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To understand the effect of Seneca valley virus (SVV) VP4 protein on innate immune 
factors, the VP4 gene was cloned into the pEGFP-C1 expression plasmid to construct 
the pEGFP-C1-VP4 recombinant plasmid. After the recombinant plasmid was 
transfected into 293 T cells, the cell fluid was collected 24 h after transfection 
for western blot assay to identify the correctness of VP4 protein expression. 
Cell culture medium was collected from un-transfected and transfected cells at 
three time points (12, 24, and 36 h). mRNA expression levels of cytokines (IL-1α, 
IL-1β, CCL-2, CCL-5, CXCL-10, and TNF-α) at three time points were detected 
by quantitative real-time PCR (qPCR) method, and relative quantitative analysis 
was performed by 2-ΔΔCt method. The results indicated that the expressed SVV 
VP4 protein exhibits good activity in vitro. Overexpression of the VP4 protein 
could significantly promote the transcription of IL-1α and IL-1β at 24 and 36 h. In 
addition, the transcription of CCL-2 and CCL-5 was also significantly promoted 
at 36 h, whereas the transcription of CCL-10 was significantly promoted only 
at 12 h. The TNF-α transcription was significantly inhibited at all the three time 
points. This study provides an important basis for the pathogenic mechanism of 
SVV and vaccine design in the future.
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1 Introduction

Seneca valley virus (SVV), also known as seneca type A virus (SVA), belongs to the 
Picornaviridae family and the Senecavirus genus (1). The virus particle is icosahedral 
symmetrical no envelope and the genome is single-stranded positive-strand RNA. After SVV 
infecting pigs, it can cause obvious blisters and ulceration lesions on the nasal mirror and 
hooves of pigs, and cause symptoms such as lameness, loss of appetite, drowsiness and fever 
in pigs at the same time. Since its clinical symptoms are highly similar to those of foot-and-
mouth disease (FMD), swine vesicular disease (SVD), and vesicular stomatitis (VS), it is 
difficult to distinguish between them, which increases the difficulty of its prevention (2). In 
2015, SVV broke out in China. Subsequently, SVV outbreaks occurred successively in Fujian, 
Guangdong, Heilongjiang and other places (3–6). Retrospective monitoring showed that there 
were varying degrees of SVV contamination in pig herds in seven provinces (autonomous 
regions), namely Hunan, Yunnan, Xinjiang, Liaoning, Fujian, Hubei, and Guangxi, from 2016 
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to 2018 (7). Since 2015, the Chinese SVV isolates have undergone 
rapid evolution and been clustered into five genetic branches (8). 
Currently, SVV still widely exists in various countries and poses 
potential hazards to pig farms (9).

Among the SVV structural proteins, VP1, VP2, and VP3 are all 
exposed on the surface of the viral particle, while the VP4 protein, 
with a length of approximately 72 amino acids, is located inside the 
viral capsid and is relatively conserved among the four structural 
proteins (10). Mutations in VP4 can alter the permeability of the host 
cell membrane and enhance the ability of the viral genome to 
be delivered to cells. The VP4 protein could induce the production of 
neutralizing antibodies during virus infection of host cells (11). 
Moreover, Panjwani et  al. found that during the process of small 
ribonucleic acid viruses entering cells, the internal capsid protein VP4 
is released from the virus and interacts with the cell membrane (12). 
These results indicate that the VP4 protein plays an important role in 
promoting the membrane fusion process between the virus and the 
host cell.

Cytokines play a significant role in resisting viral invasion (13). By 
exploring the changes of cytokines after viral infection, identifying key 
cytokines that inhibit viral proliferation, and clarifying their 
mechanisms of action, it is helpful to develop protein products for 
treatment or as vaccine adjuvants for the treatment and prevention 
and control of diseases. However, there are still no relevant studies on 
the regulation of cytokines by SVV VP4 at present. To explore the 
effect of SVV VP4 protein on cytokines, in this study, the constructed 
pEGFP-C1-VP4 plasmid was transfected into 293 cells. The VP4 
protein was identified as having in vitro activity by western blotting. 
Subsequently, the cells were recovered and nucleic acids were extracted 
at 12, 24, and 36 h. The transcriptional levels of interleukin (IL) (IL-1α 
and IL-1β), chemokines (CCL-2, CCL-5, and CXCL-10) and tumor 
necrosis factor (TNF-α) were detected by quantitative real-time PCR 
(qPCR) method to preliminarily explore the effect of SVV VP4 protein 
on cytokines, thereby providing an important basis for the pathogenic 
mechanism of the virus and vaccine design.

2 Materials and methods

2.1 Cells and viruses

The SVV CH-GDZQ-2018 strain (GenBank accession number: 
MN423333), 293 cells, pEGFP-C1 (+) vector containing the EGFP 
gene, and Top10 competent cells were preserved by our laboratory.

2.2 Primer design

Based on the full-length SVV gene sequence available in the NCBI 
GenBank database, primers for amplifying the SVV VP4 protein 
sequence were designed using Premier 5.0 software. The sequences 
were as follows: SVV-VP4-F: 5′-GGAAGATCTGGTAATGTT 
CAGACA-3′; SVV-VP4-R: 5′-CGCGGATCCTTTGAGGTAGCC 
AAGA-3′. The underlined regions in the forward and reverse primers 
represent the Bgl II and BamH I restriction sites, respectively. The 
expected amplification product was approximately 214 bp. The SVV 
VP4 gene-specific primers were synthesized by Nanjing GenScript 
Biotech Corporation.

2.3 VP4 gene amplification

Using reverse-transcribed SVV cDNA as the template, the VP4 
gene was amplified with the SVV-VP4-F and SVV-VP4-R primers. 
The PCR reaction (50 μL) was performed under the following 
conditions: 95 C for 3 min (initial denaturation), 35 cycles of 95 °C for 
15 s, 56 C for 15 s, 72 C for 30 s and final extension at 72 °C for 5 min. 
The PCR products were analyzed by 1% agarose gel electrophoresis. If 
the results matched expectations, the target gene was purified using a 
gel extraction kit (Juhemei Biotechnology Co. Ltd., Beijing, China).

2.4 VP4 product digestion and ligation

The VP4 PCR product and the pEGFP-C1 plasmid were digested 
with BamH I and Bgl II enzymes (Thermo Fisher Scientific, Shanghai, 
China). After digestion, electrophoresis was performed to confirm 
successful digestion. The purified VP4 gene was then ligated into the 
pEGFP-C1 expression vector.

2.5 Transformation and colony PCR 
screening

The ligation product was transformed into competent cells and 
plated on kanamycin-resistant Luria-Bertani (LB) agar plates, followed 
by overnight incubation at 37 C for 15 h. Three single colonies were 
randomly selected and inoculated into 700 μL of kanamycin-
supplemented LB broth. After mixing, 1 μL of the bacterial suspension 
was used for colony PCR screening.

2.6 Plasmid digestion verification

Plasmid pEGFP-C1-VP4 was extracted from PCR-positive 
colonies and subjected to double digestion with BamH I and Bgl 
II. Successful digestion confirmed the correct plasmid construction. 
The positive plasmid was sent to Nanjing GenScript Biotech 
Corporation for sequencing.

2.7 Cell culture

A total of 293 cells preserved in liquid nitrogen were thawed 
rapidly in a 37 °C water bath and resuspended in DMEM medium 
(Thermo Fisher Scientific, Shanghai, China) supplemented with 10% 
fetal bovine serum (FBS) (Thermo Fisher Scientific, Shanghai, China) 
and 1% penicillin–streptomycin (P/S) (Solaibao Biotechnology Co. 
Ltd., Beijing, China). The cells were cultured in a 37 C, 5% CO2 
incubator. When cell confluence reached 90%, they were passaged. 
After confirming good cell viability and sufficient density, the cells 
were seeded into 12-well plates for transfection.

2.8 Western blot analysis

When the cell density of the 12-well plate reached 
approximately 80%, the successfully constructed pEGFP-C1-VP4 
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plasmid was transfected into 293 cells by the liposome transfection 
method with the ExFect transfection reagent kit (Vazyme 
Biotechnology Co., Ltd., Nanjing, China). The cells were cultured 
at 37 C for 24 h, and a blank 293 cell control group was set up 
simultaneously. Cell proteins were collected 24 h after transfection 
for SDS-PAGE electrophoresis and transfer. GFP murine 
monoclonal antibody (1:1,000) (Cowin Biotech Co. Ltd., Beijing, 
China) was used as the primary antibody, and horseradish 
peroxidase-labeled sheep anti-mouse IgG (1:10,000) (Cowin 
Biotech Co. Ltd., Beijing, China) was used as the secondary 
antibody for the identification of VP4 protein.

2.9 qPCR for cytokine detection

A total of 293 cells were spread on 12-well plates and cultured in 
a 5% CO2 and 37 C incubator until the cell density reached 
approximately 80% for transfection. Experimental groups: pCMV-HA 
(blank plasmid) transfection group and recombinant plasmid pEGFP-
C1-VP4 transfection group, with three replicates in each group. 
Transfection was set up in three time periods (12, 24, and 36 h). Cells 
were recovered, nucleic acids were extracted, reverse transcription was 
performed, and then qPCR detection of cytokines was carried out 
using the primers (Supplementary Table  1). Reaction procedure: 
pre-denaturation at 95°C for 30 s; 95 C for 5 s, 60 C for 35 s, a total of 
40 cycles.

2.10 Statistical analysis

The qPCR data was analyzed using the 2−ΔΔCt method for 
relative quantification. The results were visualized using GraphPad 
Prism 5.0 software. Statistical significance was denoted as follows: 
*(p < 0.05) represented statistically significant; **(p < 0.01) 
represented highly significant; ***(p < 0.001) represented 
extremely significant; (p > 0.05), ns represented no 
statistically significant.

3 Results

3.1 SVV VP4 expression plasmid 
construction and protein expression 
identification

Using SVV nucleic acid as the template, RT-PCR was performed 
for amplification. The amplification product was subjected to 1% 
agarose gel electrophoresis. The result showed that a clear and specific 
band of approximately 213 bp, consistent with the expected fragment 
size. This result confirmed SVV VP4 gene was successfully 
amplificated (Figure 1A). Three colonies from the transformed agar 
plates resistant to kanamycin were randomly selected and inoculated 
into LB medium for cultivation. Subsequently, PCR amplification was 
performed. 1% agarose gel electrophoresis showed that all three 
colonies had specific bands. The bacterial solutions were sent to the 
company for sequencing. The bacterial solutions with correct 
sequences were used for plasmid extraction and were named pEGFP-
C1-VP4. The recombinant plasmid was subjected to double enzyme 
digestion with BamH I and BgI II restriction enzymes. The 1% agarose 
gel electrophoresis results showed that a specific band of approximately 
213 kb was cut out, which was consistent with the expectation, 
confirming that the recombinant plasmid pEGFP-C1-VP4 was 
successfully constructed (Figure 1B). Subsequently, the expression 
product of recombinant plasmid pEGFP-C1-VP4 was detected by 
SDS-PAGE and immunoblotting assay. The results showed that a 
clearly antigenic band appeared on the nitrocellulose membrane, with 
a molecular weight of approximately 36 kDa. This result confirmed 
that the expressed protein was the recombinant VP4 protein with an 
EGFP tag (Figure 1C).

3.2 The effect of overexpression of SVV 
VP4 on IL

The pEGFP-C1-VP4 recombinant plasmid were transfected into 
293 cells. Cells were collected at 12, 24, and 36 h after transfection, and 

FIGURE 1

SVV VP4 expression plasmid construction and protein expression identification. (A) SVV VP4 gene amplification; lane1: negative, lane2: sample; (B) SVV 
VP4 expression plasmid double enzyme digestion identification; lane1: VP4-non-digested, lane2: VP4-digested; (C) SVV VP4 protein expression 
identification in vitro by Western blot. lane1: Control, lane2: VP4.
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the transcriptional level of IL-1α and IL-1β in the cells was detected 
by quantitative real-time PCR (qPCR). As shown in Figure 2, the VP4 
protein could significantly promote the transcription of IL-1α at 12, 
24, and 36 h, and promote the transcription of IL-1β only at 24 
and 36 h.

3.3 The effect of overexpression of SVV 
VP4 on chemokines

After transfection, the transcriptional levels of CCL-2, CCL-5, and 
CXCL-10 in the cells were also detected by qPCR. As shown in Figure 3, 
the VP4 protein could significantly inhibit the transcription of CCL-2 at 
12 h, and promote the transcription of CCL-2 at 36 h. However, there was 
no significant effect on the transcription of CCL-2 at 24 h. In addition, the 
VP4 protein could significantly promote the transcription of CCL5 at 12 
and 36 h, and there was no significant effect on the transcription of CCL-5 
at 24 h. We also found that the VP4 protein could significantly promote 
the transcription of CXCL-10 at 12 h, but there was no significant effect 
on the transcription of CCL-10 at 24 and 36 h.

3.4 The effect of overexpression of SVV 
VP4 on tumor necrosis factor

The transcription level of TNF-α in the cells was detected by 
qPCR after transfection. As shown in Figure 4, the VP4 protein could 
significantly inhibit the transcription of TNF-α at 12, 24, and 36 h.

4 Discussion

SVV disease is widely distributed in various regions of China. 
Since its first discovery in Guangdong province, many provinces have 
been successively reported SVV infection outbreaks (3–6). As it is an 
RNA virus with strong variability, the future epidemic situation and 
variant strains of this virus are difficult to predict, and currently there 
is no commercial vaccine (8). Cytokines play an important role in the 
innate immunity of the body. To explore the effect of SVV VP4 protein 
on cytokines and to provide theoretical basis for the formulation of 

antiviral strategies, vaccine design, disease diagnosis and treatment, 
the present study constructed a plasmid expressing the VP4 protein 
and transfected it into 293 cells in vitro. qPCR assay was carried out 
to observe the effects of VP4 transfection at different time points on 
1 L-1α, IL-1β, CCL-2, CCL-5, CXCL-10, and TNF-α.

After the virus infects the host, the host itself often rapidly regulates 
the expression of cytokines and activates the local inflammatory 
response (14, 15). When African swine fever virus (ASFV) infects the 
host, it can result in exacerbated immune responses and increase levels 
of serum pro-inflammatory IL-1α and IL-1β (16). Rotavirus infection 
can also significantly increase the level of 1 L-1β in serum (17). Further 
study showed that ASFV H240R inhibited the NF-κB signaling causing 
a significant reduce in the transcription level of host 1 L-1β (18). 
Hepatitis B virus inhibits LPS-induced NLRP3 inflammasome activation 
and IL-1β production by suppressing the NF-κB pathway (19). These 
results indicate that activation of the NF-κB signaling pathway and 
caspase-1 are important steps in promoting the production of IL-1β. The 
results of this study show that the SVV VP4 protein can significantly 
promote the transcription of IL-1β. Whether the NF-κB pathway is 
involved in the regulation of IL-1β by VP4 requires further research.

During the inflammatory response process, the chemokines 
produced by the host can attract immune cells to the local tissue 
triggering an immune response and defending against pathogen 
invasion (15). Long coronavirus infection can upregulate CCL2 (20). 
The duality function of CXCL10, being either protective or pathogenic, 
is determined by the interplay between the host immune competence 
and the nature of the viral pathogen (21). Research has indicated a 
protective role for CXCL10 against specific RNA viral infections, 
including those caused by SARS-CoV and Epstein–Barr virus (EBV) 
(22, 23). Influenza A virus can induce CCL5 and CXCL10 level by TLR3 
signaling pathway (24). Hepatitis A virus infection can increase the 
production of CXCL10 by RIG-I-like receptor signal molecules (25). 
This study shows that the SVV VP4 protein significantly inhibits the 
transcription of CCL-2 and promotes the transcription of CXCL-10 in 
the early stage. It can significantly promote the transcription of CCL-2 
and CCL-5  in the later stage. These results indicate that VP4 can 
regulate the expression of chemokines. TNF-α plays a crucial role in 
viral replication. The host can regulate TNF-α production through the 
NF-κB and JAK/STAT pathways to inhibit the replication of swine fever 
virus (26). Human immunodeficiency virus (HIV) can affect its own 

FIGURE 2

SVV VP4 overexpression regulates IL-1α (A) and IL-1β (B) expression. ***p < 0.001 represented extremely significant.
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proliferation through the TNF/TNFR pathway. HIV can encode 
proteins to interfere with the TNF-α signaling pathway of host cells, 
thereby inhibiting the function of TNF-α and facilitating its own 
proliferation (27, 28). Human cytomegalovirus (HCMV) and Epstein–
Barr virus (EBV) can encode proteins that mimic host cell receptors, 
and these mimetic receptors may competitively bind to TNF-α, thereby 
preventing the binding of TNF-α to its true receptor and inhibiting the 
function of TNF-α, facilitating their own proliferation (29, 30). In this 

study, the SVV VP4 protein can significantly inhibit the transcription 
of TNF-α, suggesting that the VP4 protein may affect virus replication 
by regulating the production of TNF-α.

5 Conclusion

This study demonstrates that the expressed SVV VP4 protein 
exhibits good activity in vitro. Overexpression of the VP4 protein 
significantly promotes the transcription of IL-1α, IL-1β, CCL-2, 
CCL-5, and CCL-10, and inhibits the transcription of TNF-α at 
different time points. These results provide an important basis for the 
pathogenic mechanism of SVV and vaccine design in the future.
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FIGURE 3

SVV VP4 overexpression regulates CCL-2 (A), CCL-5 (B) and CXCL-10 (C) expression. *p < 0.05 represented statistically significant; ***p < 0.001 
represented extremely significant.

FIGURE 4

SVV VP4 overexpression regulates TNF-α expression. ***p < 0.001 
represented extremely significant.
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