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Safety and effects of
scorpion-derived antimicrobial
peptides as an alternative to
antibiotic growth promoters in
broilers: growth performance,
immune function, and intestinal
development

Mingyang Gao, Zhengli Wang, Hongfeng Zhao, Zihui Li and
Hong Shen*

College of Animal Science and Technology, Shihezi University, Shihezi, China

Antimicrobial peptides (AMPs) derived from scorpion venom have emerged as
promising environmentally sustainable feed additives due to their biosafety and ability
to metabolize into natural amino acids without residues. This study investigates
IsCT, a cytotoxic peptide from Isometroides scorpions, for its potential application
in yellow-feathered broiler production. The study began with in vitro antimicrobial
susceptibility testing against major livestock pathogens (Staphylococcus aureus
ATCC 6538, Salmonella typhimurium ATCC 14028, Escherichia coli ATCC 25922,
and Streptococcus agalactiae ATCC 13813), followed by biosafety evaluations
using chicken erythrocytes and Kunming mice. A feeding trial with 360 broilers
assigned birds to six dietary treatments: basal diet control, IsCT supplementation at
25, 50, 100, or 200 mg/kg, and a ciprofloxacin control (50 mg/kg). IsCT exhibited
concentration-dependent antibacterial activity with no hemolytic effects and
demonstrated biosafety in murine models. During days 1-21 and 22-42, IsCT
supplementation significantly improved feed conversion efficiency, carcass quality,
immunoglobulin levels, and intestinal development in broilers. ISCT shows broad-
spectrum efficacy and growth-promoting potential, supporting its use as a sustainable
feed additive in yellow-feathered broiler production systems.

KEYWORDS

feed additives, antimicrobial peptides, broilers, production performance, amino acid
composition, gut health promotors

1 Introduction

Since the discovery of penicillin, Antibiotic Growth Promoters (AGPs) have become
integral to poultry farming for their remarkable efficacy in disease prevention and growth
enhancement. Their utilization significantly contributed to the intensification of livestock
production by reducing morbidity and mortality rates while improving feed conversion ratios.
However, the extensive and often indiscriminate application of AGPs has led to the emergence
and dissemination of antimicrobial resistance (AMR), a pressing public health concern that
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IsCT functions as a broad-spectrum antimicrobial peptide and effective growth/immune enhancer in poultry production.

Low biological toxicity
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compromises the efficacy of therapeutic antibiotics in both animals
and humans (1-3). In response to these challenges, global regulatory
agencies have implemented stricter policies regarding antibiotic use
in animal feeds, driving the quest for sustainable and effective
alternatives. Amid this transition, green bacteriostatic agents—derived
from natural sources and characterized by favorable environmental
profiles—have become the focus in the development of new feed
additives (4-9). Among these, antimicrobial peptides (AMPs)
represent a highly promising category. These short peptides, typically
consisting of 12-50 amino acids, are produced by a wide range of
organisms as a first line of defense against pathogens. AMPs possess
multiple biological properties, including broad-spectrum inhibitory
effects against bacteria, fungi, viruses, and even parasites. Unlike
conventional antibiotics, which often target specific molecular
pathways, AMPs generally exert their effects through non-specific
mechanisms, such as disrupting microbial membranes, modulating
immune responses, and inhibiting biofilm formation. This mode of
action significantly reduces the likelihood of resistance development,
making AMPs an attractive option for long-term use in animal
production (7).

Isalo scorpion cytotoxic peptide (IsCT) is a short-chain
antimicrobial peptide originally isolated from the venom of the Israeli
scorpion Leiurus quinquestriatus. It is widely recognized as one of the
shortest naturally occurring antimicrobial peptides identified to date,
with a simple yet effective sequence (ILGKIWEGIKSLF-NH,) (10,
11). This compact molecular structure contributes not only to its
potent and broad-spectrum antimicrobial properties but also to its
strong resistance to proteolytic degradation (10, 12), enhancing its
stability in biological environments. Beyond its direct antimicrobial
effects, research has shown that IsCT exhibits low cytotoxicity toward
mammalian cells, which underscores its potential suitability for
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therapeutic and agricultural applications (10, 12). Moreover, IsCT has
been found to modulate and enhance the hosts innate immune
response, further increasing its utility as an immunostimulatory agent.
In the context of animal production, IsCT demonstrates significant
promise as a sustainable alternative to conventional antibiotics. It
effectively inhibits the growth of major pathogenic bacteria commonly
found in livestock settings, thereby reducing the incidence of
infectious diseases and improving overall animal health. Additionally,
dietary supplementation with IsCT has been linked to enhanced
growth performance and improved antioxidant capacity in animals,
contributing to more efficient and environmentally friendly farming
practices (13, 14).

The application of innovative feed additives like IsCT is especially
relevant for yellow-feathered broilers—a characteristic Asian poultry
species with large-scale farming operations and significant economic
importance—that face inherent challenges: intensive high-density
farming enhances productivity but compromises growth performance
and increases disease susceptibility. Although traditional antibiotic
additives like ciprofloxacin effectively promote production, their long-
term use intensifies antimicrobial resistance, hepatorenal toxicity risks,
and drug residue concerns, driving industry demand for sustainable
alternatives. Against this backdrop, the scorpion venom peptide IsCT
emerges as a promising candidate due to its multiple advantages. It has
potent antibacterial activity, immunomodulatory functions, high
biosafety (metabolizing into residue-free natural amino acids), and
environmental compatibility (15). Nevertheless, despite commanding
25% of Southeast Asia’s poultry market owing to superior sensory
attributes, yellow-feathered broilers remain critically understudied
compared to extensively researched white-feathered breeds—
particularly regarding novel antimicrobial peptides like IsCT. This
research gap is especially notable given the fundamental physiological
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differences between these breeds: unlike white-feathered broilers,
which are bred for extremely rapid growth and high feed efficiency,
yellow-feathered broilers exhibit a slower growth rate, superior carcass
quality, and distinct metabolic and nutrient partitioning mechanisms.
These breed-specific characteristics highlight the need for tailored
nutritional and health interventions, necessitating systematic
exploration of IsCT’s growth-promoting effects following validation of
its pathogen-specific antibacterial efficacy and safety profile in this
under-characterized breed. AMPs at 0-100 mg/kg have demonstrated
growth-promoting and immunomodulatory effects in broilers. Gao
et al. (16) found maggot-derived AMPs (100-300 mg/kg) improved
growth/immunity in yellow-feathered broilers. Notably, although IsCT
has demonstrated considerable potential in aquaculture—for example,
by improving intestinal barrier function and development in grass carp
(Ctenopharyngodon idella) (17) and enhancing growth and intestinal
immunity in fish—studies evaluating its effects on monogastric
animals, especially poultry, remain limited. Therefore, the present
study was designed to address this unmet need. We hypothesized that
dietary supplementation with IsCT would dose-dependently improve
growth performance, enhance immune responses, and promote
intestinal development in yellow-feathered broilers, yielding effects
comparable to or better than the conventional antibiotic ciprofloxacin,
without adversely affecting health parameters. The present study aimed
to evaluate the effects of IsCT supplementation at 25, 50, 100, and
200 mg/kg on growth and immunological parameters in yellow-
feathered broilers, using a ciprofloxacin control (50 mg/kg) (18, 19) as
a benchmark. It should be specifically noted that although antibiotics
such as ciprofloxacin were historically used as growth-promoting
additives, their use is now largely restricted due to regulatory changes.
In this study, ciprofloxacin was included as a positive control to
benchmark the efficacy of IsCT against a known antimicrobial agent.
By comparing the antibacterial efficacy, hemolytic activity, and overall
impact on broiler performance between IsCT and a commonly used
antibiotic, this work seeks to provide a comprehensive assessment of
IsCT’s potential as a feed additive in poultry production.

2 Materials and methods
2.1 Ethical approval

All experimental procedures involving animals were conducted in
accordance with institutional animal welfare guidelines. All procedures
involved in this study were formally reviewed and approved by the
Shihezi University Animal Ethics Committee (Approval No: A2025-
546, A2025-545). The experiment was carried out at the Animal
Center of Shihezi University (Xinjiang, China), where extensive
facilities and resources were utilized to ensure the precision and
reliability of the research endeavors. This study strictly adhered to
internationally recognized animal welfare and ethical standards
throughout its duration. All experimental animals were housed in
clean and spacious environments with continuous access to sufficient
food and water. Prior to euthanasia, mice and broiler chickens were
administered 3% (v/v) isoflurane inhalation anesthesia via an
induction chamber until loss of consciousness, followed by humane
euthanasia via cervical dislocation. All procedures were performed
following the core principle of minimizing animal suffering, thereby
reducing stress and distress to the greatest extent feasible.
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2.2 Antimicrobial peptide and reagents

IsCT was purchased from Shanghai Sunshile Company (Shanghai,
China) and was synthesized via solid-phase synthesis with >95%
purity. Melittin was obtained from PeptideGen Biotechnology Co., Ltd.
(Hangzhou, China) at 98% purity. Staphylococcus aureus ATCC 6538,
Salmonella typhimurium ATCC 14028, Escherichia coli ATCC 25922,
and Streptococcus agalactiae ATCC 13813 were provided by the
Microbiology Laboratory of the College of Animal Science and
Shihezi
immunosorbent assay (ELISA) kits were acquired from Jiangsu

Technology at University. Mouse Enzyme-linked
Jingmei Biological Technology Co., Ltd. (Jiangsu, China). Fully
automated biochemical analyzer (Model: BK1200, Shandong Biobase
Biotechnology Co., Ltd., China). Light microscope (Model: BX53,
Olympus Corporation, Tokyo, Japan). Full-spectrum microplate reader

(Model: Multiskan SkyHigh, Thermo Fisher Scientific, United States).

2.3 Experimental animals and housing
conditions

Based on studies by Zhu et al. and our laboratory’s prior
experience with comparable models, 60 Kunming (KM) mice were
utilized in the present investigation. These 5-week-old, SPF (Specific
Pathogen Free) grade mice, with an average body weight of
29.82 + 1.5 g, were all sourced from the Experimental Animal Center
of Xinjiang Medical University. All mice were housed in a strictly
controlled SPF environment, in which optimal conditions were
maintained: temperature at 22 + 2 °C, relative humidity at 55-60%,
and a 12-h light/dark cycle. This ensured consistent health status of
the experimental animals and the reliability of the results.

Yellow-feathered broilers were sourced from Shihezi Sansan
Hatchery. At the Animal Station of Shihezi University. The sample size
was determined based on common practices in poultry nutrition
research (20-23) and our laboratory’s previous experience with similar
models. A total of 360 healthy, vaccinated chickens with similar body
weight (initial body weight: 29.0 + 0.5 g) were selected. Birds were
housed in three-tier vertical broiler cages at 0.2 m?*/bird density under
24-h incandescent lighting (20 lux) with mechanical ventilation.
Environmental conditions were maintained at 60-70% relative humidity
(hygrometer-monitored) and controlled temperature: 35 + 0.5 °C for
Week 1, reduced by 3 °C weekly until stabilizing at 22 + 1 °C from Day
28. The temperature-humidity index (THI), a key indicator of thermal
comfort and heat stress in poultry, was calculated daily based on the
recorded temperature and humidity using the following formula
established by Yan et al. (24). The daily THI profile throughout the
experimental period is presented in
Supplementary Table S1 and Graphical abstract. Feed and water were
provided ad libitum via nipple drinkers and trough feeders. Biosecurity
measures include daily manure removal and weekly iodophor
disinfection (at a 1:200 dilution).

2.4 Antibacterial activity assay
The Oxford cup assay was performed according to Xiang’s method

(25). In brief, Staphylococcus aureus, Salmonella spp., Escherichia coli,
and Streptococcus agalactiae were resuscitated according to the
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method described by Zeng et al. (26), and the suspensions were
prepared to a concentration of 1 x 10 CFU/mL. A 100 pL aliquot of
each bacterial suspension was spread onto agar plates. Four Oxford
cups were placed on each plate, followed by the injection of IsCT
solutions at concentrations of 1 mg/mL and 0.5 mg/mL to assess
antibacterial activity against the four pathogens. Inhibition zone
diameters were recorded, with sterilized water as the negative control
and 0.2 mg/mL ciprofloxacin as the positive control. All measurements
were performed in three independent replicate experiments, and the
mean values were calculated. Three independent biological replicates
were performed for each bacterium, with each replicate using a fresh
bacterial culture prepared on a different day. The mean values were
calculated from these biological replicates.

2.5 Determination of minimum inhibitory
concentration

MIC was determined using the microbroth dilution method.
Following bacterial culture, strains were diluted to 1 x 105 CFU/
mL. In 96-well microplates, 50 pL of serially diluted IsCT solutions
were added to 50 pL of bacterial inoculum, yielding final peptide
concentrations of 16, 32, 64, 128, 256, 512, and 1,024 pg/mL. After
24-h incubation at 37 °C, absorbance at OD600 was measured using
a microplate reader. All measurements were performed in three
independent replicate experiments, and the mean values were
calculated. Three independent biological replicates were performed
for each bacterium, with each replicate using a fresh bacterial culture
prepared on a different day. The mean values were calculated from
these biological replicates.

2.6 Hemolytic activity assay

Chicken blood was centrifuged (1,000 x g, 10 min, 4 °C) to isolate
erythrocytes. Cells were washed thrice with equal-volume Phosphate-
Buffered Saline (PBS) and were centrifuged after each wash. Serial
IsCT and Melittin dilutions (final concentrations: 0.25-4 mg/mL)
were mixed with equal volumes of erythrocyte suspension. Controls
included untreated cells (negative) and 0.1% Triton X-100-treated cells
(positive). Following 1h incubation (37°C), samples were
microscopically examined (1,000x). Remaining solutions were
centrifuged; supernatant absorbance (ODs;) was measured.
Minimum hemolytic concentration (MHC) was defined as the peptide
concentration causing 10% hemolysis. All measurements were
performed in three independent replicate experiments, and the mean
values were calculated. For the hemolysis assay, blood samples from
six chickens were used as biological replicates, with each sample tested
in triplicate.

2.7 In vivo toxicity test of IsCT

After 7 days of acclimation, KM mice were randomly divided into
5 groups based on body weight:0.2 mL sterile saline was administered
to the CON group via intragastric gavage; 0.2 mL of 2.5 mg/mL IsCT
peptide solution was administered to Group I; 0.2 mL of 5 mg/mL
IsCT peptide solution was administered to Group II; 0.2 mL of
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10 mg/mL IsCT peptide solution was administered to Group III; and
0.2 mL of 20 mg/mL IsCT peptide solution was administered to
Group IV. Each group comprised 6 replicates with 2 mice per
replicate. After 14 consecutive days of administration, one mouse per
replicate was selected for sample collection on Day 15. The health
status of the mice was assessed and scored according to the criteria
established by Zhu et al. (9). Briefly, the scoring system was defined
as follows: 5 = normal activity, 4 = hunched posture with reduced
mobility (but ambulatory), 3 =hypokinesia and lacrimation,
2 = moribund, and 1 = dead. Organ indices and serum biochemical
parameters were subsequently analyzed.

2.8 Broiler farming experimental design
and diets

This study utilized a randomized complete block design (RCBD),
with initial body weight as the blocking factor. Briefly, a total of 360
healthy yellow-feathered broilers were first ranked by their initial body
weight and then assigned to one of six treatment groups, each
consisting of 10 replicates, ensuring that birds within each replicate
had similar body weights: CON (basal diet), I (basal diet + 25 mg/kg
IsCT), II (basal diet + 50 mg/kg IsCT), III (basal diet + 100 mg/kg
IsCT), IV (basal diet + 200 mg/kg IsCT), and CIP (basal diet + 50 mg/
kg ciprofloxacin). Diets were formulated according to Chinese
Nutrient Requirements for Yellow-Feathered Broilers (NY/T
33-2004), with complete formulations detailed in Table 1. Vaccination
against Newcastle disease virus (NDV) and infectious bronchitis virus
(IBV) was administered at Days 7 and 21. Growth metrics (ADG:
Average Daily Gain, ADFI: Average Daily Feed Intake, F/G: Feed-to-
Gain Ratio) were recorded weekly. On days 22 and 43 of the trial, one
bird per replicate within each treatment group, selected based on
proximity to the mean body weight (resulting in six birds per group,
serving as biological replicates), was humanely euthanized via cervical
dislocation. Liver, bursa of Fabricius, and serum samples were
subsequently collected and snap-frozen in liquid nitrogen for
further analysis.

2.9 Growth performance measurement

Body weight (BW), average daily feed intake (ADFI), average daily
gain (ADG), and feed-to- gain ratio (F/G) were calculated for days
1-21 and days 22-42 phases as follows: broilers underwent a 12-h fast
(feed withdrawal with ad libitum water access) prior to weighing on
days s 21 and 42 using calibrated digital scales (+0.1 g); BW was
recorded individually at d1/d21/d42; The ADFI, ADG, F/G were
calculated according to the following standardized formulas:

ADG (g/bird/ day) = (Final BW —Initial BW )/
days in phase

ADFI ( g/bird/ day) = Cumulative feed consumption /
(birds x days)

F/G=ADFI/ADG
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TABLE 1 Composition and nutrient levels of the basal diet
(air-dry basis) %.

Content

1-21 days 22-42 days
Ingredients
Corn 55.00 67.30
Soybean meal 3220 20.50
Bran 2.50 2.50
Fish meal 2.00 2.50
Soya-bean Oil 3.30 2.00
Premix’ 5.00 5.00
NaCl 0 0.2
Total 100.00 100.00
Nutrient levels?
ME(M]J/kg) 12.24 14.98
Cp 21.54 17.92
Ca 0.88 0.87
TP 0.80 0.82
AP 0.40 0.41
Lys 112 0.97
Met 0.49 0.46
Thr 0.80 0.66

"The premix provides per kilogram of feed: VA 180000 IU, VD 70000 IU, VE 450 IU, VK

30 mg, 70 mg, 60 mg, niacin 600 mg, calci-um pantothenate 260 mg, biotin 1.7 mg, folic acid
17 mg, Fe 10,000 mg, Cu 350 mg, Mn 1,500 mg, Zn 2000 mg, Ca 14 mg, P 6 mg, NaCl 7 mg,
methionine3 mg.

*ME, amino acid and AP were calculated by referring to the “Chinese Feed Composition and
Nutritional Value Table (29th Edition 2018).” CP, Ca and TP were, respectively, referred to
GB/T 6432, GB/T 6436 and GB/T 6437.

All measurements were performed in three independent replicate
experiments, and the mean values were calculated.

2.10 Carcass quality

On days 21 and 42 of the trial, broilers were euthanized, followed
by feather removal and exsanguination. Carcass weight and
composition—including dressing percentage, breast muscle yield,
thigh muscle yield, and abdominal fat percentage—were measured
according to the method described by Namted et al. (27).

2.11 Blood biochemical analysis

Serum biochemical parameters were measured according to the
method described by Liu et al. (28). Chicken blood was collected using
vacuum tubes. The serum was separated by centrifugation at 3000 x g
for 15 min at 4 °C. Serum levels of total protein (TP), albumin (ALB),
globulin (GLB), as well as the activities of aspartate aminotransferase
(AST), glucose (GLU), and alanine aminotransferase (ALT) in 21-day-
old and 42-day-old broiler chickens were measured using a fully
automated biochemical analyzer. All measurements were performed
in three independent replicate experiments, and the mean values
were calculated.
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2.12 Immune organ index calculation

The immune organ indices were measured according to the
method described by Ma et al. (29). Simply put, spleens, thymuses,
and bursae of Fabricius were rinsed with sterile physiological saline
and weighed. The immune organ indices were calculated according to
the following standardized formulas:

Bursa index (mg / kg) = Bursa weight ( g)/
Body weight (kg)

Spleen index (mg / kg) =Spleen weight ( g) /
Body weight (kg)

Thymus index (mg/kg) = Thymus weight (g)/
Body weight (kg)

All measurements were performed in three independent replicate
experiments, and the mean values were calculated.

2.13 Immune parameter assay

Serum immune parameters were determined according to the
method described by Liu et al. (30). Briefly, serum concentrations of
immunoglobulin A (IgA), immunoglobulin G (IgG), and
immunoglobulin M (IgM) were quantified according to the
manufacturer’s instructions. Briefly, chicken blood samples were
processed as described in Section 2.10, mixed with corresponding
reagents, and incubated at 37 °C for 30 min. After five washes, the
enzyme conjugate was added and reacted at 37 °C for 30 min.
Following another five washes, chromogenic substrate was added and
developed at 37 °C for 10 min. Finally, a stop solution was added, and
absorbance was measured at 450 nm using a microplate reader. All
measurements were performed in three independent replicate
experiments, and mean values were calculated.

2.14 Observation of intestinal morphology

Morphological analysis of intestinal tissue was performed according
to the method described by Khan et al. (31). Briefly, intestinal tissue
segments were immersed in 4% paraformaldehyde (PFA) solution for
24 h under light-protected fixation, and then were subjected to paraffin
embedding and sectioning at 3 pm thickness. Histological evaluation was
performed using hematoxylin and eosin (H&E) staining. Villus height
and crypt depth were measured under an optical microscope, with
subsequent calculation of the villus-to-crypt ratio.

2.15 Statistical analysis

Statistical analysis was performed using SPSS 27.0 (IBM Corp.,
Armonk, NY, USA). Normality of continuous data (e.g., body weight,
villus height, immunoglobulin concentrations) was assessed using the
Shapiro-Wilk test. Homogeneity of variances was confirmed with
Levene’s test, followed by one-way analysis of variance (One-way
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ANOVA, for comparing differences among the six dietary treatment
groups) and post hoc LSD tests (for pairwise comparisons between
groups, e.g., CON vs. Group IIT) where appropriate. Data visualization
(e.g., bar graphs for carcass quality, line graphs for hemolytic activity) was
conducted using GraphPad Prism 10.1 (GraphPad Software, San Diego,
CA, United States). Pearson correlation analysis (to assess linear
relationships between continuous variables, e.g., villus-to-crypt ratio and
serum IgG levels) and hierarchical clustering were performed using
Origin 2021 (OriginLab Corp., Northampton, MA, United States). The
clustering analysis employed hierarchical clustering with complete
linkage (to group treatment groups with similar growth/immune/gut
development patterns). Statistical significance was uniformly defined as
p <0.05 (significant difference) and p <0.01 (highly significant
difference) for all analyses (including ANOVA, LSD pairwise
comparisons, and Pearson correlation). Investigators remained blinded
to group assignments during data collection and analysis to minimize
subjective bias in data recording and statistical interpretation.

3 Results
3.1 Inhibitory zone diameters

The experimental results indicate that IsCT exhibits bacteriostatic
ability against all four tested bacterial strains. Specifically, at 0.5 mg/
mL, IsCT exhibits an inhibitory zone of 19 mm against Escherichia coli.
Furthermore, at both tested concentrations, IsCT produces inhibitory

10.3389/fvets.2025.1677663

zones larger than 20 mm against all strains (Figure 1). At 0.5 mg/mL,
IsCT exhibits significantly higher bacteriostatic ability against
Salmonella than that against Escherichia coli and Staphylococcus aureus
(p =0.012, p = 0.023). Its bacteriostatic ability against Staphylococcus
aureus and GBS was significantly higher than that against Escherichia
coli (p = 0.026, p = 0.019). The bacteriostatic ability of 1 mg/mL IsCT
against GBS and Salmonella was significantly higher than that against
Escherichia coli (p =0.021, p = 0.035). Bacteriostatic zones are not
observed in the control group (Table 2).

3.2 Mic

As shows in Table 3, IsCT demonstrates MIC values of 32 pg/mL
against both E. coli and GBS, while exhibiting an MICs of 64 pg/mL
against Salmonella and 128 pg/mL against S. aureus In comparison,
ciprofloxacin shows consistent MICs of 1 pg/mL against E. coli,
S. aureus, and Salmonella, with an MIC of 4 pg/mL against GBS.

3.3 Hemolytic activity

As depicted in Figure 2, IsCT shows a hemolysis rate close to 0%
at 2 mg/mL but detectable hemolytic activity at 4 mg/mL. In contrast,
Melittin at the same concentrations induces nearly complete hemolysis
(=100%). Figure 3 displays representative micrographs of treated
erythrocytes. Chicken erythrocytes exposed to lower IsCT

FIGURE 1

Inhibition zone diameters for the four bacterial species tested. (A) 0.5 mg/mL IsCT exhibited inhibition zone diameters of 19 mm against E. colj, 22.5 mm
against S. aureus, 26.5 mm against Salmonella, and 24 mm against GBS; (B) 1 mg/mL IsCT exhibited inhibition zone diameters of 23 mm against E. coli,
25 mm against S. aureus, 29.5 mm against Salmonella, and 28.5 mm against GBS; (C) sterile water exhibited no antibacterial activity; (D) 0.2 mg/mL
ciprofloxacin exhibited inhibition zone diameters of 31 mm against E. coli, 28 mm against S. aureus,35 mm against Salmonella, and 31.5 mm against GBS.

S. aureus
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TABLE 2 Inhibitory zone diameters of two concentrations of IsCT against four bacteria.

The diameter of the bacteriostatic ring (mm)

S. aureus Salmonella E. coli
0.5 mg/mL IsCT 22.50° 26.50° 19.00¢ 24.00% 0.876 <0.001
1 mg/mL IsCT 25.00 29.50° 23.00° 28.50° 0.577 0.007
0.2 mg/mL Ciprofloxacin 28.00° 35.00° 31.00° 31.50° 0.927 <0.001

The results are expressed as means and mean standard errors (SEM). In the same row, data labeled with different lowercase letters indicate significant differences (p < 0.05), data labeled with
different uppercase letters indicate highly significant differences (p < 0.01), while data labeled with the same letters or no letters indicate no significant differences (p > 0.05).

TABLE 3 Minimum inhibitory concentration (MIC) of IsCT.

Item S.aureus Salmonella  E. coli GBS
IsCT 128 pg/mL 64 pg/mL 32 pg/mL 32 pg/mL ‘
Ciprofloxacin 1 pg/mL 1 pg/mL 1 pg/mL 4 pg/mL ‘

concentrations (0.25-2 mg/mL) maintain structural integrity with cell
volumes comparable to untreated controls, indicating absence of
hemolysis. Conversely, those treated with 4 mg/mL IsCT show
significantly reduced volumes—though still larger than cells lysed by
0.1% Triton X-100—accompanied by morphological transitions from
elliptical to spherical configurations. Partial cellular fragmentation
into irregular shapes and reduced intracellular content are observed,
confirming progressive hemolysis.

3.4 In vivo toxicity

As shown in Figure 3, after 14 days of gavage administration, all
mice remained active with no visible abnormalities. Compared to the
control group, there are no significant changes in body weight, vital
organ indices, or serum biochemical parameters in the gavage groups.

3.5 Growth performance

As presented in Table 4, at 21 days of age, the final body weight
of the CIP group increases by 19 and 21% compared to the CON
group and Group II, respectively (p = 0.006, p = 0.007). During the
21-42 days period, the final body weight of Group III increases by 9,
13, 20, and 11% compared to the CON group, Group I, Group II, and
Group IV, respectively (p = 0.004, p = 0.006, p = 0.002, p = 0.004). The
average daily gain (ADG) increases by 22, 19, and 15% compared to
the CON group, Group I, and Group II, respectively (p = 0.005,
p =0.013, p = 0.028). The feed-to-gain ratio (F/G) decreases by 5%
compared to the CON group (p = 0.037). The final body weight of the
CIP group increases by 14 and 8% compared to the CON group and
Group II, respectively (p = 0.023, p = 0.039). The ADG increases by
15% compared to the CON group (p = 0.047).

3.6 Carcass quality

As shown in Figure 4, at 21 days of age, the carcass yield of
Group II increases by 5% compared to the CON group (p = 0.043).
The carcass yield of Group III increases by 7, 8, and 8% compared
to the CON group, Group I, and Group IV, respectively (p = 0.021,
p=0.031, p = 0.039). At 42 days of age, the meat yield of Group III
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increases by 4% compared to the CON group (p = 0.022), while the
abdominal fat percentage decreases by 41% compared to the CON
group (p = 0.014). The breast muscle yield of Group IV increases by
17 and 15% compared to the CON group and Group I, respectively
(p=0.027, p = 0.025). The thigh muscle yield of Groups IIL, IV, and
the CIP group increases by 12, 12, and 9% compared to the CON
group, and by 12, 12, and 9% compared to Group I, respectively
(p=0.01,p=0.01,p =0.028, p = 0.01, p = 0.01, p = 0.029).

3.7 Blood biochemical parameters

As shown in Figure 5, dietary supplementation with IsCT or
antibiotics has no significant effect on serum biochemical parameters
of yellow-feathered broilers during 1-21 days of age. In contrast,
during 21-42 days of age, compared to the CON group, the serum
GLB level in Group III increases by 17% (p = 0.021).

3.8 Immune organ indices

As shown in Figures 6A-T, during 1-21 days of age, The Bursa index
of Group I and Group IV increased by 62 and 26%, and by 65 and 38%,
respectively, compared to the control group and the CIP group (p = 0.001,
p =0.043, p=0.001, p = 0.036) However, dietary supplementation with
IsCT or ciprofloxacin has no significant effect on immune organ indices
of yellow-feathered broilers during 21-42 days of age.

3.9 Serum immune parameters

As presented in Figures 6G-L, at 21 days of age, serum IgA levels
in Groups I-IV increase by 19, 19, 18, and 18%, respectively,
compared to the CON group (p =0.036, p =0.032, p =0.035,
p =0.032). Serum IgA levels in Groups II-IV increase by 22, 20, and
22%, respectively, compared to the CON group (p = 0.023, p = 0.025,
p =0.012). The serum IgM level in Group III increases by 28%
compared to the CON group (p = 0.019). At 42 days of age, serum
IgA in Group III increases by 27 and 32% compared to the CON
group and Group I, respectively (p = 0.016, p = 0.022). Serum IgG
levels in Group III, Group IV, and the CIP group all increase by 22%
compared to the CON group (p = 0.035, p = 0.025, p = 0.031).

3.10 Intestinal morphology
As shown in Figure 7, compared to the control group (CON),

Group I shows an 8% increase in jejunal villus height at 42 days
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IsCT has low hemolytic toxicity. (A) Concentration-dependent hemolytic activity of the antimicrobial peptide IsCT (blue line) and the reference peptide
melittin (black line). (B—H) Bright-field microscopy images of chicken erythrocytes after treatment for 1 h at 37 °C: (B) 0.25 mg/mL IsCT, (C) 0.5 mg/mL
IsCT, (D) 1 mg/mL IsCT, (E) 2 mg/mL IsCT, (F) 4 mg/mL IsCT, (G) 1 mg/mL Triton X-100 (positive control for complete lysis), (H) Untreated group

(p = 0.044). Group II exhibits a 13% increase in ileal villus height at
21 days and a 7% improvement in the duodenal villus-to-crypt ratio at
42 days (p = 0.016, p = 0.020). Group III demonstrates increases in
villus height of 18, 12, and 21% in the duodenum, jejunum, and ileum,
respectively, at 21 days (p = 0.026, p = 0.031, p = 0.012), along with a
19% increase in jejunal villus length at 42 days (p = 0.019). Additionally,
the jejunal villus-to-crypt ratio improves at 21 days, and further
increases of 13, 17, and 20% are observed across the three intestinal
segments at 42 days (p = 0.033, p = 0.018, p = 0.020, p = 0.035). Group
IV shows a 10% increase in duodenal villus length and a 23% increase
in the jejunal villus-to-crypt ratio at 42 days (p = 0.024, p = 0.015). The
CIP group exhibits significant improvements in ileal villus length at
21 days and in jejunal villus length at 42 days (p = 0.027, p = 0.039).

3.11 Correlation analysis

Figures 8,C show correlations among growth performance,
immunity, and gut development at 21 and 42 days. At 21 days, carcass
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yield, thigh muscle yield, immunoglobulin levels, and villus-to-crypt
ratio are positively correlated (r > 0.7, p <0.05) and negatively
correlated with FCR and abdominal fat percentage (r <—0.7,
P <0.05). At 42 days, meat production rate and thigh muscle yield are
positively correlated with immunoglobulin levels and villus-to-crypt
ratio (r > 0.7, p < 0.05). Immunoglobulin levels and villus-to-crypt
ratio are highly significantly correlated (r >0.7, p <0.01).
Figures 8B,D compare overall growth, immune, and gut development
levels across groups at 21 and 42 days. Both IsCT and ciprofloxacin
improve all measured indicators, with 100 mg/kg IsCT showing the
most consistent and significant enhancements.

4 Discussion
4.1 IsCT in vitro antimicrobial activity

Gram-positive bacteria (e.g., Staphylococcus aureus, Streptococcus
agalactiae) and Gram-negative bacteria (e.g., Salmonella spp.,
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FIGURE 3
Dietary supplementation with IsCT demonstrates favorable in vivo safety profiles in a mouse model. (A) Schematic of the experimental design for the
in vivo toxicity assessment of IsCT in mice. Serum biochemical parameters: (B) total protein (TP), (C) globulin (GLB), (D) albumin (ALB), (E) glucose
(GLU), (F) alanine aminotransferase (ALT), (G) aspartate aminotransferase (AST). Organ indices: (H) heart index, (I) liver index, (J) spleen index, (K) lung
index, (L) kidney index. (M) Health score of mice following IsCT administration.

TABLE 4 The effect of IsCT on the growth performance.

BW (g) at 1 day of age 30.09 30.02 29.98 30.89 30.07 29.81 0.146 0.365
BW (g) at 21 day of age 423.30 449.19 412.39™ 460.35 477.54 502.73% 8.597 0.007
BW (g) at 42 day of age 1126.25% 1197.71%¢ 1137.50% 1363.67% 1229.91% 1284.63% 20.441 <0.001
1-21 days

ADFI/g 37.25 36.82 36.77 38.55 37.91 40.28 0.496 0.311
ADG/g 18.73 19.96 18.21 20.53 21.31 22.52 0.619 0.366
F/G 2.03 1.87 2.07 1.92 1.80 1.79 0.059 0.700
21-42 days

ADFl/g 90.84 89.34 92.31 90.26 88.73 95.24 0.842 0.255
ADG/g 33.48% 34,520 35.64° 40.99" 36.65 38.43% 0.792 0.051
F/G 2.75 2.60 2.60 2.22° 2.43 2.50 0.06 0.144

The results are expressed as means and mean standard errors (SEM). In the same row, data labeled with different lowercase letters indicate significant differences (p < 0.05), data labeled with
different uppercase letters indicate highly significant differences (p < 0.01), while data labeled with the same letters or no letters indicate no significant differences (p > 0.05).

Escherichia coli) are prevalent in animal husbandry (32, 33), causing
clinical conditions including pneumonia, mastitis, meningitis,
septicemia, and diarrhea (3, 34-36). These diseases exhibit high
mortality rates with complex transmission pathways that elude
comprehensive control, threatening sustainable livestock production.
This study demonstrates IsCT’s strongest inhibitory effects against GBS
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and Salmonella, followed by S. aureus, with weaker activity against
E. coli. The variation in sensitivity among bacterial species may
be attributed to differences in cell envelope structure. Gram-negative
bacteria possess an outer membrane rich in lipopolysaccharides, which
may hinder peptide penetration, whereas Gram-positive bacteria have
a thick peptidoglycan layer that might be more susceptible to
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Dietary supplementation with IsCT improves carcass traits in broilers. (A—E) Measurements at 21 days of age: (A) carcass yield, (B) meat yield, (C) breast
muscle yield, (D) thigh muscle yield, (E) abdominal fat percentage. (F-J) Measurements at 42 days of age: (F) carcass yield, (G) meat yield, (H) breast
muscle yield, (1) thigh muscle yield, (J) abdominal fat percentage. Different lowercase letters indicate statistically significant differences (p < 0.05).
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Dietary supplementation with IsCT exhibits relatively minor effects on the serum biochemical profile of broilers overall. (A—F) Parameters measured at
21 days of age: (A) total protein (TP), (B) globulin (GLB), (C) albumin (ALB), (D) alanine aminotransferase (ALT), (E) aspartate aminotransferase (AST),
(F) glucose (GLU). (G-L) Parameters measured at 42 days of age: (G) TP, (H) GLB, (I) ALB, (J) ALT, (K) AST, (L) GLU. Different lowercase letters indicate

membrane-active peptides like IsCT. This aligns with literature
showing insect-derived AMPs have broad-spectrum activity against
these pathogens. For example, Pereira et al. (37) reports Melittin
MIC = 4 pg/mL against E. coli; Picoli et al. (38) documents 6-7 pg/mL
against S. aureus; Jiang et al. (39) determined cecropin P1 MIC = 4 pg/
mL against Salmonella and E. coli; Denardi et al. (40) showed cecropin
A activity against Salmonella at 2 pg/mL. These findings align with our
observations. As hydrophobic amino acids, Ile and Leu enhance the
peptide’s hydrophobicity (mean hydrophobic index > 2.1), facilitating
its insertion into bacterial lipid bilayers (41, 42). This action disrupts
the outer membrane of Gram-negative bacteria and the peptidoglycan
layer of Gram-positive bacteria. This disruption induces leakage of
intracellular contents, thereby potentiating IsCT’s antibacterial efficacy.

In this study, we employ Oxford cup and microbroth dilution
methods to assess IsCT’s antibacterial effects against four bacterial
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strains. Both methods confirm IsCT’s strongest inhibition against
Streptococcus agalactiae and Salmonella, followed by S. aureus, with
weaker effects against E. coli. However, Oxford cup results occasionally
show variability. This may relate to IsCT’s amino acid composition: its
sequence is rich in hydrophobic residues, particularly C-terminal Ile
(isoleucine). Additionally, N-terminal Phe (phenylalanine) acts as a
hydrogen donor, promoting hydrogen bonds between the N-terminal
amino group and Phe’s main-chain carbonyl group, thereby affecting
spatial conformation. Trp (tryptophan) in the mid-to-C-terminal region
contributes to these structural features, potentially causing peptide chain
aggregation (43, 44). The microbroth dilution method likely reflects
IsCT’s true antibacterial activity more accurately due to refined drug
concentration gradients. Conversely, high IsCT concentrations in Oxford
cup assays may induce peptide aggregation (45), impairing agar diffusion
and consequently affecting inhibition zone formation and measurement.
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Dietary supplementation with IsCT enhances immune function in broilers. (A—C) Immune organ indices at 21 days of age: (A) thymus index, (B) spleen
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immunoglobulin levels at 42 days of age: (J) IgA, (K) IgG, (L) IgM. Different lowercase letters indicate statistically significant differences (p < 0.05).
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Dietary supplementation with IsCT improves intestinal morphology in broilers.
(B) crypt depth (CD), (C) villus height to crypt depth ratio (VH/CD). (D—F) Duodenal morphology at 42 days of age: (D) VH, (E) CD, (F) VH/CD. (G-1)
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4.2 Safety profile of IsCT

The membrane-lytic bactericidal mechanism unique to antimicrobial
peptides may induce hemolytic toxicity (46-48), necessitating careful
therapeutic index evaluation for clinical translation (49). Approximately
70% of AMPs exhibit hemolytic activity (50), making it a critical safety
indicator and major translational hurdle (46). Our findings demonstrate
that IsCT shows no observable hemolysis at concentrations effective
against all four target pathogens. Furthermore, despite belonging to the
a-helical peptide class, IsCT demonstrates significantly lower hemolytic
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activity than Melittin. This divergence stems from altered target
specificity: strong hydrophobicity enables preferential interaction with
eukaryotic plasma membranes. Liu et al. (51) show that reducing
Melittin's hydrophobicity significantly diminishes hemolysis while
maintaining antibacterial efficacy, confirming hydrophobicity’s role in
AMP selectivity. IsCT, LL-37, and other low-hydrophobicity peptides
exhibit enhanced binding to negatively charged bacterial membranes,
achieving superior biosafety (52).

Following the verification of IsCT’s in vitro erythrocyte toxicity,
assessment of its in vivo toxicity was essential prior to evaluating its
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Dietary supplementation with IsCT induces strong correlations among growth performance, immune function, and gut development in broilers.

(A) Correlation heatmap of growth performance, immune parameters, and intestinal development indices in 21-day-old broilers. (B) Cluster analysis of
growth performance, immune parameters, and intestinal development indices in 21-day-old broilers. (C) Correlation heatmap of growth performance,
immune parameters, and intestinal development indices in 42-day-old broilers. (D) Cluster analysis of growth performance, immune parameters, and
intestinal development indices in 42-day-old broilers. Red signifies positive correlation, with intensity proportional to depth (deeper red indicating
stronger positive correlation); blue denotes negative correlation, with intensity similarly proportional to depth (deeper blue indicating stronger negative

effects on broiler growth performance. In serum analysis, total protein
and albumin levels provide an overview of hepatic and renal function,
while elevated AST and ALT activities serve as critical indicators of
liver damage. As demonstrated by Zhu et al. (9), administration of the
antimicrobial peptide IK3 induces no significant alterations in these
parameters in mice. In our 14-day gavage study, mice treated with
various doses of IsCT exhibit no significant changes in body weight,
abnormal behaviors, or alterations in relative weights of vital organs.
Subsequent biochemical analyses further confirm its safety. These
findings are consistent with results from the broiler feeding trial,
where only broilers continuously fed 100 mg/kg IsCT until 42 days of
age show elevated globulin levels. Based on subsequent experimental
data, we infer this change results from increased serum
immunoglobulin (IgA, IgG, and IgM) concentrations.
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4.3 Effects of IsCT on growth performance

Growth performance is a key determinant of livestock economic
value (53). This study shows dietary supplementation with IsCT at
100 mg/kg significantly improved average daily gain (ADG) and feed
efficiency (F/G) in broilers during the 22-42 day period without
affecting feed intake (ADFI). This suggests that IsCT enhances
nutrient utilization rather than appetite stimulation. Tai et al. (54)
found 3% recombinant piscidin EP increases body weight and reduces
F/G; Choi et al. (55) report 60 mg/kg AMP-A3 improves growth
performance and nutrient retention—aligning with our ADG increase
under equivalent feed intake, confirming conserved nutrient
partitioning mechanisms. Carcass yield, breast meat yield, thigh meat
yield, and abdominal fat percentage are critical metrics for evaluating
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poultry production efficiency. These measurements provide clear
insights into slaughter performance, muscle development, and fat
distribution. As growth-promoting bioactive compounds, AMPs have
demonstrated potential to enhance carcass traits in livestock. Shi et al.
(56) report that dietary supplementation with composite AMPs
increases carcass weight and meat yield in beef cattle by modulating
ruminal microbiota and metabolism. However, research on AMP
effects on broiler carcass characteristics remains limited. Our study
addresses this knowledge gap by revealing that dietary IsCT
significantly increases breast meat yield and thigh meat yield while
reducing abdominal fat percentage in 42-day-old broilers. These
findings carry notable practical implications, demonstrating IsCT’s
capacity to optimize body composition by promoting deposition of
commercially valuable muscle cuts and reducing undesirable
abdominal fat accumulation. The potential factor contributing to the
reduced abdominal fat percentage in broilers by IsCT may be its
impact on key biomolecules involved in adipose tissue formation,
such as the activation of the peroxisome proliferator-activated receptor
(PPAR) signaling pathway. Activation of the PPARy signaling pathway
can disrupt the endocrine system and lead to adipose tissue
accumulation (57). Szychowski et al. (58) demonstrated that short-
chain peptides influence the expression of Ppary and f-galactosidase
(B-Gal) in cellular assays, suggesting a possible mechanism by which
IsCT, as a peptide-based substance, reduces abdominal fat deposition
in broilers.

Notably, IsCT’s effects were more pronounced in the grower
phase than in the starter phase. This may be due to higher protein
turnover and muscle accretion rates in older birds, where improved
nutrient absorption and metabolic efficiency have greater impact
(59, 60). Although IsCT contains several essential amino acids—
such as leucine, which modulates feed intake and hypothalamic
NPY/AgRP expression (61); isoleucine, associated with muscle
protein synthesis and microbial homeostasis (62-64); lysine, which
supports intestinal development, improves feed utilization, and
optimizes amino acid balance (65); and tryptophan, involved in
GLP-1 and bile acid signaling that may reduce the feed-to-gain ratio
(F/G) (66, 67)—it is important to note that at the low inclusion level
of 100 mg/kg, any direct nutritional contribution from these amino
acids is negligible. Instead, these structural components may
facilitate functional activities such as membrane interaction and
receptor signaling. The greater efficacy observed during days 22-42,
a phase characterized by substantial muscle development, may
reflect enhanced protein metabolism mediated through such
functional pathways. Furthermore, IsCT may influence broiler
physiology through multiple functional mechanisms: it appears to
modulate hepatic signaling cascades (e.g., GH-Jak2-STAT5-IGF1,
PI3K-Akt, and Erk/MAPK pathways) and improve gut function.
Similar to Scy-hepc in fish (68), it increases trypsin/amylase activity
and nutrient transporters, improving absorption (69, 70). It also
reduces cecal pH—indicating resistance-free antibacterial effects
that enhance digestibility—and enriches Lactobacillus, Lactococcus,
and Parabacteroides. These bacteria produce bacteriocins/organic
acids, boosting nutrient availability and gut homeostasis. Previous
antimicrobial peptide studies primarily focused on in vitro activity
or single-parameter assessments. In contrast, this research directly
compared IsCT with ciprofloxacin, a globally adopted growth-
promoting antibiotic in poultry production. Critically, our results

demonstrate that dietary IsCT supplementation achieves
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growth-promoting efficacy comparable to ciprofloxacin, with
optimal effects observed at 100 mg/kg IsCT during the 22-42 day
phase. This evidence-based comparison establishes a realistic
foundation for IsCT’s commercial application as a viable
antibiotic replacement.

4.4 Effects of IsCT on immune
performance

The animal immune system maintains homeostasis through the
regulation of inflammatory factor secretion (71). As pivotal immune
organs in avian species, the liver, thymus, and bursa of Fabricius
jointly sustain organismal health (72). IsCT supplementation
significantly increased the bursa of Fabricius index in young broilers
and elevated serum immunoglobulin (IgA, IgG, IgM) levels
throughout the trial. These results indicate that IsCT not only exerts
direct antibacterial effects but also modulates host immune
function. The immunomodulatory mechanisms of AMPs like IsCT
may include: neutralization of bacterial endotoxins such as LPS;
regulation of cytokine production; enhancement of chemokine
activity; and modulation of signaling pathways involved in
inflammation (e.g., TLR4/NF-kB). Xie et al. (7) show 100 mg/kg
Plectasin moderately improves immune organ indices and elevates
immunoglobulins; Patyra et al. (6) confirmed defensins, cecropins,
and moricins similarly enhance immunoglobulin levels—aligning
with current findings.

AMPs can modulate the host immune response through various
mechanisms. Their immunoregulatory functions include balancing
the production of anti-inflammatory and pro-inflammatory cytokines,
neutralizing LPS and endotoxins (73), enhancing chemokine
expression, and regulating the excessive release of cytokines such as
TNF-a and IL-14 (74). These actions help alleviate inflammatory
responses and prevent tissue damage caused by overactivation of the
immune system (75-77). For instance, human p-defensin 3 (hBD3)
can bind to both LPS and TLR4, thereby blocking TLR4 activation and
reducing the activity of MyD88, TRIF, and NF-xB (78). Similarly,
lactoferrin binds to LPS from Porphyromonas gingivalis and CD14,
interfering with the formation of CDI14-LPS complexes and
downregulating the TLR4 signaling pathway (79, 80). In a rat model,
Nal-P-113 was shown to reduce the production of IL-1p and TNF-a
in Pseudomonas-infected mice (81). Furthermore, AMPs can enhance
the host’s antioxidant capacity and mitigate oxidative damage to
immune cells. For example, Fang et al. (82) found that AMPs can
improve an animal’s ability to cope with oxidative stress and increase
the activity of antioxidant enzymes. As an antibacterial substance,
IsCT significantly influences intestinal development and immune
function through modulation of the gut microbiota. Chen et al. (83)
reported that dietary supplementation with Litsea cubeba essential oil
(LCO) improved growth performance and immune function in
finishing pigs by modulating intestinal flora. Similarly, Song et al. (84)
demonstrated that supplementation with soy milk fermented with
Pleurotus eryngii peptides increased the abundance of beneficial gut
bacteria and enhanced antioxidant capacity and immune responses in
mice. Additionally, tryptophan—a constituent amino acid of IsCT—
can be metabolized into bioactive compounds that modulate the TLR4
signaling pathway (85), thereby promoting the resolution
of inflammation.
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4.5 Effects of IsCT on intestinal
morphology

Optimal intestinal morphology enhances nutrient absorption
efficiency, with structural changes directly correlating with
improved absorptive capacity (86). Increased villus height expands
the absorptive surface area, thereby elevating nutrient utilization
(87). IsCT
supplementation significantly improves intestinal villus height,

and enhancing broiler growth performance
crypt depth, and the villus-height-to-crypt-depth ratio, particularly
in the jejunum and ileum. These structural changes reflect enhanced
absorptive capacity and overall intestinal health. The improvement
in gut morphology may be attributed to a reduction in pathogenic
bacteria and associated inflammation, the promotion of beneficial
microbiota such as Lactobacillus and Bacteroidetes, and the
upregulation of tight junction proteins and mucosal barrier function
through signaling pathways such as aPKC and Racl. The heightened
responsiveness of the jejunum to IsCT treatment aligns with its
primary role in nutrient absorption, whereas effects on the ileum
are more closely associated with immune modulation and microbial
activity. Zhu et al. (88) report that antimicrobial peptide Mastoparan
X (MPX) supplementation improves villus morphology, creating a
favorable microenvironment for intestinal health. Similarly, Liu
et al. (87) find that the antimicrobial peptide CADN significantly
increases villus height and width while enhancing structural
integrity in broilers. These morphological improvements likely
operate through multiple mechanisms. Alterations in the structure
of the gut microbiota may represent a key underlying mechanism
for this phenomenon. The gut microbiome plays a crucial role in
intestinal development. Bai et al. (89) found that a hydrolyzed
protein formula improved the gut microbiota, thereby enhancing
intestinal development in low birth weight piglets. Similarly, Wei
et al. (90) reported that sulfated fucan-induced modulation of the
gut microbiota upregulates the expression of tight junction proteins
in mice, leading to improved intestinal function. Wang et al. (91)
observe that AMP supplementation significantly reduces aerobic
bacteria while increasing beneficial genera (e.g., Firmicutes and
Bacteroidetes), thereby improving the intestinal microenvironment.
This microbial rebalancing mitigates intestinal inflammation and
supports healthy villus development (92, 93). The antimicrobial
peptide AMP-IBP5 is demonstrated to enhance barrier function in
both cutaneous and intestinal tissues by activating the atypical
protein kinase C (aPKC) and Racl signaling pathways, thereby
upregulating tight junction protein expression (94).

Notably, Zhu et al’s findings of pronounced jejunal villus height
and villus height-to-crypt depth (VH/CD) ratio enhancement align
with our results. This jejunal sensitivity may stem from its primary
role in nutrient absorption, where morphological efficiency critically
determines absorptive capacity. Conversely, AMPs may exert stronger
effects on ileal morphology through immunomodulation and tissue
repair mechanisms (95, 96), potentially explaining segment-
specific responses.

4.6 Correlation analysis

In this study, significant positive correlations are observed
between the villus-to-crypt ratio, immunoglobulin levels, and
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muscle yield in broilers at both 21 and 42 days of age. Broiler
intestinal development is closely linked to growth performance, as
gut health directly influences nutrient absorption, immune
function, and overall growth efficiency. Building upon the
significant correlations observed between gut morphology (villus-
to-crypt ratio), immunity (immunoglobulin levels), and muscle
yield, a potential mechanistic action of IsCT in enhancing broiler
performance can be proposed. We hypothesize that IsCT primarily
acts through a gut-immune axis synergy that optimizes nutrient
partitioning toward muscle growth rather than fat deposition or
inflammatory processes. Firstly, improved intestinal health,
evidenced by the increased villus-to-crypt ratio, directly enhances
nutrient absorption surface area and efficiency. This aligns with
existing literature where enhanced gut morphology reduces FCR
and supports growth (95). The superior nutrient availability
subsequently provides more substrates for protein synthesis and
(97-99). the
immunoglobulin levels (IgA, IgG, IgM) indicate a potentiated

muscle  development Secondly, elevated
humoral immune response. A robust yet balanced immune system
minimizes the metabolic cost of inflammation, as chronic immune
activation diverts energy and nutrients away from growth. The
reduction in abdominal fat percentage observed in our study may
partly result from this reallocation of energy resources. This is
consistent with findings that immunomodulators (e.g., probiotics,
algal extracts) can simultaneously improve immunity and growth
performance (100, 101).

Based on these findings, we propose that IsCT’s antibacterial
function reduces the intestinal pathogen load, thereby diminishing
constant immune stimulation and gut damage. This allows for
simultaneous improvement in gut morphology and a shift toward
a more efficient immune profile. The concomitant enhancement
in both nutrient absorption capacity and immune efficiency
creates a synergistic effect, leading to the superior carcass quality
(increased meat yield, reduced fat) documented in our results.

4.7 Future applications and research
directions

IsCT demonstrates a unique dual functionality that integrates
potent antibacterial activity with significant immunostimulatory
effects. In vitro analyses confirmed its strong bactericidal effects
against major poultry pathogens, with MIC values ranging from
32 to 128 pg/mL, while in vivo trials showed elevated
immunoglobulin levels (IgA, IgG, IgM) and an enhanced bursal
index. This multifunctional profile parallels the broad efficacy of
traditional growth-promoting antibiotics but without conferring
the same risks of drug resistance, highlighting its potential as a
sustainable alternative in poultry production. When compared to
well-studied AMPs such as Cecropins, Lactoferrampin-
lactoferricin, and HDP-WK3, IsCT offers several distinctive
advantages: its short sequence (13 amino acids) simplifies and
reduces the cost of synthesis—approximately 43% that of
producing longer peptides like Cecropin—and improves metabolic
stability by minimizing protease-sensitive sites, thereby increasing
103). Furthermore, IsCT
exhibits broad-spectrum antibacterial activity, with MIC values

its bioavailability in the gut (12, 102,

against E. coli and Salmonella generally lower than those of many
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reference AMPs (104), and it maintains low hemolytic activity,
comparable to Cecropin and substantially lower than Melittin and
LL-37, indicating a favorable safety profile for veterinary use
(105-107). In broiler feeding trials, IsCT supplementation led to
a 16% increase in ADG during both the starter (1-21 days) and
grower (22-42 days) phases, outperforming other AMPs such as
Musca domestica cecropin and Microcin C7, which typically
improve ADG (104, 108, 109). This consistent efficacy throughout
the growth cycle underscores its reliability and functional
advantage. Beyond its direct antimicrobial and growth-promoting
effects, IsCT shows promise in addressing antimicrobial resistance
(AMR) through multi-target mechanisms including, membrane
disruption and intracellular interference, which reduce the
likelihood of resistance development (110, 111). Additionally, its
capacity to modulate host immunity and its environmentally
benign profile—degrading into natural amino acids without
residue accumulation—further support its potential as part of a
sustainable farming strategy (112).

Nevertheless, this study has several limitations that should
be acknowledged. First, the relatively short trial duration precludes
assessment of IsCT’s effects on growth performance, immune
parameters, and potential long-term toxicity throughout the entire
production cycle of yellow-feathered broilers. Furthermore, the
experimental design may introduce selection bias; although birds
were randomly allocated, the selection was from a single hatchery
and a specific genetic line, which may limit the generalizability of
our findings to other populations or breeds under different
management conditions. Second, as a bioactive antimicrobial agent,
its impact on gut microbiota composition was not investigated. This
omission constrains our mechanistic understanding of how IsCT
influences intestinal health and nutrient absorption, as the
microbiome is a key mediator of these processes. The absence of
metagenomic or 16S rRNA sequencing data represents a significant
constraint on fully interpreting the gut morphology and
performance results. Third, while improvements in growth and
immune responses were documented, the underlying cellular and
molecular mechanisms remain unexplored. Future studies should
employ transcriptomic or proteomic approaches to identify key
signaling pathways (e.g., NF-kB, mTOR) activated by IsCT
supplementation. Finally, the exclusive focus on yellow-feathered
broilers, while justified for this economically important species,
limits extrapolation of the results to other livestock species such as
swine or ruminants. Additionally, the chosen dose range
(25-200 mg/kg), while based on previous literature, might not have
captured the optimal dose for all response parameters, and the
dose-interval effects warrant more detailed investigation in
the future.

5 Conclusion

IsCT exhibits broad-spectrum antibacterial activity. Dietary
supplementation with IsCT during the grower phase of broilers
effectively improves growth performance, enhances immune function,
and optimizes carcass quality. Comprehensive evaluation revealed that
an inclusion level of 100 mg/kg IsCT is optimal. However, these
findings are limited to yellow-feathered broilers under short-term
feeding conditions, and the underlying mechanisms require
further investigation.
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