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Nonhuman animals use nonverbal cues to communicate their mental state about 
positive and negative events, including pain. Pain is a multidimensional process 
that elicits behavioral changes aimed at preventing further damage and promoting 
healing. These changes include restrictions on movement and/or activity, as well 
as adopting body postures to relieve pain. Additionally, changes in the ear and tail 
position have been associated with pain perception and are considered a sign of 
pain in several domestic species. Thus, this review aims to critically analyze and 
discuss the behavioral modifications and body language expressions associated 
with pain in domestic animals, with a particular emphasis on changes in tail position, 
ear posture, and overall postural dynamics. This review also aims to highlight the 
essential role of veterinarians and animal scientists in recognizing these subtle 
non-verbal indicators during clinical evaluation, thereby fostering early detection 
and effective pain management through more precise observational assessment.
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1 Introduction

Pain assessment in veterinary medicine requires a multimodal 
approach that considers parameters beyond physiological and 
endocrine biomarkers due to its subjective and multidimensional 
nature (1–4). Some animals, such as horses and rodents, conceal signs 
of pain due to their prey nature, which forces them not to appear 
vulnerable to other individuals (5–9). Moreover, non-human animals 
cannot self-report the presence or intensity of pain (1). Thus, 
considering the animal’s nonverbal communication cues are essential 
to accurately evaluate pain (10). Nonverbal communication includes 
behavioral changes and modifications in body language (8, 11). 
Behavior refers to the movements and actions performed to respond 
to stimuli (e.g., withdrawal response, guarding the affected area, or 
vocalizing) (12). On the other hand, body language refers to changes 
in the animal’s body posture, as well as limb movements, gestures, and 
facial expressions (13, 14). Changes in behavior and body language are 
species-specific and have been recorded in animals exposed to noxious 
stimuli (15–17).

According to the neurobiology of pain, the activation of peripheral 
nociceptors (nerve fibers specialized in detecting noxious stimuli) and 
their projection to the brain results in the conscious perception of pain 
by the somatosensory cortex (Figure 1), also known as the affective 
component of pain (18–21). Pain demands attentiveness from animals. 
In consequence, this triggers several active or passive, defensive or 
reactive behavioral and body posture changes to prevent further 
damage and promote recovery (6, 22, 23). Due to the neurobiological 

association between pain processing and both behavioral and body 
posture changes, these aspects have been integrated into pain 
assessment scales for domestic mammals, which categorize pain by its 
intensity and duration (24–26). Additionally, characterization of pain 
requires consideration of the medical condition (e.g., surgical, 
traumatic, pathological, physiological) and the anatomical region (e.g., 
lumbar, abdominal, limbs) to objectively associate certain behaviors 
with pain (27).

Regardless of the differences between species, in animals such as 
dogs, cats, horses, pigs, cattle, sheep, and goats, the modification of the 
position of the ears or tail is considered one of the main changes in 
body language related to the perception of pain (28–30). However, due 
to the variability in the expression of pain-associated responses in 
domestic mammals, assessment using pain scales requires training in 
the specific behavioral repertoire to detect alterations (31, 32). The 
complexity of recognizing behaviors and postures associated with pain 
in animals highlights the role that veterinarians have in promptly 
detecting pain and educating owners to detect it at home (33).

Through the recognition of the anatomical regions involved in 
pain processing and how pain manifests as changes in posture and 
behavior, a clinical and non-invasive evaluation of pain can 
be obtained. Thus, this review aims to critically analyze and discuss 
the behavioral modifications and body language expressions 
associated with pain in domestic animals, with particular emphasis on 
changes in tail position, ear posture, and overall postural dynamics. 
This review also aims to underscore the essential role of the 
veterinarian in recognizing these subtle non-verbal indicators during 

FIGURE 1

Pain pathway and its association with behavioral responses.
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clinical evaluation, thereby fostering early detection and effective pain 
management through more precise observational assessment. 
Moreover, this review also provides practical information that 
veterinary practitioners can use to assess pain in different domestic 
mammals. Figure 2 schematizes the overall structure of the review.

2 Behavioral responses associated 
with pain

Evaluating the behavioral responses of animals when experiencing 
pain is considered one of the main noninvasive methods to assess its 
affective component (34). As previously mentioned, pain-related 
behaviors in domestic mammals comprise a wide range of activities 
to reduce the discomfort caused by pain, such as protecting the injured 
area (35). As mentioned by Camps et  al. (36), both losing the 
presentation of normal behaviors and developing abnormal ones are 
considered signs of pain. Among the main reported signs in animals 
experiencing pain are reluctance to move, depression, sleep 
disturbances, loss of appetite, restlessness, frequent vocalization, 
licking, biting, scratching, self-mutilation, anxiety, irritability, and 
aggressiveness (Figure 3) (25, 26, 37–43).

The behavioral response and the change intensity depend on the 
species and the painful condition. For example, behavioral changes in 
domestic species such as dogs and cats are the basis for evaluating 
acute pain (as observed in their respective pain assessment scales) (25, 
44). Firth and Haldane (45) were among the first researchers to 

highlight the importance of pain-related behaviors in dogs by 
developing a behavior-based scale to assess pain. In this scale, 
restlessness, vocalization, and reluctance to rise or sit are present in 
animals with severe surgical pain after ovariohysterectomy (OVH) or 
castration. Similarly, in Reid et al.’s (44) study, groaning or screaming, 
growling, and snapping in response to touch, as well as anxiety, 
fearfulness, or non-responsiveness to stimulation, are considered signs 
of severe pain during the postsurgical period. These results align with 
studies reporting that, after OVH and castrations, the response to 
palpation, reduced movement, and increased frequency of 
vocalizations are signs of pain regardless of the analgesic 
treatment (46).

When dogs perceive musculoskeletal pain, particularly in the 
joints (hip, stifle) or fore/hindlimbs, which represent very common 
(29–71%) sources of pain (47), main behavioral modifications are 
reduced general activity and resistance/stiffness to walking (48, 49). 
These changes may be accompanied by pain-related aggression, as 
observed in dogs (66.7%) with hip dysplasia (36). Stevens et al. (50) 
mention that scales scoring appendicular joint pain (in mani, carpi, 
elbows, shoulders, pes, tarsi, stifles, hips) consider aggression or 
intention to bite when trying to manipulate the injured area a sign of 
severe pain.

Additionally, this type of pain is also related to unwillingness to 
learn or participate in training sessions, house-soiling issues, and 
clinginess to the owner (47). An example is Dodd et al.’s (51) study 
focusing on military working dogs with lumbosacral stenosis. 
Twenty-one dogs (32.8%) presented behavioral alterations such as 

FIGURE 2

Overall structure of the review, where behavioral responses and body language will be discussed as methods to assess pain.
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unwillingness or reluctance to jump (38%), self-mutilation in the 
affected area (25%), anxiety (25%), anorexia (25%), and reluctance to 
sit (25%). Figure 4 illustrates some examples of behavioral changes in 
companion dogs and how these can change according to the etiology 
of pain (e.g., pancreatitis, nasal transmissible venereal tumor, 
gastroenteritis, and postsurgical pain) (47, 52–56).

In dogs, gastrointestinal pain is associated with compulsive-type 
behaviors such as star gazing, excessive licking of surfaces, and pica 
(47). Bécuwe-Bonnet et al. (57) observed copious licking of surfaces 
(floors, walls, carpets, and furniture) in 59% of dogs diagnosed with 
eosinophilic and/or lymphoplasmacytic infiltration in the 
gastrointestinal tract, reduced gastric emptying, irritable bowel 
syndrome, pancreatitis, and giardiasis. Excessive licking might also 
progress to self-mutilation in cases of acral dermatitis (58). The overall 
reduction in activity and mobility observed in animals experiencing 
all types of pain is related to the protective nature of pain, i.e., its 
function to prevent further damage, avoid activities that might delay 
healing, and decrease the inflammatory response that frequently 
escalates to hyperactivation of peripheral receptors, sensitization, and 
chronic pain (23).

In the case of cats, contrary to dogs, pain evaluation and 
recognition of pain-related behaviors are challenging due to their 
tendency to hide any sign of discomfort unless severe (59). Due to this 
aspect, the behavioral modifications observed in dogs might not 
always be present in cats (or be less evident). For example, Monteiro 
and Steagall (60) mention that mobility changes are less common in 
domestic felines due to their species-specific behavioral repertoire and 
inclination to withdraw and hide when threatened. However, among 
the main behavioral changes related to abdominal pain are a reaction 

to palpation, decreased appetite, growling, groaning, and decreased 
grooming (61).

According to Brondani et al. (62), a cat with severe surgical pain 
licks/bites the surgical wound, reacts aggressively when touching the 
wound, vocalizes (growls, howls, hisses), shows restlessness and 
reluctance to move. Similarly, Marangoni et  al. (27) mention 
descriptors such as the level of exploratory behavior, restlessness, 
grooming, stretching, attention to the wound, growling/hissing, and 
no interest in food. In the case of chronic pain, a reduction in the 
animal’s activity is observed, as well as loss of appetite, a tendency to 
hide or avoid social interaction, and excessive licking of the affected 
area, decreasing normal grooming (43, 63).

Likewise, some authors refer to key behaviors that help distinguish 
between painful and nonpainful cats, as reported in kittens subjected 
to OVH (64). When comparing kittens receiving opioid-free 
multimodal analgesia with those that did not receive analgesic drugs, 
animals in pain showed less interest in their surroundings (5 vs. 0%) 
and played less (7 vs. 35%). Temperament changes are also often 
reported in cats (91%), as mentioned by Bennett and Morton (65) in 
adult animals diagnosed with musculoskeletal pain, with reported 
avoidance of conspecifics and owners. In a case study, aggression due 
to fearfulness due to arthritic pain in the thoracolumbar spine was 
reported in a cat presenting house-soiling issues, posturing, and 
vocalization (47).

In companion animals, these behavioral changes help 
veterinarians rate the degree of pain. However, studies have shown 
that dog owners can identify pain through behavioral alterations. 
For example, 52.6% of owners reported that behavioral signs were 
very useful to assess pain, and 48.8% of owners reported that 

FIGURE 3

Behavioral responses to pain in different species.
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identifying these changes was very useful in determining whether 
they should consult a veterinarian (66). Similarly, in cats, 90% of 
owners consider it helpful to resort to behavioral evaluations to 
determine the animal’s degree of pain, and 86% find it helpful to seek 
veterinary care (67).

In the case of farm species, several instances might cause pain 
(30, 68). For example, pathological pain due to mastitis or laminitis 
in ruminants and horses or surgical pain due to castration in piglets 
and dehorning or disbudding in ruminants, respectively, are 
accompanied by behavioral modifications that, as seen with dogs, 
aim to decrease pain perception and promote recovery (69–71). In 
the first instance, several studies have reported behavioral 
alterations due to pathological conditions such as mastitis in cattle 
(72, 73). In this sense, Medrano-Galarza et al. (74) evaluated lying 
behavior and reactivity during milking (stepping, lifting, and 
kicking) and its relation to the inflammatory process of the 
mammary gland due to the presence of bacteria. The authors 
reported that animals in pain spent statistically significantly less 
time lying (707.5 min/24 h) than their healthy counterpart 
(742.5 min/24 h) and that the frequency of lifts and kicks was 
higher in cows with mastitis (0.70 and 0.10 per minute, respectively). 
Moreover, Peters et  al. (73) evidenced that cows affected by 
subclinical and clinical mastitis had a lower thermal threshold 

(higher sensitivity to thermal stimulus) compared with healthy 
cows, which is observed as a fast foot-lift response at lower 
temperatures (e.g., 50.9 °C).

Fogsgaard et al. (75) reported that cows suffering from mastitis 
spent less time lying during the initial phase of the inflammatory 
disease (720 min/day), and had a higher frequency of kicking (more 
than 0.70 kicks/min/milking). In addition, Siivonen et al. (76) found 
that cows spend less time lying on the side with the inflamed udder 
(control quarter: 40.94 ± 4.60 min; affected quarter: 33.76 ± 2.32 min) 
and stepped more after an animal model of induced mastitis (up to 
1,413 8.6 steps). Another routine procedure on dairy farms that can 
cause pain and discomfort is drying off, as the accumulation of milk 
within the mammary gland increases intramammary pressure. Rajala-
Schultz et al. (77) observed that cows subjected to gradual drying-off 
spent more time lying down compared to those undergoing abrupt 
cessation. Similarly, Maynou et  al. (78) reported that the use of 
acidogenic boluses reduced milk production, which in turn decreased 
intramammary pressure (55.0 vs. 61.9 kg/m/s2) and consequently 
increased lying time. In particular, lying behavior responses in cows 
are relevant due to their high motivation to lie down (79). In this 
sense, veterinarians and stockpeople could use lying time in cattle as 
a potential behavioral marker of pain, as lower lying times are 
primarily due to the pain and the inflammation of the udder (79, 80), 

FIGURE 4

Behavioral changes observed in dogs during hospitalization. (A) A patient recovering from pancreatitis. This pathology is associated with restlessness 
and increased difficulty in adopting a comfortable position to rest. Slower reflexes, body stiffness, changes in appetite, and vocalization can also 
be observed if the pain is severe. (B) A dog diagnosed with a nasal transmissible venereal tumor. This clinical presentation is associated with nasal 
discharge, sneezing, nosebleeds, respiratory difficulty, and nasal deformity, which can lead to postural changes in patients due to perceived pain. (C) A 
patient with gastroenteritis. Among the behavioral alterations, lethargy, apathy, difficulty in standing, and walking are frequently observed. In addition, 
dogs may refuse abdominal palpation. Postural changes may include back arching and an orthopneic neck position. (D) A patient with excessive 
salivation is observed after elective OVH. Dogs experiencing postoperative pain may show rapid or abdominal breathing, reluctance to move, abnormal 
postures when sitting or lying down (e.g., hunched posture with a tense abdomen), and decreased appetite. Photos taken by the authors in a private 
clinic.
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which could help to promptly identify the painful condition and 
administer pharmacological treatment when necessary.

Tail docking also induces behavioral alterations, as reported in 
21- to 42-day-old dairy heifers, tail banding without epidural 
anesthesia increased restlessness (up to three changes of 
posture/15 min) (81). Similarly, in crossbred beef heifers, Kroll et al. 
(82) compared the behavioral response of docked and undocked 
animals immediately after the procedure. The authors found 
significantly more steps (up to 200 counts/h), more rear foot stomping 
(87.2%), and less lying time (approximately 15 min/h) immediately 
after tail docking than in the subsequent days. A decreased appetite 
was reported by Eicher et al. (83) in cows after tail docking, reducing 
the time spent feeding from 17.8 to 13.3% and increasing the 
frequency of kicking the ground (4%), due to the adoption of 
alternative behaviors to scare away flies in docked animals. Thus, 
caudectomy in cattle could have behavioral repercussions because the 
tail is part of the body language of the species. Additionally, tail 
docking of dairy cows is declining and is banned in some countries 
(84). In other species of ruminants, such as sheep, the method of tail 
docking highly influences the degree of pain perceived by the animals. 
In this sense, Grant et al. (85) compared tail docking in lambs by 
rubber ring and hot iron for 90 min after the procedure. The authors 
found that tail docking by rubber rings significantly increased the 
frequency of pain-related behaviors such as vocalization (9.9 ± 3.0 
animals), number of times the animal changed their lying posture 
(62.1 ± 5.2%), tail wagging (14.6 ± 2.6 times), kicking/stomping 
(8.3 ± 1.3 times), and lick/bite the affected area (4.7 ± 0.6 times).

In farm animals, vocalization and its acoustic characteristics 
during tail docking or castration are considered indicators of pain 
(86–88), as mentioned by Cordeiro et  al. (89), who evaluated the 
maximum amplitude, pitch frequency, and intensity of vocalization in 
piglets undergoing castration and tail docking. After the procedure, 
the maximum amplitude, pitch frequency, and intensity increased by 
0.78 Pa, 159 Hz, and 16.9 dB, respectively (89). Similarly, in piglets 
after hot tail docking, an increase in the frequency and duration of 
vocalizations was found along with increases in cortisol and 
β-endorphin levels (90). Hansson et  al. (91) reported that the 
administration of local anesthesia decreases the number and intensity 
of vocalizations in castrated piglets.

Another common practice on livestock farms is castration. 
Among the castration methods commonly applied to farm animals are 
Burdizzo (B), rubber ring (RR), and surgical castration (S), which are 
frequently compared to a control group subjected only to scrotal 
handling (H) (92, 93). According to Melches et  al. (93), lambs 
castrated using B and S exhibited more frequent pain-related behaviors 
during the procedure compared to those in RR and H groups. 
Moreover, lambs in the S group showed higher cortisol concentrations 
and a greater occurrence of abnormal postures on the day of 
castration, along with reduced feed intake and rumination during the 
first 6 days post-castration relative to the other groups. Similarly, 
Molony et al. (92) observed in calves that castration using RR was 
associated with more severe acute and chronic pain, with behavioral 
indicators of discomfort persisting for up to 42 days. In contrast, 
castration using S, B, or the combination of B + RR elicited 
comparatively lower behavioral and physiological stress responses, 
particularly during the chronic phase.

A study by Yun et al. (94) found that piglet castration without 
analgesics increased the observation of standing or sitting inactively 

(102 ± 25.3 counts) and lower frequencies of tail wagging (0.3 ± 0.1) 
compared to non-castrated animals. Some other behavioral changes 
were reported in lambs after castration, and similar to tail docking, the 
method influences the behavioral response. For example, when 
comparing castration in lambs by cutting with a knife and rubber 
rings, Lester et al. (95) concluded that behavioral alterations such as 
abnormal standing/walking and restlessness were predominantly 
observed in knife-treated lambs within the first four hours after the 
procedure. In contrast, Maslowska et al. (96) reported that rubber ring 
castration increased the frequency of active pain behaviors (observable 
actions when animals experience pain) (a frequency of 110.5) and 
44.8% of lambs were more restless and painful than animals that were 
only handled. Thus, the variability of pain-related behaviors is closely 
related to the pain source or the method (i.e., castration method), as 
mentioned by Canozzi et al. (97).

In the case of goats undergoing elective surgical castration, 
behavioral modifications such as lying down motionless, standing still, 
and looking at the affected area were considered by Fonseca et al. (98) 
to develop the Unesp-Botucatu acute pain scale for goats. Vocalizing 
and teeth grinding have also been reported in adult goats and goat 
kids during husbandry practices, including castration, disbudding, 
and dehorning, and during pathological conditions such as lameness 
or mastitis (99). During disbudding, Kongara et al. (100) summarized 
that the main behavioral changes observed in kids were head and 
body shaking, head scratching, and tail shaking. Similar to these 
findings, Hempstead et al. (101) compared the frequency of pain-
related behaviors in disbudded goat kids with cautery iron with a 
sham group. The results showed an increased frequency of head 
shaking (31.2 ± 3.11 vs. 17.5 ± 1.79), head scratching (15.8 ± 5.90 vs. 
2.2 ± 1.11), head rubbing (4.2 ± 0.77 vs. 0.8 ± 0.27), and body shaking 
(6.1 ± 0.36 vs. 8.8 ± 0.49) in disbudded animals, which can be used as 
signs associated with pain. Recognizing these signs is essential to 
adopt adequate analgesic protocols. For example, Alvarez et al. (102) 
evaluated the effect of cornual nerve blocks on goat kids undergoing 
disbudding. The authors evaluated the total behavioral response 
(including struggle/attempts to escape, vocalizations, and tail 
movements). It was found that lidocaine administration did not 
decrease the mean number of said behaviors (control: 59.6 ± 6.8; 
lidocaine: 52 ± 6.8), suggesting that pain after disbudding should 
be complemented with other analgesics, such as non-steroidal drugs 
or general sedation.

Dehorning in cattle has also been associated with pain-related 
behaviors such as head-shaking, ear flicking, and increased inactivity 
(103, 104). This has been reported in Holstein calves (4–8 weeks old) 
after iron-hot dehorning (104). When compared to a control group 
without receiving analgesic drugs (ketoprofen), treated calves had a 
lower frequency of head shaking (0.74 ± 0.25 vs. 6.27 ± 2.57) and ear 
flicking (0.56 ± 0.17 vs. 11.43 ± 3.07) after dehorning. Similarly, the 
application of lidocaine reduced the frequency of head moving 
(2.9 ± 0.6 vs. 5.3 ± 1.5), head shaking (1.3 ± 0.6 vs. 27.4 ± 5.9), tail 
wagging (1.5 ± 0.5 vs. 3.5 ± 0.5), and rearing (0.4 ± 0.2 vs. 1.9 ± 0.5) 
when compared to a control group of calves dehorned without 
analgesic (105). Head shaking, ear flicking, and head scratching were 
also reported in calves dehorned with two methods: cream and hot 
iron (103). Additionally, in the same animals, a decrease in lying time 
was observed in comparison with the pre-dehorning period (from 
approximately 110 min to 75 min), together with decreased playing 
behavior (from approximately 180 min to 60 min).
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Although the discussed pain-related behavioral responses in 
domestic mammals can differ according to the species and, 
particularly, to the pain source, these reactions arise to avoid further 
injury, increase survival chance, and promote healing (32). They are 
rapid responses of passive or active defense against pain. Therefore, 
veterinarians and animal handlers should receive training to recognize 
subtle changes in behavior, as behavioral modifications are one 
method of communicating pain in animals and may serve as an 
indicator of their welfare.

3 Body language as a tool to assess 
pain: anatomical structures related to 
pain perception

3.1 Ear posture

Ear position has been used as an indicator of an animal’s affective 
state, including pain (106–108). The changes in ear posture are related 
to the neurobiological processing of emotions eliciting different facial 
expressions according to the context (40, 109). Ear posture depends 
on motor control from the primary motor cortex and the subnuclei of 
the facial nerve (VII) (110–113). Although each nervous region has 
specific functional delimitations, the excitability of the motor cortex 
leads to positive feedback from the facial nerve, resulting in the 
contraction or relaxation of the muscles that control ear movement 
(20, 40). These changes are controlled by the ventral auricular, dorsal 
auricular, rostral auricular, and caudal auricular muscles (114, 115). 
However, changes in ear posture alone should not be considered an 
indicator of pain and must be considered among the several signs that 
animals show when perceiving pain.

The importance of ear posture as an indicator of pain in animals 
is reflected in the current scales that consider it as one of the most 
noticeable changes when animals are exposed to a noxious stimulus. 
These scales have been adapted to cats (116), mice (117), rats (114, 
118), rabbits (119), pigs (120, 121), sheep (122, 123), goats (124), 
horses (9), donkeys (125), and cows (126) (Table 1). Although the 
change and position depend on the species and distinct anatomy, 
several similarities have been found (125, 127–129). When animals 
experience pain, stimulation of the auricular muscles causes flattening 
or retraction of the ears in all species (129–131). For example, a cat 
with severe pain shows ears that are markedly rotated outwards (132). 
Rats and mice in pain show ears that are curled, pointed, and/or 
angled forward or outward (118, 133). For rabbits, ears tightly folded 
against the neck, pulled back, and flattened are present when the 
animal is perceiving severe pain (134). Similarly, in farm species such 
as piglets and goats, severe pain is characterized by the ears drawn 
back from the forward position and hanging (124, 135, 136), which 
has also been reported in horses, donkeys, and cows (9) (Figure 5) 
(109, 118, 132–134, 137, 138).

Clinical examples of pain identification through changes in ear 
posture and other facial indicators have shown an accuracy of 87% in 
cats (139). Particularly, as Watanabe et al. (140) mention, ear posture 
has a good inter-rater reliability score (0.55–0.78) as it is one of the 
changes caregivers easily observe in cats that underwent procedures 
such as dental extractions. Holden et al. (141) found that the distance 
from the midpoint of the two ears is an indicator of pain, where a 
greater distance between the tips of the ears is considered indicative 

of pain and correctly classifies between pain-free and painful cats in 
95% of cases. Additionally, Merola and Mills (142) mention that in 
cases of pain due to orthopedic conditions, cancer, urinary tract 
diseases, or dental issues, flattened ears are frequently observed when 
perceiving high levels of pain, although it may also be a sign of fear.

In the case of laboratory rodents, Mittal et al. (143) determined 
the association between pain in sickle mice and changes in the ear 
position (and other facial indicators). The authors found that exposure 
to 4 °C caused the ears to move parallel to the neckline, suggesting 
cold hypersensitivity and pain (scores of up to 1.5). In the same 
species, evaluations post-vasectomy with and without analgesics 
found that animals in pain frequently showed ears rotated outwards, 
and their assessment had an excellent (0.75) reliability score (144). For 
rabbits, Benato et al. (138) reported that the position and movement 
of the ears are accurate descriptors of pain. In this sense, flattened ears 
and lack/diminished ear movement were observed in rabbits after 
OVH and orchiectomy.

In farm animals, Tallet et al. (145) determined the effect that tail 
docking has on piglets’ behavior and body posture. In particular, the 
authors found that immediately after cautery iron docking, piglets 
held their ears perpendicular to the head-tail axis (70% of animals) 
and showed more ear posture changes (70%) than non-docked piglets 
(30 and 20%, respectively). This is similar to what was observed in 
Danish Holstein dairy cattle during castration, mastitis, or laminitis. 
In these animals, acute pain was observed as caudal rotation of the 
ears, along with other changes such as keeping the head below the 
horizontal axis of the animal, piloerection, arching of the back, and an 
increased reactivity (146). Additionally, ear posture can also suggest 
the emotional state of animals, as mentioned by Lambert and Carder 
(109), who evaluated the ear position of Holstein dairy cows under 
two different contexts (frustration and excitement). The authors found 
that cow ears had more changes in ear position during the frustration 
event (from 14.15 to 16.59 changes/15 min).

In small ruminants such as goats, Weeder et al. (124) analyzed the 
facial response of goats to induced lameness. Results showed that 
animals with obvious changes due to pain were characterized by both 
ears pulled backwards, along with behavioral modifications (e.g., 
increased lying time). Ear posture changes were also reported by 
Hussein and Hidayet (147) in goat kids (10–14-day-old) undergoing 
ear tagging. After the routine procedure, a significant increase in ears 
backward (from 0.7 ± 0.2 to 11.6 ± 1.7 s), number of posture changes 
(from 3.3 ± 0.4 to 9.8 ± 0.6), and a decrease in ears plane (e.g., 
perpendicular to the head-rump axis) (from 25.3 ± 1.5 to 11.8 ± 2.1 s) 
was observed.

Gleerup et al. (148) characterized the changes in ear position of 
adult horses exposed to experimental acute pain (a tourniquet to the 
forearm and the topical application of capsaicin). Both stimuli 
increased the time the horses maintained asymmetrical ears and in a 
low position (between 54 ± 0.5 and 51 ± 23%), which coincided with 
the significant increase in the pain assessment scale score. Similarly, 
Ask et al. (149) evaluated changes in ear position in horses that were 
administered lipopolysaccharide in the tarsal-crural joint to generate 
acute pain, highlighting ear flattening and lateral rotation. 
Additionally, in horses undergoing routine castration under general 
anesthesia, Dalla Costa et al. (144) found that stiffly backwards ears 
are associated with pain, with an excellent reliability coefficient of 
0.96. Figure 6 shows the ear changes that can be observed in an equine 
patient with colic syndrome due to pain (150). This figure also shows 
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the changes in the ear position of a feline patient with idiopathic 
cystitis (151).

3.2 Tail position and movement

Tail position and movement have also been considered indicators 
of pain in animals (152). They have been particularly studied during 
routine procedures in farm animals such as surgical castration or tail 
docking (84, 153). During these events, animals in pain maintain their 
tail stiff, hide it, or swing it abruptly (153).

Changes in tail position or movement respond to adjacent 
nociceptors that send information through the pudendal and perineal 
nerves (154). These nerves reach the dorsal root ganglia of the spinal 
cord and deploy a neuronal and molecular communication circuit at 
the brain level. Within the brain, the reception and refinement of this 
information translates into an immediate pain response, coordinated 
by the amygdala, hypothalamus, and periaqueductal gray matter. The 

connections of these structures with the motor cortex cause the motor 
or reflex responses to noxious stimuli (20, 155). The tension of the tail 
and hiding it between the hindlimbs is due to the contraction of the 
coccygeus, sacrocaudalis ventralis, dorsalis, and caudae muscles, 
which stabilize the spine. As a compensatory response to exceeding 
the nociceptive threshold, the animal modifies the posture of the 
spine, including the tail, to achieve postural balance and provide 
greater support and protection (115).

Changes in tail position have been reported in several species 
(Figure 7) (48, 154, 156, 157). For example, in cats, Pereira et al. (158) 
mention that tail flicking (along with other behaviors and body 
postures) indicates pain. For example, in domestic dogs with diseases 
that generate chronic pain (such as osteoarthritis, cruciate ligament 
rupture, patellar luxation, pancreatitis, and neuropathic pain) 20% of 
the owners observed changes in tail posture, keeping it hidden 
between the pelvic limbs or directed downwards with tension (48). In 
addition, these changes were accompanied by behaviors associated 
with pain, such as directed aggression and vocalizations (48). 

TABLE 1  Description of ear changes in the currently available Grimace Scales in domestic mammals.

Name Specie Ear change Reference

Calf Grimace 

Scale

Cattle

(Bos taurus)

Both ears are backwards, or one ear is directed caudally. The ear pinna cannot be seen, and the angle between 

the eye commissure, the base of the ear and the tilt of the ears is wider than 90°.

Farghal et al. (221)

Cow Pain Scale Cattle

(Bos taurus)

Ears kept straight backwards or very low (“lamb’s ears”). Gleerup et al. 

(146)

Donkey 

Grimace Scale

Donkeys

(Equus asinus)

Both ears might be back down, one ear forward, and one to the side. One ear to the side and one to the back, 

or one forward and one down.

Orth et al. (125)

Feline Grimace 

Scale

Cats

(Felis catus)

Ears flattened and rotated outwards. Evangelista et al. 

(116)

Ferret Grimace 

Scale

Ferrets

(Mustela putorius 

furo)

Ears are pulled back against the body, forming a pointed shape. They may fold over. Reijgwart et al. 

(222)

Goat Grimace 

Scale

Goats

(Capra hircus)

Ears pinned backwards. Weeder et al. (124)

Horse Grimace 

Scale

Horses

(Equus caballus)

The ears are held stiffly and turned backwards. Thus, the space between the ears may appear wider relative to 

the baseline.

Dalla Costa et al. 

(9)

Lamb Grimace 

Scale

Sheep

(Ovis aries)

Tense ears pointing backwards or downwards, the inner part of the ear is not visible. Ears appear narrower 

and dorsally flattened.

Guesgen et al. 

(123)

Mouse Grimace 

Scale

Mice

(Mus musculus)

Ears rotate outwards and/or backwards, away from the face, forming a pointed shape. The space between the 

ears increases.

Langford et al. 

(223)

Piglet Grimace 

Scale

Pigs

(Sus scrofa 

domesticus)

Ears drawn back from forward (baseline) position. Viscardi et al. 

(135)

Rabbit Grimace 

Scale

Rabbits

(Oryctolagus 

cuniculus)

Ears become more tightly folded/curled in shape. They rotate from facing towards the source of sound to 

facing towards the hindquarters. Ears may be held closer to the back or sides of the body

Keating et al. (134)

Rat Grimace 

Scale

Rats

(Rattus 

norvegicus)

Ears curl inwards and are angled forward to form a pointed shape and the space between the ears increases. Sotocinal et al. 

(118)

Sheep Grimace 

Scale

Sheep

(Ovis aries)

Flattened and hanging ears. Häger et al. (136)

Sow Grimace 

Scale

Pigs

(Sus scrofa 

domesticus)

Ears facing backwards. Navarro et al. 

(120)
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FIGURE 5

Description of the ear changes in some domestic mammals when perceiving pain.
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Similarly, the position and laterality of tail movement change 
depending on the context and can be associated with emotional states 
(159) such as fear, pain (160), or pleasurable situations (161, 162). In 
pigs, as reviewed by Camerlink and Ursinus (163), victims of tail 
biting suffering from pain and (chronic) fear of being targeted keep 
their tail low and often tucked between their legs.

Miller et al. (164) evaluated tail position in piglets after surgical 
castration with or without administration of local analgesics. It was 
found that piglets castrated without local analgesics had a higher 
frequency of changes in tail position, tail wagging, and maintained a 
straight (i.e., not curled) tail; in contrast, the non-castrated piglets kept 
their tail curled and hanging. Similarly, after cautery iron tail docking, 
piglets maintained an immobile tail in a horizontal position for longer 
(up to 20 s) than sham-docked piglets (approximately 16 s) (145).

In cattle, vigorous tail swinging vertically or horizontally is 
suggested as a key indicator for pain recognition; however, a static 
position or complete immobility of the tail is also associated with pain. 
In this regard, Tom et al. (165) assessed pain indicators in adult cows 
undergoing caudectomy with a rubber ring. Cows subjected to this 
procedure, regardless of analgesic treatment, reduced the frequency 
of tail shaking up to 6 days after tail-docking (0.8 ± 0.2), in addition 
to maintaining a straight, ventral position, which results in pressure 
against the hindquarters (between the anus and vulva) (24 animals). 
The authors suggested that pressing the tail towards the hindquarters 
counteracts the painful stimulation caused by the rubber ring and 
might reduce pain and inflammation (154, 156). Therefore, 
maintaining the tail static reduces the perception of pain in 
sensitized tissue.

FIGURE 6

Ear changes in domestic animals during the perception of acute pain. (A) A prostrated male Quarter Horse with equine colic due to acute and severe 
abdominal pain. Facial changes, such as ear flattening, can be observed. (B) Feline with idiopathic cystitis. Note the changes in ear position, such as 
flattening, outward rotation, and being slightly pulled apart. Photos taken by the authors.

FIGURE 7

Tail posture as a pain sign. (A) In cats, a tail kept or tucked between the hindlimbs, close to the body, is a sign of pain. (B) Dogs experiencing pain might 
exhibit a tucked tail, similar to what is observed in cows (C). In the case of dogs, a tucked tail might also indicate fear. Thus, posture changes need to 
be interpreted together with other ethological evaluations.
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The importance of tail movements is the reason why production 
units have focused on the tail to develop sophisticated technologies 
such as birth sensors (166). These sensors collect the number of times 
the tail is raised before calving, as this change in body posture is 
considered an imminent sign of the onset of calving due to the pain 
promoted by uterine contractions (167). The same posture has been 
observed in species such as the pig (168) and mice (169). However, tail 
movements in the peripartum might not always be  entirely due 
to pain.

Therefore, tail position is a key indicator to recognize acute pain, 
providing valuable information during clinical assessment. However, 
variability in position and activity is wide across species and animal 
conditions or affective states. Like ear position, it should be considered 
an event that manifests together with multiple pain-related signs. 
Thus, an integrated, multimodal assessment incorporating multiple 
behavioral and physiological indicators is recommended to increase 
diagnostic sensitivity and efficacy.

4 Assessment of pain through postural 
changes

One of the most significant changes in animals experiencing pain 
is postural alterations to minimize pain perception (30, 170). Back 
arching, lateral or ventral tilt of the torso, and contraction of the 
abdominal muscles can indicate the presence of pain (Figure  8). 
Postural changes are triggered by modifications in the length of 
muscles, soft tissues, and the musculoskeletal system, influencing 
spinal alignment to reduce energy expenditure and change body 
weight distribution to facilitate balance (171, 172). Interception within 

the musculoskeletal system is carried out by sensory nerves located 
within the periosteum, spinal cord, and cortical bone (173, 174).

The expression of pain through changes in the position of the trunk 
or back could be explained by the fact that nerve impulses are projected 
from peripheral endings processing pain, to the dorsal horn of the spinal 
cord to the higher structures of the Central Nervous System, specifically 
the somatosensory cortex (20, 175). Activation of the somatosensory 
cortex excites relevant regions such as the primary motor cortex, which is 
involved in the formation of motor actions, such as the withdrawal reflex 
or postural changes in response to tissue injury (40, 176, 177).

An example of change in posture is during parturition, as observed 
by Ison et al. (178) periparturient sows show a distinctive posture of back 
arching, accompanied by hindlimbs pointing forward due to uterine 
contractions and the expulsion of the piglets. Furthermore, the complete 
lateral tilt of the torso (animal lying down) was observed for 90% of the 
time between the onset of uterine contractions and 6 h after the expulsion 
of the first piglet. The authors state that these behavioral adjustments are 
indicators of pain and not simply assistive postures in the expulsion of the 
fetus through the birth canal. This was also observed in periparturient rats 
by Catheline et al. (169), where the administration of oxytocin, which is a 
potent intensifier of uterine contractions, increased torso stretching 
accompanied by abdominal tension (<6 times/min) during parturition. 
The visceral pain experienced during natural parturition is promoted by 
several mechanical factors such as uterine contractions, distension, 
elongation, and tearing of tissue, and pressure applied to adjacent 
anatomical structures (pelvis and perineum) (179, 180).

The adoption of these postures has been observed in other disorders 
where visceral pain is intense. For example, in horses with colic syndrome, 
abdominal pain comes mainly from visceral smooth muscles, which, 
when undergoing sudden changes such as stretching, tearing, perforation, 

FIGURE 8

Some examples of body postures associated with pain in domestic animals.
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or strangulation, exceed their nociceptive threshold (181). Fereig (182) 
associated excessive abdominal stretching with cranial and caudal 
extension of the fore and hindlimbs, respectively, to relieve mesenteric 
pressure caused by the accumulation of gas and fluid in the gastrointestinal 
tract. Laleye et al. (183) mention that early detection of abdominal pain 
in foals is based primarily on the identification of postural changes or 
behavioral modifications, among which abnormal body posture of 
complete lateral tilt and abdominal contraction were frequently reported 
by owners (47%) and veterinarians (78%). Figure 9 shows an example of 
postural changes in donkeys suffering from laminitis.

This can also be observed in domestic dogs with the so-called antalgic 
“prayer posture,” where animals stretch cranially the forelimbs and 
maintain a convex curvature of the back. By extending the thoracic 
region, this posture releases the abdominal pressure by the declination of 
the organs toward the cranial region. This posture is frequently observed 
when the origin of the pain is visceral and is used as an indicator of 
postsurgical pain (155). Other postures related to pain in dogs are rigid, 
hunched or tense, or guarding the affected area (45). Figure 10 shows 
frequently observed pain-related postures in companion animals due to 
visceral pain, kidney disease, and spinal and thoracic injury (25, 155, 
184–186).

Pain-related postures are not exclusively manifested during visceral 
pain. For example, mouse models suffering from sickle cell disease adopt 

an arched back posture in response to a decrease in ambient temperature, 
a back posture that has also been correlated with other behavioral 
indicators of pain, such as facial expressions (143). Following abdominal 
surgical procedures such as OVH in companion animals, marked 
abdominal contraction is observed, along with exacerbated kyphosis 
(187), consistent with observations in surgically castrated piglets (164). 
In particular, the kyphosis manifested during pain in cats caused by 
musculoskeletal diseases progressively decreases after the administration 
of analgesic treatment, which suggests that the presentation of antalgic 
postures is associated with the intensity of pain (65).

Similarly, abnormal postures occur following routine handling 
procedures in farm animals. Castration in piglets causes back arching 
and abdominal tension (164). In small ruminants, Zebaria et al. (188) 
reported an increase in abnormal standing (standing unsteadily with 
tail wagging, 6.83%) in kid goats undergoing ear tagging. This is 
similar to what Fonseca et  al. (98) reported in goats subjected to 
orchiectomy, where the occurrence of an unstable posture increased 
after the surgery (33.5%). In dairy cows with hoof trauma, Flower and 
Weary (189) reported marked dorsal arching in animals with plantar 
hemorrhages and ulcers. These changes were also accompanied by 
sudden head movements, decreased mobility, and reduced balance in 
a static state. In another study by Stojkov et al. (190) in cows, dorsal 
arching was associated with pain caused by inflammation of the 

FIGURE 9

Postural alterations linked to nociception in the metacarpal and metatarsal regions, with clinical signs of laminitis in donkeys. (A) The animal displays a 
posterior shift of body weight, with the forelimbs slightly extended cranially and overextension of the right metacarpal and left metatarsal regions. This 
abnormal posture results from excessive hoof wall overgrowth. Such a stance is typical of animals experiencing hoof or joint pain, as they attempt to 
unload the affected areas. A tense facial expression indicative of discomfort is also evident. (B) Marked overgrowth of the hoof wall is observed in the 
right pelvic limb, with clear deformation of the hoof’s natural conformation. This alteration predisposes the animal to chronic pain due to abnormal 
pressure distribution, joint inflammation, and increased tendinous load. Lack of routine trimming compromises equine biomechanics, significantly 
altering weight distribution (C) The donkey adopts a non-weight-bearing stance, with overextension of the left thoracic limb and complete withdrawal 
of the right pelvic limb. This postural pattern is consistent with chronic pain, likely associated with laminitis or long-standing podal discomfort. Photos 
taken by the authors.
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uterine wall (metritis), while Rialland et al. (191) associated back 
arching with gastric problems such as traumatic reticulopericarditis. 
Figure 11 shows the pain-related postural changes observed in cattle 
and other species due to mastitis and fractures (192, 193).

Back arching is often accompanied by other body adjustments in 
the pelvic and thoracic limbs, tail position, neck tension, and head 
position (30). For example, after surgical castration of bulls, Esteves-
Trindade et al. (194) found that the main changes associated with pain 
were extension of the head and neck, position of the head below the 
animal’s shoulders, and extended limbs. Recognizing these changes is 
important for veterinarians and also owners, as reported by Demirtas 
et  al. (48), who evaluated the ability of dog owners to recognize 
postural changes. These authors observed that, limited joint movement 
of the caudal vertebrae, arching of the back, and reduced overall 
activity was present were the most frequently recognized postural 
changes. Similarly, Laleye et al. (183) evaluated early recognition of 
colic pain through 66 clinical histories of 40 horses (over 5 years old) 
and 26 foals (under 4 weeks old). The results indicated that more than 
50% of physicians and caregivers use postural modifications as an 
early sign for colic pain recognition.

5 The importance of animals’ 
nonverbal language as a clinical 
indicator of pain for veterinarians and 
animal scientists

Pain recognition and assessment are essential to promote 
animals’ health and welfare (8, 195, 196). Failure to recognize pain 

FIGURE 10

Pain-related postural changes in companion animals. (A) Prayer posture in a 2-year-old mixed-breed dog, showing extended pelvic limbs and a 
lowered head, allowing the pelvis to be raised towards the back. This relieves abdominal pressure when perceiving severe visceral pain. (B) Severe 
acute abdominal pain in a cat. A 6-year-old male cat with severe acute abdominal pain due to chronic kidney disease. The patient maintains a posture 
with the pelvic and thoracic limbs flexed towards the belly and a lowered head. (C) A male cat with the Schiff-Sherrington posture, characterized by 
extended thoracic limbs and an arched spine (kyphosis), and associated with a spinal injury. (D) A 4-year-old dog with a thoracic injury. The dog has an 
extended neck, with elbows abducted laterally and flexed pelvic limbs. This posture is known as orthopneic stance and occurs in cases of thoracic 
pain. It is important not to confuse the prayer posture position with the play bow. Play bows occur when a dog is inviting play, whereas the prayer 
posture is typically associated with discomfort or pain. The dog’s head is usually down when it performs the prayer posture and it is usually up during a 
play bow. A dog in a playful state is active and energetic, whereas a dog in pain tends to show reduced activity. Photos taken by the authors.

FIGURE 11

Postural changes in cattle and other species. (A) Postural changes in 
a cow with clinical mastitis. A Holstein dairy cow maintains a low 
head posture with abducted or clubbed pelvic limbs. This posture 
helps to reduce contact of the limbs with the udder and diminishes 
local pain. (B) Posture of a rabbit with a fracture in the pelvic limb. A 
prostration posture and laterally lying on the affected limb apply 
pressure to the limb to reduce the pain. Photos taken by the authors.
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in animals represents a welfare problem due to the physical and 
mental alterations, including activation of the sympathetic nervous 
system, immunosuppression, metabolism, and healing processes, 
as well as increased morbidity, disease progression, and prolonged 
recovery periods in surgical patients (2, 197). In human medicine, 
pain assessment is performed through verbal or written 
communication with the patient (198). In contrast, in veterinary 
medicine, pain is identified through nonverbal communication, 
such as changes in physiological and endocrine parameters, body 
language, and behavior (56).

Pain assessment and management require the veterinarian’s 
knowledge and objectivity. Therefore, physicians need to 
incorporate behavioral and postural indicators associated with 
pain into their daily practice (8, 30). The changes observed in 
animals are an integrated response aimed at reducing the painful 
stimulus (199). Moreover, owners need knowledge and awareness 
of pain behaviors as they are key for the early recognition, 
assessment, and management of pain (48, 200–202). Therefore, 
veterinarians need to identify and familiarize themselves with 
animal behaviors to detect and categorize pain, although factors 
such as environment, species, age, body condition, and type of 
disease must be considered (16, 203). Although behavioral scales 
exist to assess pain, surveys indicate that 73% of veterinarians 
consider these methods inadequate and have difficulty recognizing 
behavioral changes (204, 205), which has a direct impact on 
patients’ quality of life and welfare (206).

Although the study of these behavioral and body posture 
indicators has been explored in several domestic species, the 
anatomical differences must be considered to accurately evaluate 
pain. These changes should not be considered in isolation but as a 
part of a complementary evaluation considering physiological 
parameters. Therefore, it would be  appropriate to investigate 
whether including these changes in assessment scales improves the 
sensitivity of these tools, as has been observed with facial 
expression (207). Similarly, standardizing changes in ear/tail 
position and postures for each species and each pain-inducing 
event is necessary, which could help increase the specificity and 
sensitivity and obtain an objective pain assessment. The 
development of multidimensional scales that consider both 
physiological and behavioral/body posture/facial expression 
parameters could be the best option to comprehensively evaluate 
pain in domestic mammals. For example, the Colorado State 
University Canine and Feline Pain Scale or the University of 
Melbourne Pain Scale consider physiological, behavioral, and 
postural responses to acute pain (45, 208, 209).

Although behavioral, postural, and facial recognition of pain 
can be performed manually by clinicians or stockpeople, automated 
techniques have been explored for multiple domestic species to 
increase the accuracy of the evaluation and prevent subjectivity. 
For example, in companion animals, the Facial Action Coding 
System for cats (catFACS) was used as an anatomical basis for a 
machine learning model to recognize pain in cats undergoing 
ovariohysterectomy (210). The accuracy of the technique was 
above 72%, indicating its usefulness for automating pain detection. 
Similar accuracy was reported by Martvel et al. (211), who used 
artificial intelligence to detect pain in cats by establishing 48 facial 
landmarks in videos. The authors reported an accuracy of over 70% 
in recognizing feline acute postsurgical pain. Furthermore, AI and 

machine learning techniques can help to differentiate breeds and 
cephalic types in addition to pain (212). Breed-specific morphology 
highly influences pain recognition in companion animals (213). 
This is particularly relevant for domestic dogs, as breed-specific 
face anatomy makes it challenging to recognize pain through facial 
cues (214). However, Zhu et al. (215) have recently proposed the 
application of machine learning to automatically identify pain 
in dogs.

Similarly, the adoption of techniques known as “precision 
livestock farming” or instruments that use artificial intelligence 
techniques can help objectively and automatically recognize 
changes in ear or tail position in farm species. An example is 
Feighelstein et al. (216), who used deep learning to detect pain 
from lateral images of horses undergoing routine castration. Using 
the Horse Grimace Scale (HGS) to embed the Facial Action Units 
(previously described in Table 1), authors reported an accuracy 
between 73 and 79% to detect equine pain. This might improve 
animal management and welfare in routine procedures that are still 
considered “not as painful.” Similarly, Lencioni et  al. (217) 
developed a machine vision algorithm to detect acute pain in 
horses after surgical castration. Through facial expression, the 
authors found an overall accuracy of 75.8% when classifying pain 
into three categories (not present, moderately present, and 
obviously present, according to the HGS), or 88.3% when 
representing absent/present pain. Recent studies have suggested 
that the use of “regions of interest” instead of “facial landmarks” 
when using automatic detection of pain could increase the 
feasibility of adopting artificial intelligence in animal pain 
detection (218). Moreover, although most of the research is focused 
on identifying facial changes associated with pain –in horses–, Kil 
et  al. reported a sensitivity of above 80% to detect behavioral 
changes in horses using machine learning (e.g., analysis of wither, 
tail, and nose changes).

In ruminants, Salzer et  al. (219) developed an automatic 
warning system to identify mild pain (capsaicin application) in 
cows. Through a machine-learning algorithm, the authors were 
able to identify that decreased rumination and restlessness are 
present in animals experiencing pain with an accuracy of 82%. 
Additionally, micro expressions have also been adapted to 
computer vision methods to detect painful conditions such as 
lameness, metritis, mastitis, and pre-calving pain with an average 
precision of 83%. In other species, such as goats, Chiavaccini 
et  al. (220) detected acute pain (due to conditions such as 
castration, mastectomy, dental cleaning, among others) through 
the analysis of raw facial video footage with machine learning. 
“Painful” and “non-painful” goats were differentiated with an 
accuracy of 60%. When automatically analyzing facial expressions 
of pain in sheep, studies have reported that artificial intelligence 
outperforms human experts, which has significant applications 
in farms.

Deep learning-based models and artificial intelligence are still 
under development for several species (224). However, these 
methods reduce human bias and the need to manually extract 
information, which is time-consuming. Therefore, these methods 
are current alternatives to improve pain assessment in domestic 
mammals for improving animal welfare, while preserving the 
importance of training veterinarians and animal caregivers to 
correctly interpret animal behavior and body language.
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6 Conclusion

Animal body language serves as a means of understanding the 
emotional state of animals in response to positive and negative stimuli, 
such as pain. In domestic animals, variations in behavioral responses 
such as vocalizations, grooming, scratching, avoidance, escape, tonic 
immobility, as well as aggression, among other behaviors, are 
associated with the perception of pain. Additionally, about farm 
animals, changes in ear and tail position and in the overall posture 
have been reported to be indicative of pain in animals suffering from 
pain arising from, e.g., laminitis, visceral involvement, or routine 
painful procedures. Understanding these signals as a nonverbal 
communication of pain allows the efficient identification of pain for 
timely intervention and optimized management.
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