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scorpion-derived antimicrobial 
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Antimicrobial peptides (AMPs) derived from scorpion venom have emerged as 
promising environmentally sustainable feed additives due to their biosafety and ability 
to metabolize into natural amino acids without residues. This study investigates 
IsCT, a cytotoxic peptide from Isometroides scorpions, for its potential application 
in yellow-feathered broiler production. The study began with in vitro antimicrobial 
susceptibility testing against major livestock pathogens (Staphylococcus aureus 
ATCC 6538, Salmonella typhimurium ATCC 14028, Escherichia coli ATCC 25922, 
and Streptococcus agalactiae ATCC 13813), followed by biosafety evaluations 
using chicken erythrocytes and Kunming mice. A feeding trial with 360 broilers 
assigned birds to six dietary treatments: basal diet control, IsCT supplementation at 
25, 50, 100, or 200 mg/kg, and a ciprofloxacin control (50 mg/kg). IsCT exhibited 
concentration-dependent antibacterial activity with no hemolytic effects and 
demonstrated biosafety in murine models. During days 1–21 and 22–42, IsCT 
supplementation significantly improved feed conversion efficiency, carcass quality, 
immunoglobulin levels, and intestinal development in broilers. IsCT shows broad-
spectrum efficacy and growth-promoting potential, supporting its use as a sustainable 
feed additive in yellow-feathered broiler production systems.
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1 Introduction

Since the discovery of penicillin, Antibiotic Growth Promoters (AGPs) have become 
integral to poultry farming for their remarkable efficacy in disease prevention and growth 
enhancement. Their utilization significantly contributed to the intensification of livestock 
production by reducing morbidity and mortality rates while improving feed conversion ratios. 
However, the extensive and often indiscriminate application of AGPs has led to the emergence 
and dissemination of antimicrobial resistance (AMR), a pressing public health concern that 
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compromises the efficacy of therapeutic antibiotics in both animals 
and humans (1–3). In response to these challenges, global regulatory 
agencies have implemented stricter policies regarding antibiotic use 
in animal feeds, driving the quest for sustainable and effective 
alternatives. Amid this transition, green bacteriostatic agents—derived 
from natural sources and characterized by favorable environmental 
profiles—have become the focus in the development of new feed 
additives (4–9). Among these, antimicrobial peptides (AMPs) 
represent a highly promising category. These short peptides, typically 
consisting of 12–50 amino acids, are produced by a wide range of 
organisms as a first line of defense against pathogens. AMPs possess 
multiple biological properties, including broad-spectrum inhibitory 
effects against bacteria, fungi, viruses, and even parasites. Unlike 
conventional antibiotics, which often target specific molecular 
pathways, AMPs generally exert their effects through non-specific 
mechanisms, such as disrupting microbial membranes, modulating 
immune responses, and inhibiting biofilm formation. This mode of 
action significantly reduces the likelihood of resistance development, 
making AMPs an attractive option for long-term use in animal 
production (7).

Isalo scorpion cytotoxic peptide (IsCT) is a short-chain 
antimicrobial peptide originally isolated from the venom of the Israeli 
scorpion Leiurus quinquestriatus. It is widely recognized as one of the 
shortest naturally occurring antimicrobial peptides identified to date, 
with a simple yet effective sequence (ILGKIWEGIKSLF-NH₂) (10, 
11). This compact molecular structure contributes not only to its 
potent and broad-spectrum antimicrobial properties but also to its 
strong resistance to proteolytic degradation (10, 12), enhancing its 
stability in biological environments. Beyond its direct antimicrobial 
effects, research has shown that IsCT exhibits low cytotoxicity toward 
mammalian cells, which underscores its potential suitability for 

therapeutic and agricultural applications (10, 12). Moreover, IsCT has 
been found to modulate and enhance the host’s innate immune 
response, further increasing its utility as an immunostimulatory agent. 
In the context of animal production, IsCT demonstrates significant 
promise as a sustainable alternative to conventional antibiotics. It 
effectively inhibits the growth of major pathogenic bacteria commonly 
found in livestock settings, thereby reducing the incidence of 
infectious diseases and improving overall animal health. Additionally, 
dietary supplementation with IsCT has been linked to enhanced 
growth performance and improved antioxidant capacity in animals, 
contributing to more efficient and environmentally friendly farming 
practices (13, 14).

The application of innovative feed additives like IsCT is especially 
relevant for yellow-feathered broilers—a characteristic Asian poultry 
species with large-scale farming operations and significant economic 
importance—that face inherent challenges: intensive high-density 
farming enhances productivity but compromises growth performance 
and increases disease susceptibility. Although traditional antibiotic 
additives like ciprofloxacin effectively promote production, their long-
term use intensifies antimicrobial resistance, hepatorenal toxicity risks, 
and drug residue concerns, driving industry demand for sustainable 
alternatives. Against this backdrop, the scorpion venom peptide IsCT 
emerges as a promising candidate due to its multiple advantages. It has 
potent antibacterial activity, immunomodulatory functions, high 
biosafety (metabolizing into residue-free natural amino acids), and 
environmental compatibility (15). Nevertheless, despite commanding 
25% of Southeast Asia’s poultry market owing to superior sensory 
attributes, yellow-feathered broilers remain critically understudied 
compared to extensively researched white-feathered breeds—
particularly regarding novel antimicrobial peptides like IsCT. This 
research gap is especially notable given the fundamental physiological 
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differences between these breeds: unlike white-feathered broilers, 
which are bred for extremely rapid growth and high feed efficiency, 
yellow-feathered broilers exhibit a slower growth rate, superior carcass 
quality, and distinct metabolic and nutrient partitioning mechanisms. 
These breed-specific characteristics highlight the need for tailored 
nutritional and health interventions, necessitating systematic 
exploration of IsCT’s growth-promoting effects following validation of 
its pathogen-specific antibacterial efficacy and safety profile in this 
under-characterized breed. AMPs at 0–100 mg/kg have demonstrated 
growth-promoting and immunomodulatory effects in broilers. Gao 
et al. (16) found maggot-derived AMPs (100–300 mg/kg) improved 
growth/immunity in yellow-feathered broilers. Notably, although IsCT 
has demonstrated considerable potential in aquaculture—for example, 
by improving intestinal barrier function and development in grass carp 
(Ctenopharyngodon idella) (17) and enhancing growth and intestinal 
immunity in fish—studies evaluating its effects on monogastric 
animals, especially poultry, remain limited. Therefore, the present 
study was designed to address this unmet need. We hypothesized that 
dietary supplementation with IsCT would dose-dependently improve 
growth performance, enhance immune responses, and promote 
intestinal development in yellow-feathered broilers, yielding effects 
comparable to or better than the conventional antibiotic ciprofloxacin, 
without adversely affecting health parameters. The present study aimed 
to evaluate the effects of IsCT supplementation at 25, 50, 100, and 
200 mg/kg on growth and immunological parameters in yellow-
feathered broilers, using a ciprofloxacin control (50 mg/kg) (18, 19) as 
a benchmark. It should be specifically noted that although antibiotics 
such as ciprofloxacin were historically used as growth-promoting 
additives, their use is now largely restricted due to regulatory changes. 
In this study, ciprofloxacin was included as a positive control to 
benchmark the efficacy of IsCT against a known antimicrobial agent. 
By comparing the antibacterial efficacy, hemolytic activity, and overall 
impact on broiler performance between IsCT and a commonly used 
antibiotic, this work seeks to provide a comprehensive assessment of 
IsCT’s potential as a feed additive in poultry production.

2 Materials and methods

2.1 Ethical approval

All experimental procedures involving animals were conducted in 
accordance with institutional animal welfare guidelines. All procedures 
involved in this study were formally reviewed and approved by the 
Shihezi University Animal Ethics Committee (Approval No: A2025-
546, A2025-545). The experiment was carried out at the Animal 
Center of Shihezi University (Xinjiang, China), where extensive 
facilities and resources were utilized to ensure the precision and 
reliability of the research endeavors. This study strictly adhered to 
internationally recognized animal welfare and ethical standards 
throughout its duration. All experimental animals were housed in 
clean and spacious environments with continuous access to sufficient 
food and water. Prior to euthanasia, mice and broiler chickens were 
administered 3% (v/v) isoflurane inhalation anesthesia via an 
induction chamber until loss of consciousness, followed by humane 
euthanasia via cervical dislocation. All procedures were performed 
following the core principle of minimizing animal suffering, thereby 
reducing stress and distress to the greatest extent feasible.

2.2 Antimicrobial peptide and reagents

IsCT was purchased from Shanghai Sunshile Company (Shanghai, 
China) and was synthesized via solid-phase synthesis with >95% 
purity. Melittin was obtained from PeptideGen Biotechnology Co., Ltd. 
(Hangzhou, China) at 98% purity. Staphylococcus aureus ATCC 6538, 
Salmonella typhimurium ATCC 14028, Escherichia coli ATCC 25922, 
and Streptococcus agalactiae ATCC 13813 were provided by the 
Microbiology Laboratory of the College of Animal Science and 
Technology at Shihezi University. Mouse Enzyme-linked 
immunosorbent assay (ELISA) kits were acquired from Jiangsu 
Jingmei Biological Technology Co., Ltd. (Jiangsu, China). Fully 
automated biochemical analyzer (Model: BK1200, Shandong Biobase 
Biotechnology Co., Ltd., China). Light microscope (Model: BX53, 
Olympus Corporation, Tokyo, Japan). Full-spectrum microplate reader 
(Model: Multiskan SkyHigh, Thermo Fisher Scientific, United States).

2.3 Experimental animals and housing 
conditions

Based on studies by Zhu et  al. and our laboratory’s prior 
experience with comparable models, 60 Kunming (KM) mice were 
utilized in the present investigation. These 5-week-old, SPF (Specific 
Pathogen Free) grade mice, with an average body weight of 
29.82 ± 1.5 g, were all sourced from the Experimental Animal Center 
of Xinjiang Medical University. All mice were housed in a strictly 
controlled SPF environment, in which optimal conditions were 
maintained: temperature at 22 ± 2 °C, relative humidity at 55–60%, 
and a 12-h light/dark cycle. This ensured consistent health status of 
the experimental animals and the reliability of the results.

Yellow-feathered broilers were sourced from Shihezi Sansan 
Hatchery. At the Animal Station of Shihezi University. The sample size 
was determined based on common practices in poultry nutrition 
research (20–23) and our laboratory’s previous experience with similar 
models. A total of 360 healthy, vaccinated chickens with similar body 
weight (initial body weight: 29.0 ± 0.5 g) were selected. Birds were 
housed in three-tier vertical broiler cages at 0.2 m2/bird density under 
24-h incandescent lighting (20 lux) with mechanical ventilation. 
Environmental conditions were maintained at 60–70% relative humidity 
(hygrometer-monitored) and controlled temperature: 35 ± 0.5 °C for 
Week 1, reduced by 3 °C weekly until stabilizing at 22 ± 1 °C from Day 
28. The temperature-humidity index (THI), a key indicator of thermal 
comfort and heat stress in poultry, was calculated daily based on the 
recorded temperature and humidity using the following formula 
established by Yan et al. (24). The daily THI profile throughout the 
experimental period is presented in 
Supplementary Table S1 and  Graphical abstract. Feed and water were 
provided ad libitum via nipple drinkers and trough feeders. Biosecurity 
measures include daily manure removal and weekly iodophor 
disinfection (at a 1:200 dilution).

2.4 Antibacterial activity assay

The Oxford cup assay was performed according to Xiang’s method 
(25). In brief, Staphylococcus aureus, Salmonella spp., Escherichia coli, 
and Streptococcus agalactiae were resuscitated according to the 
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method described by Zeng et  al. (26), and the suspensions were 
prepared to a concentration of 1 × 108 CFU/mL. A 100 μL aliquot of 
each bacterial suspension was spread onto agar plates. Four Oxford 
cups were placed on each plate, followed by the injection of IsCT 
solutions at concentrations of 1 mg/mL and 0.5 mg/mL to assess 
antibacterial activity against the four pathogens. Inhibition zone 
diameters were recorded, with sterilized water as the negative control 
and 0.2 mg/mL ciprofloxacin as the positive control. All measurements 
were performed in three independent replicate experiments, and the 
mean values were calculated. Three independent biological replicates 
were performed for each bacterium, with each replicate using a fresh 
bacterial culture prepared on a different day. The mean values were 
calculated from these biological replicates.

2.5 Determination of minimum inhibitory 
concentration

MIC was determined using the microbroth dilution method. 
Following bacterial culture, strains were diluted to 1 × 105 CFU/
mL. In 96-well microplates, 50 μL of serially diluted IsCT solutions 
were added to 50 μL of bacterial inoculum, yielding final peptide 
concentrations of 16, 32, 64, 128, 256, 512, and 1,024 μg/mL. After 
24-h incubation at 37 °C, absorbance at OD600 was measured using 
a microplate reader. All measurements were performed in three 
independent replicate experiments, and the mean values were 
calculated. Three independent biological replicates were performed 
for each bacterium, with each replicate using a fresh bacterial culture 
prepared on a different day. The mean values were calculated from 
these biological replicates.

2.6 Hemolytic activity assay

Chicken blood was centrifuged (1,000 × g, 10 min, 4 °C) to isolate 
erythrocytes. Cells were washed thrice with equal-volume Phosphate-
Buffered Saline (PBS) and were centrifuged after each wash. Serial 
IsCT and Melittin dilutions (final concentrations: 0.25–4 mg/mL) 
were mixed with equal volumes of erythrocyte suspension. Controls 
included untreated cells (negative) and 0.1% Triton X-100-treated cells 
(positive). Following 1 h incubation (37 °C), samples were 
microscopically examined (1,000×). Remaining solutions were 
centrifuged; supernatant absorbance (OD₅₇₀) was measured. 
Minimum hemolytic concentration (MHC) was defined as the peptide 
concentration causing 10% hemolysis. All measurements were 
performed in three independent replicate experiments, and the mean 
values were calculated. For the hemolysis assay, blood samples from 
six chickens were used as biological replicates, with each sample tested 
in triplicate.

2.7 In vivo toxicity test of IsCT

After 7 days of acclimation, KM mice were randomly divided into 
5 groups based on body weight:0.2 mL sterile saline was administered 
to the CON group via intragastric gavage; 0.2 mL of 2.5 mg/mL IsCT 
peptide solution was administered to Group I; 0.2 mL of 5 mg/mL 
IsCT peptide solution was administered to Group II; 0.2 mL of 

10 mg/mL IsCT peptide solution was administered to Group III; and 
0.2 mL of 20 mg/mL IsCT peptide solution was administered to 
Group IV. Each group comprised 6 replicates with 2 mice per 
replicate. After 14 consecutive days of administration, one mouse per 
replicate was selected for sample collection on Day 15. The health 
status of the mice was assessed and scored according to the criteria 
established by Zhu et al. (9). Briefly, the scoring system was defined 
as follows: 5 = normal activity, 4 = hunched posture with reduced 
mobility (but ambulatory), 3 = hypokinesia and lacrimation, 
2 = moribund, and 1 = dead. Organ indices and serum biochemical 
parameters were subsequently analyzed.

2.8 Broiler farming experimental design 
and diets

This study utilized a randomized complete block design (RCBD), 
with initial body weight as the blocking factor. Briefly, a total of 360 
healthy yellow-feathered broilers were first ranked by their initial body 
weight and then assigned to one of six treatment groups, each 
consisting of 10 replicates, ensuring that birds within each replicate 
had similar body weights: CON (basal diet), I (basal diet + 25 mg/kg 
IsCT), II (basal diet + 50 mg/kg IsCT), III (basal diet + 100 mg/kg 
IsCT), IV (basal diet + 200 mg/kg IsCT), and CIP (basal diet + 50 mg/
kg ciprofloxacin). Diets were formulated according to Chinese 
Nutrient Requirements for Yellow-Feathered Broilers (NY/T 
33–2004), with complete formulations detailed in Table 1. Vaccination 
against Newcastle disease virus (NDV) and infectious bronchitis virus 
(IBV) was administered at Days 7 and 21. Growth metrics (ADG: 
Average Daily Gain, ADFI: Average Daily Feed Intake, F/G: Feed-to-
Gain Ratio) were recorded weekly. On days 22 and 43 of the trial, one 
bird per replicate within each treatment group, selected based on 
proximity to the mean body weight (resulting in six birds per group, 
serving as biological replicates), was humanely euthanized via cervical 
dislocation. Liver, bursa of Fabricius, and serum samples were 
subsequently collected and snap-frozen in liquid nitrogen for 
further analysis.

2.9 Growth performance measurement

Body weight (BW), average daily feed intake (ADFI), average daily 
gain (ADG), and feed-to- gain ratio (F/G) were calculated for days 
1–21 and days 22–42 phases as follows: broilers underwent a 12-h fast 
(feed withdrawal with ad libitum water access) prior to weighing on 
days s 21 and 42 using calibrated digital scales (±0.1 g); BW was 
recorded individually at d1/d21/d42; The ADFI, ADG, F/G were 
calculated according to the following standardized formulas:

	
( ) ( )= −ADG g / bird / day Final BW Initial BW /

days in phase

	

	 ( )
( )

=
×

ADFI g / bird / day Cumulative feed consumption /
birds days

	

	 =F / G ADFI / ADG	
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All measurements were performed in three independent replicate 
experiments, and the mean values were calculated.

2.10 Carcass quality

On days 21 and 42 of the trial, broilers were euthanized, followed 
by feather removal and exsanguination. Carcass weight and 
composition—including dressing percentage, breast muscle yield, 
thigh muscle yield, and abdominal fat percentage—were measured 
according to the method described by Namted et al. (27).

2.11 Blood biochemical analysis

Serum biochemical parameters were measured according to the 
method described by Liu et al. (28). Chicken blood was collected using 
vacuum tubes. The serum was separated by centrifugation at 3000 × g 
for 15 min at 4 °C. Serum levels of total protein (TP), albumin (ALB), 
globulin (GLB), as well as the activities of aspartate aminotransferase 
(AST), glucose (GLU), and alanine aminotransferase (ALT) in 21-day-
old and 42-day-old broiler chickens were measured using a fully 
automated biochemical analyzer. All measurements were performed 
in three independent replicate experiments, and the mean values 
were calculated.

2.12 Immune organ index calculation

The immune organ indices were measured according to the 
method described by Ma et al. (29). Simply put, spleens, thymuses, 
and bursae of Fabricius were rinsed with sterile physiological saline 
and weighed. The immune organ indices were calculated according to 
the following standardized formulas:

	
( ) ( )

( )
=Bursa index mg / kg Bursa weight g /

Body weight kg

	 ( ) ( )
( )

=Spleen index mg / kg Spleen weight g /
Body weight kg

	
( ) ( )

( )
=Thymus index mg / kg Thymus weight g /

Body weight kg

All measurements were performed in three independent replicate 
experiments, and the mean values were calculated.

2.13 Immune parameter assay

Serum immune parameters were determined according to the 
method described by Liu et al. (30). Briefly, serum concentrations of 
immunoglobulin A (IgA), immunoglobulin G (IgG), and 
immunoglobulin M (IgM) were quantified according to the 
manufacturer’s instructions. Briefly, chicken blood samples were 
processed as described in Section 2.10, mixed with corresponding 
reagents, and incubated at 37 °C for 30 min. After five washes, the 
enzyme conjugate was added and reacted at 37 °C for 30 min. 
Following another five washes, chromogenic substrate was added and 
developed at 37 °C for 10 min. Finally, a stop solution was added, and 
absorbance was measured at 450 nm using a microplate reader. All 
measurements were performed in three independent replicate 
experiments, and mean values were calculated.

2.14 Observation of intestinal morphology

Morphological analysis of intestinal tissue was performed according 
to the method described by Khan et al. (31). Briefly, intestinal tissue 
segments were immersed in 4% paraformaldehyde (PFA) solution for 
24 h under light-protected fixation, and then were subjected to paraffin 
embedding and sectioning at 3 μm thickness. Histological evaluation was 
performed using hematoxylin and eosin (H&E) staining. Villus height 
and crypt depth were measured under an optical microscope, with 
subsequent calculation of the villus-to-crypt ratio.

2.15 Statistical analysis

Statistical analysis was performed using SPSS 27.0 (IBM Corp., 
Armonk, NY, USA). Normality of continuous data (e.g., body weight, 
villus height, immunoglobulin concentrations) was assessed using the 
Shapiro–Wilk test. Homogeneity of variances was confirmed with 
Levene’s test, followed by one-way analysis of variance (One-way 

TABLE 1  Composition and nutrient levels of the basal diet 
(air-dry basis) %.

Item Content

1–21 days 22–42 days

Ingredients

Corn 55.00 67.30

Soybean meal 32.20 20.50

Bran 2.50 2.50

Fish meal 2.00 2.50

Soya-bean Oil 3.30 2.00

Premix1 5.00 5.00

NaCl 0 0.2

Total 100.00 100.00

Nutrient levels2

ME(MJ/kg) 12.24 14.98

CP 21.54 17.92

Ca 0.88 0.87

TP 0.80 0.82

AP 0.40 0.41

Lys 1.12 0.97

Met 0.49 0.46

Thr 0.80 0.66

1The premix provides per kilogram of feed: VA 180000 IU, VD 70000 IU, VE 450 IU, VK 
30 mg, 70 mg, 60 mg, niacin 600 mg, calci-um pantothenate 260 mg, biotin 1.7 mg, folic acid 
17 mg, Fe 10,000 mg, Cu 350 mg, Mn 1,500 mg, Zn 2000 mg, Ca 14 mg, P 6 mg, NaCl 7 mg, 
methionine3 mg.
2ME, amino acid and AP were calculated by referring to the “Chinese Feed Composition and 
Nutritional Value Table (29th Edition 2018).” CP, Ca and TP were, respectively, referred to 
GB/T 6432, GB/T 6436 and GB/T 6437.
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ANOVA, for comparing differences among the six dietary treatment 
groups) and post hoc LSD tests (for pairwise comparisons between 
groups, e.g., CON vs. Group III) where appropriate. Data visualization 
(e.g., bar graphs for carcass quality, line graphs for hemolytic activity) was 
conducted using GraphPad Prism 10.1 (GraphPad Software, San Diego, 
CA, United  States). Pearson correlation analysis (to assess linear 
relationships between continuous variables, e.g., villus-to-crypt ratio and 
serum IgG levels) and hierarchical clustering were performed using 
Origin 2021 (OriginLab Corp., Northampton, MA, United States). The 
clustering analysis employed hierarchical clustering with complete 
linkage (to group treatment groups with similar growth/immune/gut 
development patterns). Statistical significance was uniformly defined as 
p  < 0.05 (significant difference) and p  < 0.01 (highly significant 
difference) for all analyses (including ANOVA, LSD pairwise 
comparisons, and Pearson correlation). Investigators remained blinded 
to group assignments during data collection and analysis to minimize 
subjective bias in data recording and statistical interpretation.

3 Results

3.1 Inhibitory zone diameters

The experimental results indicate that IsCT exhibits bacteriostatic 
ability against all four tested bacterial strains. Specifically, at 0.5 mg/
mL, IsCT exhibits an inhibitory zone of 19 mm against Escherichia coli. 
Furthermore, at both tested concentrations, IsCT produces inhibitory 

zones larger than 20 mm against all strains (Figure 1). At 0.5 mg/mL, 
IsCT exhibits significantly higher bacteriostatic ability against 
Salmonella than that against Escherichia coli and Staphylococcus aureus 
(p = 0.012, p = 0.023). Its bacteriostatic ability against Staphylococcus 
aureus and GBS was significantly higher than that against Escherichia 
coli (p = 0.026, p = 0.019). The bacteriostatic ability of 1 mg/mL IsCT 
against GBS and Salmonella was significantly higher than that against 
Escherichia coli (p = 0.021, p = 0.035). Bacteriostatic zones are not 
observed in the control group (Table 2).

3.2 Mic

As shows in Table 3, IsCT demonstrates MIC values of 32 μg/mL 
against both E. coli and GBS, while exhibiting an MICs of 64 μg/mL 
against Salmonella and 128 μg/mL against S. aureus In comparison, 
ciprofloxacin shows consistent MICs of 1 μg/mL against E. coli, 
S. aureus, and Salmonella, with an MIC of 4 μg/mL against GBS.

3.3 Hemolytic activity

As depicted in Figure 2, IsCT shows a hemolysis rate close to 0% 
at 2 mg/mL but detectable hemolytic activity at 4 mg/mL. In contrast, 
Melittin at the same concentrations induces nearly complete hemolysis 
(≈100%). Figure  3 displays representative micrographs of treated 
erythrocytes. Chicken erythrocytes exposed to lower IsCT 

FIGURE 1

Inhibition zone diameters for the four bacterial species tested. (A) 0.5 mg/mL IsCT exhibited inhibition zone diameters of 19 mm against E. coli, 22.5 mm 
against S. aureus, 26.5 mm against Salmonella, and 24 mm against GBS; (B) 1 mg/mL IsCT exhibited inhibition zone diameters of 23 mm against E. coli, 
25 mm against S. aureus, 29.5 mm against Salmonella, and 28.5 mm against GBS; (C) sterile water exhibited no antibacterial activity; (D) 0.2 mg/mL 
ciprofloxacin exhibited inhibition zone diameters of 31 mm against E. coli, 28 mm against S. aureus,35 mm against Salmonella, and 31.5 mm against GBS.
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concentrations (0.25–2 mg/mL) maintain structural integrity with cell 
volumes comparable to untreated controls, indicating absence of 
hemolysis. Conversely, those treated with 4 mg/mL IsCT show 
significantly reduced volumes—though still larger than cells lysed by 
0.1% Triton X-100—accompanied by morphological transitions from 
elliptical to spherical configurations. Partial cellular fragmentation 
into irregular shapes and reduced intracellular content are observed, 
confirming progressive hemolysis.

3.4 In vivo toxicity

As shown in Figure 3, after 14 days of gavage administration, all 
mice remained active with no visible abnormalities. Compared to the 
control group, there are no significant changes in body weight, vital 
organ indices, or serum biochemical parameters in the gavage groups.

3.5 Growth performance

As presented in Table 4, at 21 days of age, the final body weight 
of the CIP group increases by 19 and 21% compared to the CON 
group and Group II, respectively (p = 0.006, p = 0.007). During the 
21–42 days period, the final body weight of Group III increases by 9, 
13, 20, and 11% compared to the CON group, Group I, Group II, and 
Group IV, respectively (p = 0.004, p = 0.006, p = 0.002, p = 0.004). The 
average daily gain (ADG) increases by 22, 19, and 15% compared to 
the CON group, Group I, and Group II, respectively (p  = 0.005, 
p = 0.013, p = 0.028). The feed-to-gain ratio (F/G) decreases by 5% 
compared to the CON group (p = 0.037). The final body weight of the 
CIP group increases by 14 and 8% compared to the CON group and 
Group II, respectively (p = 0.023, p = 0.039). The ADG increases by 
15% compared to the CON group (p = 0.047).

3.6 Carcass quality

As shown in Figure 4, at 21 days of age, the carcass yield of 
Group II increases by 5% compared to the CON group (p = 0.043). 
The carcass yield of Group III increases by 7, 8, and 8% compared 
to the CON group, Group I, and Group IV, respectively (p = 0.021, 
p = 0.031, p = 0.039). At 42 days of age, the meat yield of Group III 

increases by 4% compared to the CON group (p = 0.022), while the 
abdominal fat percentage decreases by 41% compared to the CON 
group (p = 0.014). The breast muscle yield of Group IV increases by 
17 and 15% compared to the CON group and Group I, respectively 
(p = 0.027, p = 0.025). The thigh muscle yield of Groups III, IV, and 
the CIP group increases by 12, 12, and 9% compared to the CON 
group, and by 12, 12, and 9% compared to Group I, respectively 
(p = 0.01, p = 0.01, p = 0.028, p = 0.01, p = 0.01, p = 0.029).

3.7 Blood biochemical parameters

As shown in Figure  5, dietary supplementation with IsCT or 
antibiotics has no significant effect on serum biochemical parameters 
of yellow-feathered broilers during 1–21 days of age. In contrast, 
during 21–42 days of age, compared to the CON group, the serum 
GLB level in Group III increases by 17% (p = 0.021).

3.8 Immune organ indices

As shown in Figures 6A–F, during 1–21 days of age, The Bursa index 
of Group I and Group IV increased by 62 and 26%, and by 65 and 38%, 
respectively, compared to the control group and the CIP group (p = 0.001, 
p = 0.043, p = 0.001, p = 0.036) However, dietary supplementation with 
IsCT or ciprofloxacin has no significant effect on immune organ indices 
of yellow-feathered broilers during 21–42 days of age.

3.9 Serum immune parameters

As presented in Figures 6G–L, at 21 days of age, serum IgA levels 
in Groups I–IV increase by 19, 19, 18, and 18%, respectively, 
compared to the CON group (p  = 0.036, p  = 0.032, p  = 0.035, 
p = 0.032). Serum IgA levels in Groups II–IV increase by 22, 20, and 
22%, respectively, compared to the CON group (p = 0.023, p = 0.025, 
p  = 0.012). The serum IgM level in Group III increases by 28% 
compared to the CON group (p = 0.019). At 42 days of age, serum 
IgA in Group III increases by 27 and 32% compared to the CON 
group and Group I, respectively (p = 0.016, p = 0.022). Serum IgG 
levels in Group III, Group IV, and the CIP group all increase by 22% 
compared to the CON group (p = 0.035, p = 0.025, p = 0.031).

3.10 Intestinal morphology

As shown in Figure 7, compared to the control group (CON), 
Group I  shows an 8% increase in jejunal villus height at 42 days 

TABLE 2  Inhibitory zone diameters of two concentrations of IsCT against four bacteria.

Item The diameter of the bacteriostatic ring (mm) SEM p-value

S. aureus Salmonella E. coli GBS

0.5 mg/mL IsCT 22.50b 26.50a 19.00c 24.00ab 0.876 <0.001

1 mg/mL IsCT 25.00 29.50a 23.00b 28.50a 0.577 0.007

0.2 mg/mL Ciprofloxacin 28.00c 35.00a 31.00b 31.50b 0.927 <0.001

The results are expressed as means and mean standard errors (SEM). In the same row, data labeled with different lowercase letters indicate significant differences (p < 0.05), data labeled with 
different uppercase letters indicate highly significant differences (p < 0.01), while data labeled with the same letters or no letters indicate no significant differences (p > 0.05).

TABLE 3  Minimum inhibitory concentration (MIC) of IsCT.

Item S. aureus Salmonella E. coli GBS

IsCT 128 μg/mL 64 μg/mL 32 μg/mL 32 μg/mL

Ciprofloxacin 1 μg/mL 1 μg/mL 1 μg/mL 4 μg/mL
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(p = 0.044). Group II exhibits a 13% increase in ileal villus height at 
21 days and a 7% improvement in the duodenal villus-to-crypt ratio at 
42 days (p = 0.016, p = 0.020). Group III demonstrates increases in 
villus height of 18, 12, and 21% in the duodenum, jejunum, and ileum, 
respectively, at 21 days (p = 0.026, p = 0.031, p = 0.012), along with a 
19% increase in jejunal villus length at 42 days (p = 0.019). Additionally, 
the jejunal villus-to-crypt ratio improves at 21 days, and further 
increases of 13, 17, and 20% are observed across the three intestinal 
segments at 42 days (p = 0.033, p = 0.018, p = 0.020, p = 0.035). Group 
IV shows a 10% increase in duodenal villus length and a 23% increase 
in the jejunal villus-to-crypt ratio at 42 days (p = 0.024, p = 0.015). The 
CIP group exhibits significant improvements in ileal villus length at 
21 days and in jejunal villus length at 42 days (p = 0.027, p = 0.039).

3.11 Correlation analysis

Figures  8,C show correlations among growth performance, 
immunity, and gut development at 21 and 42 days. At 21 days, carcass 

yield, thigh muscle yield, immunoglobulin levels, and villus-to-crypt 
ratio are positively correlated (r  > 0.7, p  < 0.05) and negatively 
correlated with FCR and abdominal fat percentage (r  < −0.7, 
p < 0.05). At 42 days, meat production rate and thigh muscle yield are 
positively correlated with immunoglobulin levels and villus-to-crypt 
ratio (r > 0.7, p < 0.05). Immunoglobulin levels and villus-to-crypt 
ratio are highly significantly correlated (r  > 0.7, p  < 0.01). 
Figures 8B,D compare overall growth, immune, and gut development 
levels across groups at 21 and 42 days. Both IsCT and ciprofloxacin 
improve all measured indicators, with 100 mg/kg IsCT showing the 
most consistent and significant enhancements.

4 Discussion

4.1 IsCT in vitro antimicrobial activity

Gram-positive bacteria (e.g., Staphylococcus aureus, Streptococcus 
agalactiae) and Gram-negative bacteria (e.g., Salmonella spp., 

FIGURE 2

IsCT has low hemolytic toxicity. (A) Concentration-dependent hemolytic activity of the antimicrobial peptide IsCT (blue line) and the reference peptide 
melittin (black line). (B–H) Bright-field microscopy images of chicken erythrocytes after treatment for 1 h at 37 °C: (B) 0.25 mg/mL IsCT, (C) 0.5 mg/mL 
IsCT, (D) 1 mg/mL IsCT, (E) 2 mg/mL IsCT, (F) 4 mg/mL IsCT, (G) 1 mg/mL Triton X-100 (positive control for complete lysis), (H) Untreated group 
(negative control). Scale bar: 20 μm.
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Escherichia coli) are prevalent in animal husbandry (32, 33), causing 
clinical conditions including pneumonia, mastitis, meningitis, 
septicemia, and diarrhea (3, 34–36). These diseases exhibit high 
mortality rates with complex transmission pathways that elude 
comprehensive control, threatening sustainable livestock production. 
This study demonstrates IsCT’s strongest inhibitory effects against GBS 

and Salmonella, followed by S. aureus, with weaker activity against 
E. coli. The variation in sensitivity among bacterial species may 
be attributed to differences in cell envelope structure. Gram-negative 
bacteria possess an outer membrane rich in lipopolysaccharides, which 
may hinder peptide penetration, whereas Gram-positive bacteria have 
a thick peptidoglycan layer that might be  more susceptible to 

FIGURE 3

Dietary supplementation with IsCT demonstrates favorable in vivo safety profiles in a mouse model. (A) Schematic of the experimental design for the 
in vivo toxicity assessment of IsCT in mice. Serum biochemical parameters: (B) total protein (TP), (C) globulin (GLB), (D) albumin (ALB), (E) glucose 
(GLU), (F) alanine aminotransferase (ALT), (G) aspartate aminotransferase (AST). Organ indices: (H) heart index, (I) liver index, (J) spleen index, (K) lung 
index, (L) kidney index. (M) Health score of mice following IsCT administration.

TABLE 4  The effect of IsCT on the growth performance.

Item Group SEM p-value

CON I II III IV CIP

BW (g) at 1 day of age 30.09 30.02 29.98 30.89 30.07 29.81 0.146 0.365

BW (g) at 21 day of age 423.30b 449.19 412.39Bb 460.35 477.54 502.73Aa 8.597 0.007

BW (g) at 42 day of age 1126.25Bc 1197.71Bbc 1137.50Bc 1363.67Aa 1229.91bc 1284.63ab 20.441 <0.001

1–21 days

ADFI/g 37.25 36.82 36.77 38.55 37.91 40.28 0.496 0.311

ADG/g 18.73 19.96 18.21 20.53 21.31 22.52 0.619 0.366

F/G 2.03 1.87 2.07 1.92 1.80 1.79 0.059 0.700

21–42 days

ADFI/g 90.84 89.34 92.31 90.26 88.73 95.24 0.842 0.255

ADG/g 33.48Bc 34.52bc 35.64bc 40.99Aa 36.65 38.43ab 0.792 0.051

F/G 2.75a 2.60 2.60 2.22b 2.43 2.50 0.06 0.144

The results are expressed as means and mean standard errors (SEM). In the same row, data labeled with different lowercase letters indicate significant differences (p < 0.05), data labeled with 
different uppercase letters indicate highly significant differences (p < 0.01), while data labeled with the same letters or no letters indicate no significant differences (p > 0.05).
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membrane-active peptides like IsCT. This aligns with literature 
showing insect-derived AMPs have broad-spectrum activity against 
these pathogens. For example, Pereira et  al. (37) reports Melittin 
MIC = 4 μg/mL against E. coli; Picoli et al. (38) documents 6–7 μg/mL 
against S. aureus; Jiang et al. (39) determined cecropin P1 MIC = 4 μg/
mL against Salmonella and E. coli; Denardi et al. (40) showed cecropin 
A activity against Salmonella at 2 μg/mL. These findings align with our 
observations. As hydrophobic amino acids, Ile and Leu enhance the 
peptide’s hydrophobicity (mean hydrophobic index > 2.1), facilitating 
its insertion into bacterial lipid bilayers (41, 42). This action disrupts 
the outer membrane of Gram-negative bacteria and the peptidoglycan 
layer of Gram-positive bacteria. This disruption induces leakage of 
intracellular contents, thereby potentiating IsCT’s antibacterial efficacy.

In this study, we  employ Oxford cup and microbroth dilution 
methods to assess IsCT’s antibacterial effects against four bacterial 

strains. Both methods confirm IsCT’s strongest inhibition against 
Streptococcus agalactiae and Salmonella, followed by S. aureus, with 
weaker effects against E. coli. However, Oxford cup results occasionally 
show variability. This may relate to IsCT’s amino acid composition: its 
sequence is rich in hydrophobic residues, particularly C-terminal Ile 
(isoleucine). Additionally, N-terminal Phe (phenylalanine) acts as a 
hydrogen donor, promoting hydrogen bonds between the N-terminal 
amino group and Phe’s main-chain carbonyl group, thereby affecting 
spatial conformation. Trp (tryptophan) in the mid-to-C-terminal region 
contributes to these structural features, potentially causing peptide chain 
aggregation (43, 44). The microbroth dilution method likely reflects 
IsCT’s true antibacterial activity more accurately due to refined drug 
concentration gradients. Conversely, high IsCT concentrations in Oxford 
cup assays may induce peptide aggregation (45), impairing agar diffusion 
and consequently affecting inhibition zone formation and measurement.

FIGURE 4

Dietary supplementation with IsCT improves carcass traits in broilers. (A–E) Measurements at 21 days of age: (A) carcass yield, (B) meat yield, (C) breast 
muscle yield, (D) thigh muscle yield, (E) abdominal fat percentage. (F–J) Measurements at 42 days of age: (F) carcass yield, (G) meat yield, (H) breast 
muscle yield, (I) thigh muscle yield, (J) abdominal fat percentage. Different lowercase letters indicate statistically significant differences (p < 0.05).

FIGURE 5

Dietary supplementation with IsCT exhibits relatively minor effects on the serum biochemical profile of broilers overall. (A–F) Parameters measured at 
21 days of age: (A) total protein (TP), (B) globulin (GLB), (C) albumin (ALB), (D) alanine aminotransferase (ALT), (E) aspartate aminotransferase (AST), 
(F) glucose (GLU). (G–L) Parameters measured at 42 days of age: (G) TP, (H) GLB, (I) ALB, (J) ALT, (K) AST, (L) GLU. Different lowercase letters indicate 
statistically significant differences (p < 0.05).
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4.2 Safety profile of IsCT

The membrane-lytic bactericidal mechanism unique to antimicrobial 
peptides may induce hemolytic toxicity (46–48), necessitating careful 
therapeutic index evaluation for clinical translation (49). Approximately 
70% of AMPs exhibit hemolytic activity (50), making it a critical safety 
indicator and major translational hurdle (46). Our findings demonstrate 
that IsCT shows no observable hemolysis at concentrations effective 
against all four target pathogens. Furthermore, despite belonging to the 
α-helical peptide class, IsCT demonstrates significantly lower hemolytic 

activity than Melittin. This divergence stems from altered target 
specificity: strong hydrophobicity enables preferential interaction with 
eukaryotic plasma membranes. Liu et  al. (51) show that reducing 
Melittin’s hydrophobicity significantly diminishes hemolysis while 
maintaining antibacterial efficacy, confirming hydrophobicity’s role in 
AMP selectivity. IsCT, LL-37, and other low-hydrophobicity peptides 
exhibit enhanced binding to negatively charged bacterial membranes, 
achieving superior biosafety (52).

Following the verification of IsCT’s in vitro erythrocyte toxicity, 
assessment of its in vivo toxicity was essential prior to evaluating its 

FIGURE 6

Dietary supplementation with IsCT enhances immune function in broilers. (A–C) Immune organ indices at 21 days of age: (A) thymus index, (B) spleen 
index, (C) bursa of Fabricius index. (D–F) Immune organ indices at 42 days of age: (D) thymus index, (E) spleen index, (F) bursa of Fabricius index. (G–I) 
Serum immunoglobulin levels at 21 days of age: (G) immunoglobulin A (IgA), (H) immunoglobulin G (IgG), (I) immunoglobulin M (IgM). (J–L) Serum 
immunoglobulin levels at 42 days of age: (J) IgA, (K) IgG, (L) IgM. Different lowercase letters indicate statistically significant differences (p < 0.05).

FIGURE 7

Dietary supplementation with IsCT improves intestinal morphology in broilers. (A–C) Duodenal morphology at 21 days of age: (A) villus height (VH), 
(B) crypt depth (CD), (C) villus height to crypt depth ratio (VH/CD). (D–F) Duodenal morphology at 42 days of age: (D) VH, (E) CD, (F) VH/CD. (G–I) 
Jejunal morphology at 21 days of age: (G) VH, (H) CD, (I) VH/CD. (J–L) Jejunal morphology at 42 days of age: (J) VH, (K) CD, (L) VH/CD. (M–O) Ileal 
morphology at 21 days of age: (M) VH, (N) CD, (O) VH/CD. (P–R) Ileal morphology at 42 days of age: (P) VH, (Q) CD, (R) VH/CD. Different lowercase 
letters above bars indicate significant differences (p < 0.05).
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effects on broiler growth performance. In serum analysis, total protein 
and albumin levels provide an overview of hepatic and renal function, 
while elevated AST and ALT activities serve as critical indicators of 
liver damage. As demonstrated by Zhu et al. (9), administration of the 
antimicrobial peptide IK3 induces no significant alterations in these 
parameters in mice. In our 14-day gavage study, mice treated with 
various doses of IsCT exhibit no significant changes in body weight, 
abnormal behaviors, or alterations in relative weights of vital organs. 
Subsequent biochemical analyses further confirm its safety. These 
findings are consistent with results from the broiler feeding trial, 
where only broilers continuously fed 100 mg/kg IsCT until 42 days of 
age show elevated globulin levels. Based on subsequent experimental 
data, we  infer this change results from increased serum 
immunoglobulin (IgA, IgG, and IgM) concentrations.

4.3 Effects of IsCT on growth performance

Growth performance is a key determinant of livestock economic 
value (53). This study shows dietary supplementation with IsCT at 
100 mg/kg significantly improved average daily gain (ADG) and feed 
efficiency (F/G) in broilers during the 22–42 day period without 
affecting feed intake (ADFI). This suggests that IsCT enhances 
nutrient utilization rather than appetite stimulation. Tai et al. (54) 
found 3% recombinant piscidin EP increases body weight and reduces 
F/G; Choi et  al. (55) report 60 mg/kg AMP-A3 improves growth 
performance and nutrient retention—aligning with our ADG increase 
under equivalent feed intake, confirming conserved nutrient 
partitioning mechanisms. Carcass yield, breast meat yield, thigh meat 
yield, and abdominal fat percentage are critical metrics for evaluating 

FIGURE 8

Dietary supplementation with IsCT induces strong correlations among growth performance, immune function, and gut development in broilers. 
(A) Correlation heatmap of growth performance, immune parameters, and intestinal development indices in 21-day-old broilers. (B) Cluster analysis of 
growth performance, immune parameters, and intestinal development indices in 21-day-old broilers. (C) Correlation heatmap of growth performance, 
immune parameters, and intestinal development indices in 42-day-old broilers. (D) Cluster analysis of growth performance, immune parameters, and 
intestinal development indices in 42-day-old broilers. Red signifies positive correlation, with intensity proportional to depth (deeper red indicating 
stronger positive correlation); blue denotes negative correlation, with intensity similarly proportional to depth (deeper blue indicating stronger negative 
correlation). *p < 0.05, **p < 0.01.
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poultry production efficiency. These measurements provide clear 
insights into slaughter performance, muscle development, and fat 
distribution. As growth-promoting bioactive compounds, AMPs have 
demonstrated potential to enhance carcass traits in livestock. Shi et al. 
(56) report that dietary supplementation with composite AMPs 
increases carcass weight and meat yield in beef cattle by modulating 
ruminal microbiota and metabolism. However, research on AMP 
effects on broiler carcass characteristics remains limited. Our study 
addresses this knowledge gap by revealing that dietary IsCT 
significantly increases breast meat yield and thigh meat yield while 
reducing abdominal fat percentage in 42-day-old broilers. These 
findings carry notable practical implications, demonstrating IsCT’s 
capacity to optimize body composition by promoting deposition of 
commercially valuable muscle cuts and reducing undesirable 
abdominal fat accumulation. The potential factor contributing to the 
reduced abdominal fat percentage in broilers by IsCT may be  its 
impact on key biomolecules involved in adipose tissue formation, 
such as the activation of the peroxisome proliferator-activated receptor 
(PPAR) signaling pathway. Activation of the PPARγ signaling pathway 
can disrupt the endocrine system and lead to adipose tissue 
accumulation (57). Szychowski et al. (58) demonstrated that short-
chain peptides influence the expression of Pparγ and β-galactosidase 
(β-Gal) in cellular assays, suggesting a possible mechanism by which 
IsCT, as a peptide-based substance, reduces abdominal fat deposition 
in broilers.

Notably, IsCT’s effects were more pronounced in the grower 
phase than in the starter phase. This may be due to higher protein 
turnover and muscle accretion rates in older birds, where improved 
nutrient absorption and metabolic efficiency have greater impact 
(59, 60). Although IsCT contains several essential amino acids—
such as leucine, which modulates feed intake and hypothalamic 
NPY/AgRP expression (61); isoleucine, associated with muscle 
protein synthesis and microbial homeostasis (62–64); lysine, which 
supports intestinal development, improves feed utilization, and 
optimizes amino acid balance (65); and tryptophan, involved in 
GLP-1 and bile acid signaling that may reduce the feed-to-gain ratio 
(F/G) (66, 67)—it is important to note that at the low inclusion level 
of 100 mg/kg, any direct nutritional contribution from these amino 
acids is negligible. Instead, these structural components may 
facilitate functional activities such as membrane interaction and 
receptor signaling. The greater efficacy observed during days 22–42, 
a phase characterized by substantial muscle development, may 
reflect enhanced protein metabolism mediated through such 
functional pathways. Furthermore, IsCT may influence broiler 
physiology through multiple functional mechanisms: it appears to 
modulate hepatic signaling cascades (e.g., GH-Jak2-STAT5-IGF1, 
PI3K-Akt, and Erk/MAPK pathways) and improve gut function. 
Similar to Scy-hepc in fish (68), it increases trypsin/amylase activity 
and nutrient transporters, improving absorption (69, 70). It also 
reduces cecal pH—indicating resistance-free antibacterial effects 
that enhance digestibility—and enriches Lactobacillus, Lactococcus, 
and Parabacteroides. These bacteria produce bacteriocins/organic 
acids, boosting nutrient availability and gut homeostasis. Previous 
antimicrobial peptide studies primarily focused on in vitro activity 
or single-parameter assessments. In contrast, this research directly 
compared IsCT with ciprofloxacin, a globally adopted growth-
promoting antibiotic in poultry production. Critically, our results 
demonstrate that dietary IsCT supplementation achieves 

growth-promoting efficacy comparable to ciprofloxacin, with 
optimal effects observed at 100 mg/kg IsCT during the 22–42 day 
phase. This evidence-based comparison establishes a realistic 
foundation for IsCT’s commercial application as a viable 
antibiotic replacement.

4.4 Effects of IsCT on immune 
performance

The animal immune system maintains homeostasis through the 
regulation of inflammatory factor secretion (71). As pivotal immune 
organs in avian species, the liver, thymus, and bursa of Fabricius 
jointly sustain organismal health (72). IsCT supplementation 
significantly increased the bursa of Fabricius index in young broilers 
and elevated serum immunoglobulin (IgA, IgG, IgM) levels 
throughout the trial. These results indicate that IsCT not only exerts 
direct antibacterial effects but also modulates host immune 
function. The immunomodulatory mechanisms of AMPs like IsCT 
may include: neutralization of bacterial endotoxins such as LPS; 
regulation of cytokine production; enhancement of chemokine 
activity; and modulation of signaling pathways involved in 
inflammation (e.g., TLR4/NF-κB). Xie et al. (7) show 100 mg/kg 
Plectasin moderately improves immune organ indices and elevates 
immunoglobulins; Patyra et al. (6) confirmed defensins, cecropins, 
and moricins similarly enhance immunoglobulin levels—aligning 
with current findings.

AMPs can modulate the host immune response through various 
mechanisms. Their immunoregulatory functions include balancing 
the production of anti-inflammatory and pro-inflammatory cytokines, 
neutralizing LPS and endotoxins (73), enhancing chemokine 
expression, and regulating the excessive release of cytokines such as 
TNF-α and IL-1β (74). These actions help alleviate inflammatory 
responses and prevent tissue damage caused by overactivation of the 
immune system (75–77). For instance, human β-defensin 3 (hBD3) 
can bind to both LPS and TLR4, thereby blocking TLR4 activation and 
reducing the activity of MyD88, TRIF, and NF-κB (78). Similarly, 
lactoferrin binds to LPS from Porphyromonas gingivalis and CD14, 
interfering with the formation of CD14–LPS complexes and 
downregulating the TLR4 signaling pathway (79, 80). In a rat model, 
Nal-P-113 was shown to reduce the production of IL-1β and TNF-α 
in Pseudomonas-infected mice (81). Furthermore, AMPs can enhance 
the host’s antioxidant capacity and mitigate oxidative damage to 
immune cells. For example, Fang et al. (82) found that AMPs can 
improve an animal’s ability to cope with oxidative stress and increase 
the activity of antioxidant enzymes. As an antibacterial substance, 
IsCT significantly influences intestinal development and immune 
function through modulation of the gut microbiota. Chen et al. (83) 
reported that dietary supplementation with Litsea cubeba essential oil 
(LCO) improved growth performance and immune function in 
finishing pigs by modulating intestinal flora. Similarly, Song et al. (84) 
demonstrated that supplementation with soy milk fermented with 
Pleurotus eryngii peptides increased the abundance of beneficial gut 
bacteria and enhanced antioxidant capacity and immune responses in 
mice. Additionally, tryptophan—a constituent amino acid of IsCT—
can be metabolized into bioactive compounds that modulate the TLR4 
signaling pathway (85), thereby promoting the resolution 
of inflammation.
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4.5 Effects of IsCT on intestinal 
morphology

Optimal intestinal morphology enhances nutrient absorption 
efficiency, with structural changes directly correlating with 
improved absorptive capacity (86). Increased villus height expands 
the absorptive surface area, thereby elevating nutrient utilization 
and enhancing broiler growth performance (87). IsCT 
supplementation significantly improves intestinal villus height, 
crypt depth, and the villus-height-to-crypt-depth ratio, particularly 
in the jejunum and ileum. These structural changes reflect enhanced 
absorptive capacity and overall intestinal health. The improvement 
in gut morphology may be attributed to a reduction in pathogenic 
bacteria and associated inflammation, the promotion of beneficial 
microbiota such as Lactobacillus and Bacteroidetes, and the 
upregulation of tight junction proteins and mucosal barrier function 
through signaling pathways such as aPKC and Rac1. The heightened 
responsiveness of the jejunum to IsCT treatment aligns with its 
primary role in nutrient absorption, whereas effects on the ileum 
are more closely associated with immune modulation and microbial 
activity. Zhu et al. (88) report that antimicrobial peptide Mastoparan 
X (MPX) supplementation improves villus morphology, creating a 
favorable microenvironment for intestinal health. Similarly, Liu 
et al. (87) find that the antimicrobial peptide CADN significantly 
increases villus height and width while enhancing structural 
integrity in broilers. These morphological improvements likely 
operate through multiple mechanisms. Alterations in the structure 
of the gut microbiota may represent a key underlying mechanism 
for this phenomenon. The gut microbiome plays a crucial role in 
intestinal development. Bai et  al. (89) found that a hydrolyzed 
protein formula improved the gut microbiota, thereby enhancing 
intestinal development in low birth weight piglets. Similarly, Wei 
et al. (90) reported that sulfated fucan-induced modulation of the 
gut microbiota upregulates the expression of tight junction proteins 
in mice, leading to improved intestinal function. Wang et al. (91) 
observe that AMP supplementation significantly reduces aerobic 
bacteria while increasing beneficial genera (e.g., Firmicutes and 
Bacteroidetes), thereby improving the intestinal microenvironment. 
This microbial rebalancing mitigates intestinal inflammation and 
supports healthy villus development (92, 93). The antimicrobial 
peptide AMP-IBP5 is demonstrated to enhance barrier function in 
both cutaneous and intestinal tissues by activating the atypical 
protein kinase C (aPKC) and Rac1 signaling pathways, thereby 
upregulating tight junction protein expression (94).

Notably, Zhu et al.’s findings of pronounced jejunal villus height 
and villus height-to-crypt depth (VH/CD) ratio enhancement align 
with our results. This jejunal sensitivity may stem from its primary 
role in nutrient absorption, where morphological efficiency critically 
determines absorptive capacity. Conversely, AMPs may exert stronger 
effects on ileal morphology through immunomodulation and tissue 
repair mechanisms (95, 96), potentially explaining segment-
specific responses.

4.6 Correlation analysis

In this study, significant positive correlations are observed 
between the villus-to-crypt ratio, immunoglobulin levels, and 

muscle yield in broilers at both 21 and 42 days of age. Broiler 
intestinal development is closely linked to growth performance, as 
gut health directly influences nutrient absorption, immune 
function, and overall growth efficiency. Building upon the 
significant correlations observed between gut morphology (villus-
to-crypt ratio), immunity (immunoglobulin levels), and muscle 
yield, a potential mechanistic action of IsCT in enhancing broiler 
performance can be proposed. We hypothesize that IsCT primarily 
acts through a gut-immune axis synergy that optimizes nutrient 
partitioning toward muscle growth rather than fat deposition or 
inflammatory processes. Firstly, improved intestinal health, 
evidenced by the increased villus-to-crypt ratio, directly enhances 
nutrient absorption surface area and efficiency. This aligns with 
existing literature where enhanced gut morphology reduces FCR 
and supports growth (95). The superior nutrient availability 
subsequently provides more substrates for protein synthesis and 
muscle development (97–99). Secondly, the elevated 
immunoglobulin levels (IgA, IgG, IgM) indicate a potentiated 
humoral immune response. A robust yet balanced immune system 
minimizes the metabolic cost of inflammation, as chronic immune 
activation diverts energy and nutrients away from growth. The 
reduction in abdominal fat percentage observed in our study may 
partly result from this reallocation of energy resources. This is 
consistent with findings that immunomodulators (e.g., probiotics, 
algal extracts) can simultaneously improve immunity and growth 
performance (100, 101).

Based on these findings, we propose that IsCT’s antibacterial 
function reduces the intestinal pathogen load, thereby diminishing 
constant immune stimulation and gut damage. This allows for 
simultaneous improvement in gut morphology and a shift toward 
a more efficient immune profile. The concomitant enhancement 
in both nutrient absorption capacity and immune efficiency 
creates a synergistic effect, leading to the superior carcass quality 
(increased meat yield, reduced fat) documented in our results.

4.7 Future applications and research 
directions

IsCT demonstrates a unique dual functionality that integrates 
potent antibacterial activity with significant immunostimulatory 
effects. In vitro analyses confirmed its strong bactericidal effects 
against major poultry pathogens, with MIC values ranging from 
32 to 128 μg/mL, while in  vivo trials showed elevated 
immunoglobulin levels (IgA, IgG, IgM) and an enhanced bursal 
index. This multifunctional profile parallels the broad efficacy of 
traditional growth-promoting antibiotics but without conferring 
the same risks of drug resistance, highlighting its potential as a 
sustainable alternative in poultry production. When compared to 
well-studied AMPs such as Cecropins, Lactoferrampin-
lactoferricin, and HDP-WK3, IsCT offers several distinctive 
advantages: its short sequence (13 amino acids) simplifies and 
reduces the cost of synthesis—approximately 43% that of 
producing longer peptides like Cecropin—and improves metabolic 
stability by minimizing protease-sensitive sites, thereby increasing 
its bioavailability in the gut (12, 102, 103). Furthermore, IsCT 
exhibits broad-spectrum antibacterial activity, with MIC values 
against E. coli and Salmonella generally lower than those of many 
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reference AMPs (104), and it maintains low hemolytic activity, 
comparable to Cecropin and substantially lower than Melittin and 
LL-37, indicating a favorable safety profile for veterinary use 
(105–107). In broiler feeding trials, IsCT supplementation led to 
a 16% increase in ADG during both the starter (1–21 days) and 
grower (22–42 days) phases, outperforming other AMPs such as 
Musca domestica cecropin and Microcin C7, which typically 
improve ADG (104, 108, 109). This consistent efficacy throughout 
the growth cycle underscores its reliability and functional 
advantage. Beyond its direct antimicrobial and growth-promoting 
effects, IsCT shows promise in addressing antimicrobial resistance 
(AMR) through multi-target mechanisms including, membrane 
disruption and intracellular interference, which reduce the 
likelihood of resistance development (110, 111). Additionally, its 
capacity to modulate host immunity and its environmentally 
benign profile—degrading into natural amino acids without 
residue accumulation—further support its potential as part of a 
sustainable farming strategy (112).

Nevertheless, this study has several limitations that should 
be acknowledged. First, the relatively short trial duration precludes 
assessment of IsCT’s effects on growth performance, immune 
parameters, and potential long-term toxicity throughout the entire 
production cycle of yellow-feathered broilers. Furthermore, the 
experimental design may introduce selection bias; although birds 
were randomly allocated, the selection was from a single hatchery 
and a specific genetic line, which may limit the generalizability of 
our findings to other populations or breeds under different 
management conditions. Second, as a bioactive antimicrobial agent, 
its impact on gut microbiota composition was not investigated. This 
omission constrains our mechanistic understanding of how IsCT 
influences intestinal health and nutrient absorption, as the 
microbiome is a key mediator of these processes. The absence of 
metagenomic or 16S rRNA sequencing data represents a significant 
constraint on fully interpreting the gut morphology and 
performance results. Third, while improvements in growth and 
immune responses were documented, the underlying cellular and 
molecular mechanisms remain unexplored. Future studies should 
employ transcriptomic or proteomic approaches to identify key 
signaling pathways (e.g., NF-κB, mTOR) activated by IsCT 
supplementation. Finally, the exclusive focus on yellow-feathered 
broilers, while justified for this economically important species, 
limits extrapolation of the results to other livestock species such as 
swine or ruminants. Additionally, the chosen dose range 
(25–200 mg/kg), while based on previous literature, might not have 
captured the optimal dose for all response parameters, and the 
dose-interval effects warrant more detailed investigation in 
the future.

5 Conclusion

IsCT exhibits broad-spectrum antibacterial activity. Dietary 
supplementation with IsCT during the grower phase of broilers 
effectively improves growth performance, enhances immune function, 
and optimizes carcass quality. Comprehensive evaluation revealed that 
an inclusion level of 100 mg/kg IsCT is optimal. However, these 
findings are limited to yellow-feathered broilers under short-term 
feeding conditions, and the underlying mechanisms require 
further investigation.
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