequently, median filtering with a 3 × 3 window size 

was employed to eliminate outliers caused by isolated textures. 
To address depth holes, nearest-neighbor interpolation was 
utilized, ensuring that depth information in the region of 
interest (ROI) remained intact. Finally, the preprocessed depth 
matrix data sequence was converted into a grayscale 
image sequence.

	 4	 Cow and key point labeling: Labelme (V5.5.0) was utilized to 
label 2520 images of cow backs. A total of eight keypoints were 
identified: poll, withers, left scapula, right scapula, lumbar 
region, left tuber coxae, right tuber coxae and sacral tuber.

2.2.2 Dataset construction
In this study, we constructed the lameness motion dataset and 

the keypoint dataset separately, as illustrated in Table  2. The 
lameness motion dataset comprises a sequence of walking images 
of cows, including both RGB images and their corresponding 
depth images. The keypoint dataset contains RGB images along 
with their keypoint annotations. Both datasets are divided into 
training and validation sets in an 8:2 ratio. The lameness behavior 
dataset comprises 741 sequences of images depicting lame cows, 
with the training set and validation set containing 593 and 148 
image sequences, respectively. Additionally, the keypoint dataset 
consists of 2,520 RGB images, with the training set and validation 
set comprising 2,016 and 504 images, respectively.

2.3 Lameness detection based on RGB-D 
from an overhead view

This study proposes a method for detecting lameness in dairy 
cows based on RGB-D images captured from an overhead view. The 
overall architecture is illustrated in Figure 2 and primarily comprises 
three components: cow back keypoint detection network, lameness 
feature construction, feature selection, and multi-feature fusion for 
lameness classification. First, the keypoint detection network is 
trained using manually annotated RGB images to ensure accurate 
localization of keypoints on the backs of dairy cows. Second, by 
integrating keypoint coordinates with depth image sequences, 
we extract various overhead features that reflect motion changes and 
abnormal postures in dairy cows, thereby quantifying different 
manifestations of lameness. Finally, through statistical analysis and 
feature selection methods, we  assess the correlation of the initial 
feature set and select the most discriminative feature combinations; 
Subsequently, we train the optimized feature combination using a 
multi-feature classifier to facilitate the detection of lameness in 
dairy cows.

2.3.1 Design of the network for detecting 
keypoints on cow’s back

Lameness in dairy cows is often accompanied by alterations in 
back movement patterns and posture. Therefore, accurately 
reflecting the motion changes and abnormal postures in dairy cows 
is crucial for effective lameness detection from an overhead view. 
To further quantify these motion changes and abnormal postures, 
this study draws upon research related to dairy cow gait and 
lameness detection (25, 26, 33). Eight key points were selected, 
including the poll, withers, left scapula, right scapula, lumbar 
region, left tuber coxae, right tuber coxae, and sacral tuber. These 

TABLE 1  Criteria for evaluating lameness in dairy cows.

Score Degree Standard of judgment

1 sound

The back remains level during standing 

and walking; the gait appears normal, 

even if there is slight arching of the back 

while walking.

2 mild lameness

Arching of the back when standing and 

walking, with the walking gait affected by 

short strides in one or more limbs.

3 severe lameness

The back is consistently arched, and each 

step during walking appears sluggish and 

deliberate, exhibiting a marked preference 

or reluctance to bear weight on one or 

more limbs.
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points encompass the central nodes of the spine and reflect the left–
right symmetrical structure, thereby enabling the construction of 
lameness features.

This study employs SimCC (38) as the baseline network for 
keypoint detection on cow backs. Given the accuracy requirements of 
SimCC for coordinate regression, HRNet (39) has been selected as the 
feature extraction backbone. The overall structure is illustrated in the 
keypoint detection network section of Figure  2. The network 
comprises four components: data augmentation, backbone feature 
extraction, Adaptive Graph Convolution, and coordinate classification 
and regression. Initially, the images are randomly rotated at angles of 
0°, 90°, 180°, and 270° to augment the training data and enhance the 
model’s perception of keypoint directions. Subsequently, HR-ACRNet 
is constructed for multi-scale feature extraction to mitigate issues such 
as confusion arising from symmetrical structures. The Adaptive Graph 
Convolution module is then introduced to explicitly model the spatial 
dependencies between keypoints, thereby suppressing noise 
interference from background patterns, dirt, and production marks. 
Finally, the enhanced features are mapped to the SimCC coordinate 
classification and regression branches to achieve high-precision 
keypoint localization.

2.3.1.1 Design of the HR-ACRNet
In keypoint detection tasks, HRNet primarily extracts features 

through local convolution, which limits its ability to capture sufficient 

global context information. This limitation can lead to confusion 
between left and right symmetrical keypoints. To address this issue, this 
study introduces the Adaptive Context Refinement (ACR) module (40), 
which constructs the HR-ACRNet feature extraction network (as 
illustrated in Figure 3) to mitigate problems associated with symmetrical 
structure confusion. The ACR module comprises two components: 
Adaptive Sparse Self-Attention (ASSA) and Feature Refinement 
Feedforward Network (FRFN), as depicted in Figure  4. The ACR 
effectively captures long-range dependencies in both horizontal and 
vertical directions within the spatial domain through ASSA, while the 
FRFN integrates global contextual information in the channel domain, 
thereby significantly enhancing the accuracy of keypoint localization.

Initially, the input image is mapped to 1
4

 feature maps at the base 
resolution through two layers of ×3 3 convolutions with a stride of 2 in 
HRNet, followed by the extraction of high-resolution features via a 
series of Bottleneck modules. Subsequently, multiple branches with 1

8
,  

1
16

, 
1
32

 initial resolution are constructed in parallel at each level, 

facilitating multi-scale information fusion through various 
upsampling and downsampling processes at each stage. Before HRNet 
up-samples the four groups of branch features to the highest resolution 
in equal proportions, an ACR module is introduced on each branch 
to perform adaptive spatial and channel domain refinement on the 
output high-resolution features. This module effectively integrates 
horizontal and vertical long-range dependencies while preserving the 

FIGURE 1

Data acquisition.

TABLE 2  Overview of data sets.

Dataset Sound (n) Mild Lameness 
(n)

Severe 
Lameness (n)

Training set Validation set Total

Lameness motion 

dataset
260 237 244 593 148 741

Keypoint dataset - - - 2016 504 2520
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high-resolution details of HRNet throughout the process, thereby 
providing more discriminative features for subsequent keypoint 
location regression.

In the ASSA layer, the features × ×∈ H W CX   produced by HRNet 
are partitioned into multiple non-overlapping ×M M  windows, and 
the i-th window is flattened to yield ×∈

2M C
iX  . Employing shared 

FIGURE 2

Overall architecture diagram of lameness detection based on overhead view in dairy cows.

FIGURE 3

Structure diagram of HR-ACRNet.
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linear transformations to produce Query, Key, and Value matrices, 
defined as = = =, ,i Q i K i VQ X W K X W V X W , ×∈, , rC d

Q K VW W W  , 
and d  represents the attention dimension for each head. The learnable 
position bias is ×∈

2 2M MB  ; hence, the classic dense self-attention 
(DSA) and sparse self-attention (SSA) are computed by Equations 1, 2, 
respectively. Then, perform a weighted fusion of DSA and SSA.

	 ( )= +DSA Softmax /QK d B
	

(1)

	 ( )= +2SSA ReLU /QK d B
	

(2)

Among them, ( )Softmax ·  is the normalization operation for 
rows, ( ) ( )= 22ReLU max ,0x x .

In the FRFN layer, additional computations are conducted on the 
refined spatial features, adhering to the enhancement-simplification 
principle, as illustrated in Equation 3. The accuracy of keypoint 
localization is enhanced by the comprehensive integration of global 
contextual information in both horizontal and vertical dimensions.

	

( )( )
( )

( )( )( )
( )

=

  = 

= ⊗

=

1

1 2 chan

1 2

out 2

GELU PConv ,

, Split ,

DWConv ,

GEL

ˆ

ˆ ˆ ˆ

ˆ

U

ˆ ˆ

ˆ
r

r

X W X

X X X

X X F R X

X W X 	

(3)

Among them, ( )PConv ·  indicates partial convolution; 
×∈ 2

1 2, r rC CW W   is channel-by-channel linear mapping; ( )GELU ·  is 
the gaussian error linear units; ( )chanSplit ·  represents the operation 
of dividing into two equal parts according to the channel dimension; 
( ) ( )· , ·R F  reform and flattening operations that represent mutual 

transformation between sequences and two-dimensional space; 
( )DWConv ·  indicates channel-wise separable convolution; ⊗ 

represents matrix multiplication between channels; ( )⊗1ˆ ·X F  
responsible for simplifying redundant dimensions by channel.

2.3.1.2 Adaptive graph convolutional
This study employs the SimCC network to detect keypoints on 

the backs of dairy cows. In comparison to traditional keypoint 
localization methods that rely on heat maps, SimCC significantly 
reduces the quantization error associated with pixel grid conversion, 

thereby enhancing the accuracy of keypoint localization. However, in 
real-world production environments, individual variations in the 
patterns on the backs of dairy cows, along with dirt adhesion and 
production marks, create local high-frequency noise in the images. 
This noise interferes with the accuracy of SimCC’s coordinate 
regression, resulting in a shift in the fitted distribution. To mitigate 
this issue, the study introduces an Adaptive Graph Convolutional 
(AGC) module (see Figure 5) following the SimCC keypoint feature 
map (41). By dynamically optimizing the graph’s topological structure 
and enhancing the spatial interaction of keypoint information, the 
AGC module effectively suppresses noise interference and improves 
positioning robustness.

In our study, we denote the input feature map as × ×∈ inC T NX   
and the output feature map as × ×∈ outC T NY  , where inC  represents the 
number of feature channels, T  indicates the time length, and N  
corresponds to the number of keypoints. We employ Equation 4 to 
execute adaptive graph convolution calculations.

	
( )

1

K

k k k k
k

υ

=
= + +∑Y W X A B C

	
(4)

Where, vK  denotes the number of spatial subsets, specifically 
= 3vK . × × ×∈ out in 1 1C C

kW   represents the ×1 1 convolution weight 
associated with the k-th subset. Additionally, ×∈, , N N

k k kA B C   refer 
to the predefined adjacency matrix, the learnable compensation 
matrix, and the data-driven graph, respectively.

kA  is obtained by symmetric normalization, as shown in 
Equation 5.

	

1 1
2 2k kk k

− −
= Λ ΛA A

	 (5)

Among them, the elements of { } ×∈ 0,1 N N
kA  are equal to 1 if and 

only if the keypoint jv  belongs to the k-th neighborhood subset of iv ; 
kΛ  is a diagonal normalized matrix.

The elements of the learnable compensation matrix ×∈ N N
kB   

are optimized synchronously with the network during training and 
are initialized to zero, which enhances the flexibility of the graph 
structure while preserving the predefined topology.

Data-driven graph kC  is calculated based on an embedded 
Gaussian similarity function, as shown in Equations 6, 7.

FIGURE 4

Structure diagram of ACR.
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Among them, θ φ,  are both ×1 1 convolutions of the dimension 
reduction mapping; ( ) ( )θ φ × ×∈ 1, eC T

i jv v   are vector representations 
after the channels are reduced to eC .

	 ( )φθ= T Tsoftmax
kk

kC X W W X
	

(7)

Where, θ φ
× × ×∈ in 1 1, e

k k

C CW W   are the corresponding ×1 1 
convolution kernels.

Finally, the convolution output ′Y  is added to the residual input X ,  
as shown in Equation 8, ensuring the lightweight deployment and 
stability of the model.

	 ( )= +′Y Y X 	 (8)

Among them, if ≠in outC C , the residual mapping ( )·  is 
completed by a layer of ×1 1 convolution for channel alignment.

2.3.2 Construction of lameness feature
Lameness is one of the most prevalent movement disorders 

observed in dairy cows. To maintain balance, lame cows frequently 
exhibit alterations in their movement patterns and abnormal postures. 
As the severity of lameness escalates, these changes and abnormalities 
become increasingly pronounced.

Jones (42) evaluated the typical abnormal gait characteristics of 
lame cows using expert surveys focused on gait aspects. The findings 
indicated that the importance weights of each characteristic in 
assessing lameness were as follows: general symmetry (24%), tracking 
(20%), spine curvature (19%), head bobbing (15%), speed (12%), and 
abduction and adduction (9%).

Although tracking and speed were included in the lameness 
scoring system proposed by Jones (42), the overhead view of this study 
revealed that the distance between the contact points of the front and 
hind limbs was challenging to measure reliably, rendering the tracking 
metric unmeasurable. Moreover, in actual observations, cows 

frequently exhibit random pauses during walking, which makes speed 
an unreliable indicator of ‘walking ease’ and compromises its validity 
as a quantitative metric. Consequently, this study selected four gait 
aspects: general symmetry, spine curvature, head bobbing, and 
abduction and adduction, as core references and integrated them with 
RGB-D data from an overhead view to construct six quantifiable 
lameness features: back curvature (BC), movement asymmetry index 
(MAI), vertical oscillation of the back (VOB), vertical oscillation of 
the head (VOH), trunk inclination (TI), and lateral sway amplitude of 
the spine (LSAS). Specifically, General symmetry corresponds to the 
movement asymmetry index (MAI) and trunk inclination (TI), which 
reveal differences in left–right weight distribution and movement 
patterns. Spinal curvature is represented by back curvature (BC) and 
vertical oscillation of the back (VOB), which characterize the degree 
of kyphosis and dynamic fluctuations in key regions, respectively. 
Nodding corresponds to the vertical oscillation of the head (VOH), 
reflecting the amplitude of head up-and-down movements. Abduction 
and adduction are indirectly represented by lateral sway amplitude of 
the spine (LSAS), characterizing lateral gait abnormalities. The 
aforementioned six features are derived from typical gait 
characteristics established through expert consensus and form a 
complementary relationship in terms of quantification, collectively 
constructing a comprehensive and representative system of gait 
abnormality features.

As illustrated in Figure  6, following preprocessing, all image 
sequences yield RGB image sequences that include keypoint 
coordinates and corresponding depth image sequences. Building upon 
this, and in conjunction with the keypoint annotation results, six 
overhead view limping features are computed. The specific calculation 
method is detailed below.

	(1)	 Back curvature: It is utilized to quantify the degree of spinal 
curvature. In the overhead view, the positions of the withers, 
lumbar region, and sacral tuber are designated as 1p , 2p , 3p , 
respectively. A circle with radius R is fitted around these points. 
The back curvature, denoted as =

1k
R

. The value of k is 
calculated frame by frame, with the maximum value taken as 
the representative feature of back curvature.

	(2)	 Movement asymmetry index: It is utilized to quantify the 
disparity in motion intensity between the left and right sides of 
a cow’s back. Initially, the foreground mask of the dairy cows is 

FIGURE 5

Adaptive graph convolution.
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extracted based on the depth map. The back is then divided into 
left and right halves using the normal direction of the line 
connecting the withers ( 1p ) and the lumbar region ( 2p ). 
Subsequently, Farneback optical flow is applied to each 
RGB  image frame to compute the dense velocity field 
( ) ( ) ( ) =  

T
, , , ,x y u x y v x yF . Following this, the light flow 

amplitude field is defined as ( ) ( )= , ,M x y x yF , and the mean 
light flow amplitudes µL  and µR in the left and right halves (ÙL 
and ÙR, respectively) are calculated. Finally, the asymmetry 
index IMAI is computed using Equation 9, which reflects the 
difference in motion intensity between the two sides.

	

µ µ
µ µ

−
=

+MAI
L R

L R
I

	
(9)

	(3)	 Vertical oscillation of the back: This metric quantifies the dairy 
cows’ vertical oscillation of the back during walking. Calculate 
the difference between the maximum and minimum values of 
the temporal depth at the withers, lumbar region, and sacral 
tuber. Subsequently, determine the maximum value among 
these three differences to represent the vertical oscillation of 
the back.

	(4)	 Vertical oscillation of the head: This metric quantifies the 
vertical oscillation of the head of dairy cows while walking. The 
vertical oscillation of the head is determined by calculating the 
difference between the maximum and minimum values of the 
temporal depth of the poll keypoint in the depth map across 
the sequence frame.

	(5)	 Trunk inclination: This metric quantifies the lateral tilt 
compensation of dairy cows due to uneven forces acting on the 
front or hind limbs. The depth difference between the left and 
right scapulae and between the left and right tuber coxae is 
calculated in each frame, and the maximum absolute value of 
these left–right depth differences is used to quantify 
trunk inclination.

	(6)	 Lateral sway amplitude of the spine: This metric quantifies the 
lateral sway amplitude of the spine of dairy cows during 
walking. The peak-to-valley difference is calculated between 
the center of the shoulder blades, the lumbar region, and the 
sacral tuber in the horizontal direction of the image, with the 
maximum value among the three representing the lateral sway 
amplitude of the spine.

2.3.3 Feature selection and multi-feature fusion 
for lameness classification

This study employs Random Forest (RF) to assess the 
importance of six lameness features in distinguishing the severity 
of lameness. Compared to common feature selection and 
dimensionality reduction methods, such as Principal Component 
Analysis (PCA), LASSO, and Recursive Feature Elimination (RFE), 
RF can effectively model complex nonlinear relationships between 
features and achieve robust and interpretable feature selection 
through Gini importance. This makes RF particularly suitable for 
analyzing multivariate and high-noise data. Considering that 
feature importance evaluation in tree models may be biased (43), 
we  further introduced the Permutation Importance Correction 
Method (PIMP) (44), which enhances the objectivity and biological 
interpretability of feature screening through label permutation and 
statistical correction.

FIGURE 6

Schematic diagram of RGB-D image preprocessing and keypoint detection process. Panel (a) presents the original RGB frame; panel (b) displays the 
cattle segmentation results derived from either semantic segmentation or threshold extraction; panel (c) shows the detection of eight keypoints 
located on the back within the RGB image. Panel (d) depicts the original depth frame; panel (e) presents the cow body area obtained by applying a 
binarization mask to the depth map; and panel (f) indicates that the keypoint coordinates extracted from panel (c) are mapped back to the depth map 
to extract corresponding depth values.
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The specific process of feature screening and multi-feature 
fusion for lameness classification in this study is outlined as 
follows: First, we  train a Random Forest model utilizing the 
original labels to calculate the Gini importance of the six features. 
Next, perform 50 random permutations of the sample labels, 
retrain the model, and construct the importance distribution of 
each feature under the null hypothesis. Subsequently, we select the 
quantile probability of the original feature importance values that 
are situated to the right of the permutation distribution to derive 
the p-value for the PIMP. And then apply the Benjamini-Hochberg 
method for multiple hypothesis correction, retaining only those 
features with a corrected p-value of less than 0.05. Finally, 
we standardize the selected features to have a mean of zero and a 
unit variance, concatenate them into the final feature vector, and 
input them into Random Forest, K-Nearest Neighbors, and 
Support Vector Machines to systematically evaluate the 
performance of each model in identifying lameness using the 
same feature set.

2.4 Evaluation indicators

	(1)	 This study employs PCK@0.05, PCK@0.02, AP, and AR 
indicators to assess the performance of keypoint 
detection networks.

Under the heatmap normalization scale, a detection point is 
deemed correctly located if the Euclidean distance to the ground 
truth point is less than the threshold of 0.05 (or 0.02). The PCK is 
computed by taking the ratio of the number of correctly located 
keypoints to the total number of keypoints, as illustrated in 
Equation 10.

	 1

1pck@0.05 (|| ||2 0.05.max( , ))
N

i i
i

H W
N =

= − ≤∑1 p g
	

(10)

Among them, ip  and ig  are the predicted and ground truth 
coordinates of the i-th keypoint, ×H W  is the size of the heat map, and 
( )·1  is the indicator function.

Average Precision measures the proportion of true positive 
samples that the model detects. In contrast, Average Recall assesses 
the proportion of all true positive samples that are correctly identified, 
as demonstrated in Equations 11, 12.
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(11)
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Among them, iTP , iFP , and iFN  represent the true positives, false 
positives, and false negatives at the i-th threshold, respectively, and n 
denotes the number of thresholds. AP and AR are the average 
precision and recall values across all thresholds, respectively.

	(2)	 This paper employs accuracy, sensitivity, specificity, and Macro 
1F -score to assess the performance of lameness detection.

Accuracy (ACC) represents the proportion of correctly classified 
samples among all samples, as defined in Equation 13.

	
( )

1

1Accuracy ˆ
N

i i
i

y y
N =

= =∑ 1
	

(13)

Among them, N  is the total number of samples, iy  is the true label 
of the i-th sample, and ˆiy  is the predicted label.

Sensitivity (SENS) refers to the proportion of true positives among 
all actual samples of a specific class, thereby evaluating the model’s 
ability to identify samples of that class accurately. For class c, the 
calculation method is detailed in Equation 14.

	
=

+
SENS c

c
c c

TP
TP FN 	

(14)

Where cTP  is the number of true examples in class c, and cFN  is 
the number of false negatives in class c.

Specificity (SPEC) denotes the proportion of true negative samples 
relative to the total number of samples in the class, reflecting the 
model’s capacity to exclude non-class samples. For the c-th class, the 
calculation method is specified in Equation 15.

	
=

+
SPEC c

c
c c

TN
TN FP 	

(15)

Among them, cTN  is the number of true negative examples in 
class c, and cFP  is the number of false positive examples in class c.

Macro 1F -score is calculated by determining the 1F  score for each 
category, as shown in Equation 16, and subsequently computing the 
arithmetic mean of all categories’ 1F -scores to mitigate the effects of 
class imbalance, as described in Equation 17.
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+
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Precision Recall

c c
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c c 	
(16)
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Among them, C  represents the total number of categories, and in 
this study, = 3C .

2.5 Experimental environment and 
parameter settings

This experiment was conducted on an Ubuntu Server 22.04 for 
model training and evaluation. The hardware configuration comprises 
two Intel® Xeon® Gold 6139M CPUs (clock speed: 2.30 GHz), 128 GB 
of RAM, and eight NVIDIA GeForce RTX 3090 graphics cards. The 
software environment integrates Python 3.10.11, CUDA 11.7, PyTorch 
2.0.1, and MMPose 1.3.2, among other deep learning frameworks. 
Detailed experimental parameters are presented in Table 3.
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3 Results

3.1 Performance analysis of keypoint 
detection network and ablation experiment

This study employs SimCC (HRNet) as the baseline and assesses 
the effectiveness of the enhanced keypoint detection model through a 
series of ablation experiments. The experiments evaluate the keypoint 
detection performance of each model using the AP, AR, loss, and 
PCK@0.02 metrics.

Analysis of Figure 7 indicates that, as training iterations progress, 
the proposed AGC-SimCC(HR-ACRNet) achieves significantly faster 
convergence rates and superior final performance on PCK@0.02, AP, 
and AR compared to SimCC(HRNet) and SimCC(HR-ACRNet). 
Specifically, PCK@0.02 approaches approximately one by the 130th 
epoch, while AP and AR stabilize around the 170th epoch. The 
training curves for all three metrics exhibit the fastest initial ascent 
and the smallest fluctuations. The training loss of AGC-SimCC(HR-
ACRNet) converges to below 0.0008 by approximately the 120th 
epoch. This trend demonstrates that the long-range dependency 
modeling introduced by the ACR module and the keypoint space 
structure optimization of the AGC module collaboratively enhance 
the accuracy and robustness of keypoint detection on the cow’s back, 
thereby validating the roles of these two modules in mitigating 
symmetric ambiguity and high-frequency noise.

As shown in Table 4, AGC-SimCC (HR-ACRNet) improved the 
AP and AR by 8.60 and 5.24 percentage points, respectively, compared 
to SimCC (HRNet). Under the more stringent PCK@0.02 metric, 
AGC-SimCC (HR-ACRNet) achieved a keypoint detection rate of 
100.00%. This further validates that the improvement strategy 
proposed in this paper significantly enhances the keypoint detection 
performance of the model.

3.2 Analyzing the correlation of lameness 
features

Figure 8 illustrates the distribution differences among six lameness 
features across three groups of lameness samples. In panels (a), (b), 
and (d), the features BC, MAI, and VOH exhibit overlap between the 
first two levels, yet they distinctly differentiate severe lameness. 
Additionally, panel (c) demonstrates a significant capability for 

lameness discrimination. Conversely, in panels (e) and (f), the features 
TI and LSAS show considerable overlap across all levels, which 
complicates the discrimination of lameness.

As demonstrated in Table  5, the mean values of the six 
lameness features exhibit a consistent trend corresponding to the 
parameter values of these features. This observation indicates a 
close relationship between the lameness features and the 
movement patterns of dairy cows experiencing lameness. However, 
when considering Figure 8, it becomes evident that the degree of 
lameness exhibits a nonlinear relationship with movement 
features. For instance, individuals with mild lameness may display 
milder back arch abnormalities compared to those with severe 
lameness, due to individual variability. This phenomenon, while 
obscured by the average effects in group statistics, can lead to 
inaccuracies in individual lameness classification. Consequently, 
it suggests that the feature scoring system based on a linear 
monotonic assumption does not accurately reflect the underlying 
pathological processes. Therefore, this study plans to incorporate 
nonlinear and multifaceted feature threshold classification 
methods to address these challenges as effectively as possible.

3.3 Evaluation of feature selection and 
multi-feature fusion classification

This study conducts evaluations of statistical significance and 
feature importance for six lameness features, with the results 
presented in Table  6. Among these features, the intergroup 
differences for BC, MAI, and VOB reach statistical significance 
(p < 0.001), and the PIMP-corrected p-value is also significantly 
below 0.05, indicating that these three features possess the strongest 
discriminative ability for lameness classification. The intergroup 
difference for VOH yields a p-value of 0.0002, while the PIMP-
corrected p-value is 0.091. Despite its slightly lower discriminative 
ability compared to the first three features, VOH still demonstrates 
a certain level of discriminative capability. Although TI exhibits a 
high Gini importance (0.19), the PIMP correction does not pass the 
significance test (p = 0.314), suggesting that the importance of this 
feature lacks statistical support, and all indicators of LSAS are found 
to be unsatisfactory.

As shown in Table 7, the optimal feature combination identified 
in this study is BC + MAI + VOB + VOH, which achieves a 
classification accuracy of 0.91 and a Macro F1-score of 0.85 under the 
Random Forest model, significantly outperforming both individual 
features and other feature combinations. Specifically, the feature 
combination of BC, MAI, and VOB markedly enhances classification 
performance. The inclusion of boundary features such as VOH 
further boosts performance; however, the introduction of 
non-discriminative features like TI and LSAS leads to a decline in 
classification efficacy. Taking TI as an example, although its intergroup 
differences are statistically significant (p = 0.0011), the p-value after 
PIMP correction is 0.314, indicating inadequate discriminative 
power. Experiments also demonstrate that incorporating this feature 
diminishes the model’s classification accuracy. This suggests that in 
multi-feature fusion classification, an abundance of features does not 
necessarily yield better results; rather, judicious feature selection is 
vital for optimizing the model’s generalization ability 
and performance.

TABLE 3  Experimental parameter settings.

Hyperparameter Value

Input resolution ×384 192

Batch size 192

Training epochs 300

Optimizer Adam

Base learning rate 0.001

LR schedule MultiStep (170, 200 epoch)

SimCC σ 6.0

SimCC split ratio 2.0

Evaluation metrics COCO AP / AR
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4 Discussion

This study investigates the alterations in movement and abnormal 
postures resulting from lameness. It examines three key aspects: the 
detection of key points on the backs of cows, the construction of 
lameness features, and the selection and fusion of these features, 
aiming to effectively differentiate between varying degrees of lameness.

In terms of keypoint detection performance, this study addresses 
critical factors such as the high symmetry of keypoints on the backs 
of cows and the interference of high-frequency noise in production 
scenarios. It proposes the AGC-SimCC (HR-ACRNet) detection 

method for the first time. Experimental results, as shown in Table 4 
and Figure 7, indicate that AGC-SimCC (HR-ACRNet) significantly 
outperforms the baseline network in terms of PCK, AP, and AR 
metrics. Specifically, the ACR module enhances long-range 
dependency modeling and global information integration capabilities 
through adaptive sparse attention and feature refinement mechanisms. 
Meanwhile, the AGC module improves the model’s robustness to 
high-frequency noise by optimizing the spatial topological 
relationships between keypoints. This design approach aligns with the 
conclusions drawn by Zhou et al. (40) regarding the superiority of 
sparse attention in global information modeling. It supports Shi et al. 

FIGURE 7

Iterative change curve of key indicators during keypoint detection model training. (a) Average precision; (b) Average recall; (c) Loss; (d) PCK@0.02.

TABLE 4  Ablation experiment.

Model AP (%) AR (%) PCK@0.05 (%) PCK@0.02 (%)

SimCC (HRNet) 87.29 92.70 99.21 98.74

SimCC (HR-ACRNet) 92.33 95.14 100.00 99.36

AGC-SimCC (HR-ACRNet) 95.89 97.94 100.00 100.00
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(41) proposal that adaptive graph convolutions enhance structural 
modeling capabilities.

Figure 9 illustrates the keypoint detection results from the 
three networks alongside their corresponding CAM heatmaps. In 
comparison to the baseline network depicted in Figure 9a, the 
ACR module presented in Figure  9b effectively mitigates the 
keypoint detection confusion caused by the symmetric structure 
of the backbone by modeling long-range dependencies. 
Furthermore, as shown in Figure 9c, the AGC module significantly 
enhances the accuracy of keypoint localization through the 
optimization of the spatial topological structure of keypoints. A 
comprehensive analysis of the CAM heatmaps indicates that the 
AGC-SimCC (HR-ACRNet) model not only achieves exceptional 
performance in keypoint localization but also demonstrates 
greater robustness in mitigating local high-frequency noise 
interference, such as patterns and dirt. These findings substantiate 
the model’s efficacy in addressing challenges related to strong 
symmetry and noise interference in practical applications, thereby 

establishing a solid foundation for subsequent lameness 
feature construction.

AGC-SimCC (HR-ACRNet) was compared with prominent 
keypoint detection networks, including DeepLabCut (45) and LEAP 
(46), as illustrated in Table 8. The results indicate that AGC-SimCC 
(HR-ACRNet) exhibits significantly superior detection performance 
compared to both DeepLabCut and LEAP, particularly under complex 
conditions characterized by high symmetry of keypoints on the cow’s 
back and substantial noise. These findings further substantiate that the 
integration of long-range dependency modeling and graph structure 
optimization effectively enhances the accuracy of keypoint detection 
on the backs of cows. The conclusions drawn from this study align 
with the research conducted by Chen et al. and Zhang et al. (47, 48), 
which emphasizes the enhancement of robustness in animal pose 
estimation through graph structures, thereby validating the essential 
role of higher-order spatial constraints in improving keypoint 
detection performance.

From the perspective of feature construction, this study is based on 
the typical abnormal gait manifestations of lame cows as proposed by 
Jones (42). It combines these manifestations with research conducted 
from an overhead view to design six quantifiable lameness features. As 
illustrated in Figure 8 and Table 6, back curvature (BC), movement 
asymmetry index (MAI), and vertical oscillation of the back (VOB) 
demonstrate the most significant discriminative performance in 
lameness grading. Additionally, vertical oscillation of the head (VOH) 
offers some discriminative advantage, while trunk inclination (TI) and 
lateral sway amplitude of the spine (LSAS) contribute relatively less. 
These findings are consistent with previous studies that highlight the 
significance of spinal curvature (26, 29), head bobbing (49), and general 
symmetry (23) in the characterization of limping. Moreover, this 

FIGURE 8

Box plots of six types of lameness features. (a) Back curvature; (b) Movement asymmetry index; (c) Vertical oscillation of back; (d) Vertical oscillation of 
head; (e) Trunk tilt asymmetry index; (f) Lateral sway amplitude of spine.

TABLE 5  Estimated mean values of the six lameness indicators.

Degree BC 
(1/
cm)

MAI VOB 
(cm)

VOH 
(cm)

TI 
(cm)

LSAS 
(cm)

Sound 0.00021 0.01200 4.72 7.92 3.63 5.33

Mild 

lameness
0.00054 0.02700 8.23 10.36 5.18 6.67

Severe 

lameness
0.00093 0.06400 12.90 17.28 6.76 9.18
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research extends these concepts to quantifiable metrics under overhead 
conditions, thereby providing new dimensions for automated limping 
detection and enriching the existing system of limping 
discrimination features.

Spinal curvature is recognized as one of the most apparent 
external indicators of lameness (26, 29). Back curvature (BC) serves 
as an effective metric for quantifying the degree of kyphosis, thereby 
reflecting the abnormal posture of the back associated with 

TABLE 6  Statistical significance and feature importance evaluation of six lameness indicators.

Features Inter-group 
significance (p)

Gini importance PIMP-corrected 
p-value

Discriminative features

BC 0.0003 0.24 0.014 Yes

MAI 0.0006 0.26 0.010 Yes

VOB 0.0001 0.21 0.022 Yes

VOH 0.0002 0.15 0.091 Weak

TI 0.0011 0.19 0.314 No

LSAS 0.0048 0.06 0.242 No

TABLE 7  Performance evaluation of lameness classification using multi-feature fusion.

Features Algorithm ACC Sound Mild Lameness Severe Lameness Macro 
1F

SENS SPEC SENS SPEC SENS SPEC

BC

RF 0.77 0.82 0.81 0.61 0.86 0.66 0.93 0.73

KNN 0.74 0.80 0.80 0.60 0.85 0.64 0.92 0.71

SVM 0.73 0.80 0.78 0.58 0.84 0.61 0.91 0.70

MAI

RF 0.78 0.84 0.81 0.62 0.87 0.67 0.93 0.74

KNN 0.77 0.82 0.80 0.61 0.87 0.66 0.92 0.73

SVM 0.77 0.81 0.79 0.60 0.84 0.65 0.91 0.72

VOB

RF 0.73 0.80 0.79 0.53 0.83 0.61 0.89 0.69

KNN 0.71 0.78 0.78 0.52 0.81 0.60 0.88 0.67

SVM 0.70 0.77 0.76 0.51 0.80 0.59 0.87 0.67

VOH

RF 0.71 0.78 0.76 0.50 0.81 0.60 0.88 0.67

KNN 0.70 0.76 0.76 0.49 0.80 0.59 0.88 0.66

SVM 0.69 0.75 0.75 0.49 0.80 0.58 0.86 0.65

TI

RF 0.63 0.69 0.72 0.36 0.75 0.44 0.85 0.59

KNN 0.61 0.67 0.71 0.35 0.74 0.42 0.84 0.58

SVM 0.62 0.66 0.70 0.35 0.74 0.41 0.83 0.5

LSAS

RF 0.62 0.72 0.74 0.38 0.77 0.45 0.86 0.61

KNN 0.58 0.70 0.73 0.36 0.75 0.43 0.84 0.59

SVM 0.59 0.71 0.73 0.35 0.74 0.42 0.83 0.59

BC + MAI + VOB

RF 0.88 0.94 0.94 0.77 0.98 0.80 0.96 0.83

KNN 0.86 0.92 0.94 0.77 0.96 0.76 0.97 0.81

SVM 0.82 0.88 0.90 0.72 0.90 0.74 0.91 0.75

BC + MAI + VOB + VOH

RF 0.91 0.96 0.95 0.83 0.97 0.82 0.98 0.85

KNN 0.88 0.93 0.95 0.88 0.97 0.80 0.97 0.85

SVM 0.85 0.91 0.92 0.84 0.93 0.79 0.94 0.78

BC + MAI + VOB + VOH + TI

RF 0.86 0.93 0.94 0.77 0.94 0.79 0.96 0.81

KNN 0.82 0.88 0.90 0.73 0.90 0.75 0.91 0.76

SVM 0.82 0.87 0.89 0.74 0.91 0.73 0.91 0.75

All features RF 0.83 0.91 0.92 0.74 0.92 0.76 0.93 0.78

KNN 0.81 0.87 0.89 0.72 0.89 0.73 0.90 0.75

SVM 0.79 0.86 0.87 0.69 0.87 0.71 0.88 0.73
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lameness. Hind limb claw diseases frequently lead to compensatory 
movements, such as head-up or hip-up postures, in dairy cows (50). 
The vertical oscillation of the back (VOB) quantifies this 
compensatory behavior by assessing the dynamic fluctuations of 
key points. Asymmetry in movement is a significant characteristic 
of lameness (23), and the movement asymmetry index (MAI) 
directly reflects alterations in gait symmetry by characterizing the 
differences in movement intensity between the left and right sides 
of the cow’s back. Nodding movements are particularly pronounced 
when abnormalities are present in the front limbs (49, 50). The 
vertical oscillation of the head (VOH) quantifies the amplitude of 
head movement; however, its significance may be constrained due 
to the proportion of individuals with front limb lameness. 
Additionally, lame dairy cows often display uneven body weight 
distribution, which was quantified using trunk inclination (TI) in 
the experiment. Nonetheless, this indicator relies on the depth 
values of key points along the edge of the cow’s back, and its 
accuracy is susceptible to image quality and the precision of key 
point localization, resulting in limited applicability under the 
conditions of this study. Abduction and adduction characteristics 
have been confirmed to correlate with lameness (42); the lateral 
sway amplitude of the spine (LSAS), as a dorsal mapping of these 
characteristics from an overhead view, can indirectly reflect lateral 
gait abnormalities. However, due to the small amplitude of lateral 

sway, the signal-to-noise ratio is low under current resolution and 
noise conditions, leading to inadequate quantification effectiveness.

From the perspective of feature selection and fusion, dairy cows 
exhibit diverse gait changes due to variations in the location of 
lameness-related pain and individual movement adaptation strategies. 
Single features often reflect localized manifestations of abnormal 
movement, which may lead to potential omissions or misjudgments. 
Consequently, feature fusion has emerged as a significant trend in 
lameness classification (27, 29). Multi-feature fusion integrates 
information from multiple kinematic dimensions, thereby enabling 
effective differentiation of lame individuals. The experimental results 
of this study (see Table 6) further validate the substantial role of multi-
feature methods in improving the limping detection rate and 
classification sensitivity, consistent with the findings of Russello 
et al. (35).

Although multi-feature fusion strategies demonstrate significant 
advantages in limping classification, the simple combination of all 
features does not necessarily enhance model performance. As shown 
in Table  6, the accuracy and Macro F1 scores of the full feature 
combination are lower than those of core feature combinations, such 
as BC, MAI, and VOB. This indicates that incorporating features with 
insufficient discriminative power may actually weaken the model’s 
generalization ability. Therefore, the selection of key features is critical 
for lameness detection. It is noteworthy that although the TI feature 
scored highly in the Gini importance ranking (0.19), its PIMP-
corrected p-value was 0.314, failing to pass the significance test. 
Additionally, when TI was included in the model presented in Table 7, 
the accuracy rate actually decreased, further indicating its limited 
discriminative role. The results depicted in Figure 10 also show that 
the true Gini importance of BC, MAI, and VOB is significantly higher 
than that of a random distribution, indicating their key discriminative 
capabilities. In contrast, the true Gini importance of TI and LSAS 
overlaps with the null distribution, lacking independent discriminative 
value. These results not only reveal the differential contributions of 
various features to limping classification but also intuitively 
demonstrate the important role of PIMP correction in feature 

FIGURE 9

Comparison of keypoint detection results and heat maps of different models. (a) SimCC (HRNet); (b) SimCC (HR-ACRNet); (c) AGC-SimCC (HR-
ACRNet).

TABLE 8  Performance comparison of mainstream keypoint detection 
networks.

Model AP 
(%)

AR 
(%)

PCK@0.05 
(%)

PCK@0.02 
(%)

AGC-SimCC 

(HR-ACRNet)
95.89 97.94 100.00 100.00

DeepLabCut 

(ResNet-101)
88.74 91.20 97.53 95.82

LEAP (FCN) 84.28 89.35 96.02 93.65
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selection, providing a reliable theoretical basis for subsequent 
model optimization.

To validate the superiority of the proposed method for limping 
classification from a comprehensive perspective, this study compared 
the classification results of AGC-SimCC (HR-ACRNet) with those 
from recent related studies, as presented in Table  9. Early gait 
abnormality detection methods primarily relied on single features. For 
instance, Zin et al. (30) and Tun et al. (31) utilized limited features 
based on spinal height, achieving accuracy rates of only 70.3 and 
81.1%, respectively. In recent years, Xin et al. (32) and Zhang et al. (33) 
introduced multi-feature or spatio-temporal flow fusion methods, 
which enhanced detection accuracy. However, the feature selection 
and multi-feature fusion strategy employed in this study improved the 
accuracy of limping classification to 91%, significantly outperforming 
existing methods and further validating the effectiveness of the 
proposed approach.

In summary, this study proposed the AGC-SimCC (HR-ACRNet) 
keypoint detection method, which significantly improved the accuracy 
of bovine back keypoint localization, thereby establishing a foundation 
for subsequent feature construction. Six quantitative features for 
lameness under overhead conditions were designed, with MAI and 
VOB being the first to demonstrate strong discriminative capabilities, 
complementing traditional indicators such as spinal curvature and 
general symmetry. Furthermore, an automated lameness detection 
framework integrating feature selection and fusion was developed, 
offering advantages of non-contact operation, low cost, and ease of 
deployment. Overall, the proposed method provides practical 
solutions and technical support for intelligent health monitoring of 
dairy cows in livestock farms.

This study acknowledges several limitations. First, the research 
data were collected at a specific time from a singular indoor fixed 
location on one farm, which restricts the generalizability of the 

findings across different climatic and ground conditions. Second, 
critical information regarding the age, parity, and pregnancy status of 
the cows was not recorded during data collection, thereby limiting the 
potential for in-depth analysis of group differences. Finally, although 
the overhead view provides advantages such as reduced occlusion and 
ease of deployment, it also has the drawback of not allowing direct 
observation of the limbs and claws. The manifestations of lameness 
are primarily reflected in the movement characteristics of the back and 
head, and the relatively low video frame rate (30 fps) further 
complicates the capture of details related to rapid movements.

Future research will involve collecting data from dairy cows of 
various breeds under different production conditions across multiple 
time intervals to enhance the model’s generalization capability. By 
integrating data on disease location, etiology, and factors such as age, 
parity, and pregnancy status, we  will perform population-specific 
analyses. Furthermore, we will investigate the use of high-quality data 
support, including higher frame rates and higher-resolution depth 
data, along with more refined feature construction methods, to 
develop a limping detection system that possesses broader applicability 
and population-specific characteristics. This will provide reliable 
technical support for automated limping detection, etiological 
diagnosis, and early intervention.

5 Conclusion

This study addresses the challenges of unclear features and low 
accuracy in detecting lameness in cows from an overhead view. It 
proposes a systematic detection method based on RGB-D data, which 
includes high-precision back keypoint localization, overhead view 
feature construction, unbiased feature selection and multi-feature 
fusion classification. This method effectively quantifies changes in 

FIGURE 10

PIMP histogram. The blue bar chart in the figure illustrates the ‘null distribution’ of the importance of the corresponding feature following 50 random 
label permutations, while the red dotted line signifies the true Gini importance of the feature based on the original labels.
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movement and abnormal postures caused by lameness, enabling 
accurate classification of individuals into sound, mild lameness, and 
severe lameness categories. Experimental results indicate that features 
such as back curvature, movement asymmetry index, vertical 
oscillation of the back, and vertical oscillation of the head demonstrate 
varying degrees of lameness discrimination capability. The lameness 
identification accuracy achieved through multi-feature fusion reaches 
91%, significantly outperforming both single-feature methods and 
existing overhead view detection methods. The findings validate the 
feasibility and advantages of using overhead view RGB-D data for 
automated lameness detection, providing a viable technical pathway for 
non-contact, low-cost lameness monitoring in dairy farms. Future 
research will expand the range of application scenarios and sample 
categories, and will explore more universally applicable overhead view 
lameness features to enhance the practical implementation of intelligent 
dairy cow health monitoring and precision livestock management.
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TABLE 9  Performance comparison with existing overhead view-based cow lameness detection methods.

Author (Year) Feature(s) Multi-feature 
selection

Classification Best classifier Accuracy (%)

Zin et al. (2022) (30) Mean spinal height No Lame/Non-lame SVM 70.30

Tun et al. (31)
Sequence of dorsal spine 

apex
No Lame/Non-lame RF 81.10

Xin et al. (32)
Spatiotemporal fused 

features
No Lame/Non-lame Cow-TSM 88.70

Zhang et al. (33) 8 motion change features No
Sound, Mild lameness and 

Severe lameness

threshold discrimination 

method
83.05

Ours 6 motion change features Yes
Sound, Mild lameness and 

Severe lameness
RF 91.00
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