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Suboptimal fecundity rates remain a major limitation of estrous synchronization 
(ES) protocols in sheep. This study tested the hypothesis that GnRH administration, 
either to promote follicular diameter homogeneity or to control ovulation 
timing, could improve ovarian functional outcomes to increase fecundity rates 
in treated ewes. Experiment 1 assessed whether GnRH administration 36 h 
after CIDR removal could control the timing of ovulation in ewes treated with a 
short-term CIDR + PGF₂α protocol, with or without eCG. Ewes were assigned 
to: CIDR + eCG (Group  1, n = 23), CIDR + eCG + GnRH (Group  2, n = 26), or 
CIDR + GnRH (Group 3, n = 24). Experiment 2 evaluated the fertility impact of the 
same protocols across two commercial farms (n = 370), using similar groupings 
(CIDR, CIDR + eCG, CIDR + eCG + GnRH). All ewes were naturally mated after CIDR 
removal. Morphological and endocrine markers were recorded to assess follicular 
growth, ovulation, and corpus luteum (CL) development, while fertility outcomes 
included pregnancy, lambing, and fecundity rates. Experiment 3 assessed whether 
GnRH administration during the early follicular phase (day 3) of a Synchrovine 
protocol could reduce follicular diameter heterogeneity at ovulation. Ewes (n = 45) 
received either PGF + PGF (controls, n = 23) or PGF + GnRH + PGF (n = 22) and 
were mated on day 7. GnRH shortened the interval to ovulation (p < 0.0001) and 
concentrated ovulatory timing (p = 0.0026) in Exp. 1. In Exp. 2, GnRH increased 
fecundity compared to CIDR + eCG (p = 0.007) and CIDR-only groups (p = 0.004). 
In Exp. 3, GnRH reduced heterogeneity in follicular diameters (p = 0.004) but 
did not affect ovulation or fertility (p > 0.10). These findings indicate that GnRH, 
when administered in the late follicular phase, improves ovulation synchrony and 
fertility, whereas its earlier use for follicular homogenization alters morphology 
but not reproductive outcomes.
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1 Introduction

Estrous synchronization (ES) for programmed reproduction has the potential to simplify 
artificial insemination and lamb production protocols in intensive sheep systems. However, 
the widespread adoption of ES in sheep remains limited, primarily due to suboptimal fecundity 
rates observed after treatment. Conventional ES protocols—based on long (12–14 days) or 
short (6–8 days) progestogen treatments combined with equine chorionic gonadotropin (eCG) 
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or prostaglandin F2α (PGF) protocols (e.g., Synchrovine; (1, 2))—have 
been extensively employed (3, 4). Nonetheless, these protocols have 
not consistently matched the lamb production achieved by 
non-synchronized ewes, limiting their practical impact in commercial 
settings (5, 6).

Fecundity in sheep is largely determined by the number of 
follicles recruited into the ovulatory wave that complete terminal 
growth and ovulate competent oocytes (7). However, sheep exhibit 
unique biological traits that complicate the optimization of ES 
protocols. For example, in prolific breeds such as the Highlander, 
the penultimate follicular wave contributes to double ovulations 
in approximately 50% of cycles (8–11). This phenomenon may 
be  related to the inherently low estradiol production by ovine 
follicles (12, 59) and the shorter lifespan of the final follicular 
waves, which may help preserve their functional competence (9, 
11, 13).

Despite growing evidence of the critical role terminal follicular 
development plays in fertility outcomes, most ES protocols—including 
fixed-time procedures—fail to address the dynamics of the ovulatory 
wave. Studies in cattle and sheep indicate that follicular persistence 
can compromise oocyte competence (14, 15). In sheep, unlike in 
cattle, progesterone concentrations have limited influence on follicular 
turnover (9, 16–18). Moreover, ovulation dispersion remains high 
following ES protocols—even with low-dose eCG supplementation (3, 
17). This likely reflects the heterogeneity of follicular populations 
reaching the ovulatory stage (9).

Gonadotropin-releasing hormone (GnRH) agonists have the 
potential to improve the precision of ovulation control in ES 
protocols. Exogenous GnRH can synchronize ovulation by inducing 
a controlled LH surge (19). In sheep, GnRH agonists have been 
explored within progestogen-eCG protocols, but their effects on 
reproductive performance have been inconsistent (20–24, 65). 
These inconsistencies may result from insufficient attention to the 
timing of GnRH administration and the metabolic status of the 
animals—both factors capable of modulating the ovulatory 
response (21, 25).

Experimental evidence suggests that administering GnRH 
30–40 h after progestogen withdrawal aligns with the natural timing 
of the LH surge (60), the depletion of the releasable LH pool (61), and 
the expected dynamics of the ovulatory wave (11, 17). In addition to 
improving ovulation synchrony, GnRH may reduce the risk of 
follicular persistence, as currently applied in cattle (Martínez-Ros and 
González-Bulnes, 2021). Importantly, in polyovulatory species like 
sheep, such interventions must also consider their impact on ovulation 
rate—a trait closely associated with prolificacy (7).

The Synchrovine protocol offers a valuable model for 
exploring how follicular wave control influences fertility. The 
initial PGF dose induces luteolysis and ovulation in 60–70% of 
treated ewes, but the resulting ovulation dispersion may hinder 
synchronization of subsequent follicular waves (62). Additionally, 
follicles from ewes that failed to undergo luteolysis can contribute 
to a heterogeneous population of ovulatory follicles within the 
group. Given the impact of follicular development on oocyte 
competence, ewes treated with the Synchrovine protocol are 
expected to exhibit reduced reproductive efficiency, as previously 
reported (26, 27, 62).

Thus, we hypothesized that GnRH agonist administration at strategic 
points during the ovulatory wave would improve ovulation synchrony 

while preserving follicular competence. Additionally, we postulated that 
GnRH could enhance the uniformity of the ovulatory follicular cohort. 
Accordingly, the objectives of this study were (1) to evaluate the ovulatory 
and fertility performance of ewes treated with GnRH after a short-term 
progesterone–PGF–eCG protocol, and (2) to assess the effect of GnRH-
induced follicular homogenization on ovulation and fertility outcomes 
in ewes treated with the Synchrovine protocol.

2 Materials and methods

2.1 Animals and general management

The study involved 489 parous, non-lactating ewes (2–5 years old) 
and 32 sexually mature rams, from Suffolk Down, Highlander, and 
Suffolk × Highlander crosses. A group of 119 ewes and 10 rams 
(Highlander, Suffolk, and their crosses), mainly used for ovarian 
functional studies, were maintained at the Faculty of Veterinary 
Sciences, Universidad de Concepción, Chillán campus (36°S, 71°W; 
124 m.a.s.l). A second group of 186 ewes and 10 rams (mainly Suffolk 
Down and Texel) were located at a commercial farm nearby (36°S, 
71.5°W; 325 m.a.s.l.). A third group of 184 ewes and 12 rams (mainly 
Highlander) were kept at a commercial farm in southern Chile (40.35°S, 
73°0.1 W, 79 m.a.s.l). As previously described (11), ewes at the university 
facility were accustomed to personnel and general management 
routines. They were housed in collective pens providing adequate space 
for resting and feeding, good ventilation, dry bedding, and ad libitum 
access to drinking water. During the day, ewes were allowed access to a 
4-ha paddock for grazing and exercise. The diet included oat grain, 
commercial concentrate, and mineral salt blocks, maintaining body 
condition scores (BCS) around 3.0 on a 1–5 scale. The comercial flock 
near the university campus was managed entirely outdoors. In contrast, 
the southern farm housed animals in collective pens during the night, 
with adequate space and ventilation. At both commercial farms, ewes 
followed a feeding program based on ryegrass and white clover pastures 
(8–10 tons DM/ha/year), supplemented with oat and lupine grain 
(0.5 kg/ewe/day) during a 5-week flushing period before and after 
breeding. During winter and early spring, they were fed grass hay and 
mineral supplements to maintain a BCS > 2.5 at lambing and lactation. 
All ewes were included in a preventive health program targeting 
endemic diseases. Housing, management practices, and experimental 
procedures were approved by the Ethics Committee of the Faculty of 
Veterinary Sciences (CBE-20-2022), Universidad de Concepción.

2.2 Estrous synchronization, estrous 
detection, and mating programs

Estrous synchronization (ES) protocols involved either a short-
term progesterone–PGF₂α regimen or the Synchrovine® protocol. The 
short-term protocol consisted of the hygienic insertion of an 
intravaginal progesterone-releasing device (CIDR® Sheep; 0.3 g 
progesterone, Cooprinsem, Osorno, Chile) for 6 days, combined with 
an intramuscular injection of 0.125 mg cloprostenol (Ciclase® DL, 
Syntex, Buenos Aires, Argentina) at CIDR removal (17). The 
Synchrovine® protocol involved two intramuscular doses of 
cloprostenol (0.125 mg each), administered 7 days apart. At the end of 
treatment, ewe identification numbers were marked on the flank to 
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facilitate individual recognition during estrous detection and mating 
as described by Cox et al. (11) and was based on the direct observation 
of mating behavior in collective pens. Rams were introduced 
immediately after ES treatment at a ratio of 1:8–10 and rotated three 
times daily (08:00–09:00, 12:00–13:00, and 18:00–19:00). Ewes were 
considered in estrus when they stood immobile during mounting. For 
fertility assessments, each ewe was required to be mounted by at least 
two rams and a minimum of three times overall; otherwise, they were 
retreated with PGF₂α 6–7 days later. The onset of estrus was defined as 
the midpoint between the last rejection and the first accepted mount. 
The interval from PGF₂α treatment to estrus onset was defined as the 
treatment-to-estrus interval, while estrous response was calculated as 
the proportion of treated ewes that expressed behavioral estrus.

2.3 Follicular and corpora lutea measures 
and functional definitions

Ovarian ultrasonography (US) was conducted using a standardized 
protocol previously described (10). Antral follicles and corpora lutea 
(CLs) were evaluated transrectally using a 10-MHz linear-array probe 
attached to a real-time B-mode scanner (Honda 2010 Vet, Toyohashi, 
Japan). The probe was fitted to a plastic rod for transrectal manipulation, 
and images were viewed at ×2 magnification with constant gain and focal 
settings. Ovarian images were recorded, and the clearest frame was 
selected to measure follicular and luteal structures using internal calipers. 
Recruited follicles were defined as antral follicles ≥3.0 mm in diameter 
(28), while ovulatory-sized follicles were defined as those ≥4.3 mm, 
based on their ovulatory potential in Highlander ewes (10). Follicle size 
and position were sketched on ovary charts for later tracking. Luteal area 
was calculated as π·(diameter2)/4; in CLs with a cavity, the cavity area was 
subtracted. Ovulation was defined as the disappearance or collapse of a 
large follicle between two consecutive US sessions, followed by CL 
development in the same location 6–7 days later (functional ovulation). 
The time of ovulation was estimated as the midpoint between these two 
observations. The interval to ovulation was defined as the time (hours) 
between the final PGF₂α treatment and ovulation. Ovulation incidence 
was the percentage of treated ewes that ovulated, ovulation rate was the 
mean number of ovulations per ewe, and ovulation efficiency was the 
proportion of ovulatory-sized follicles that ovulated. Conception and 
pregnancy rates were defined as the percentage of ewes diagnosed 
pregnant relative to those mated and treated, respectively. Lambing rate 
was calculated as the percentage of ewes that lambed among those 
confirmed pregnant. Fecundity rate was expressed as the number of 
lambs born per treated ewe, while reproductive success was defined as 
the number of lambs born per ovulatory-sized follicle present at 
ovulation. Both US and behavioral assessments were performed under a 
double-blind protocol, with evaluators blinded to ewe 
treatment allocation.

2.4 Blood sampling and endocrine 
measures

Blood samples (3 mL) were collected via jugular venipuncture 
into heparinized glass tubes, which were immediately cooled to 
5–10 °C and processed within 2 h. Plasma was separated by 
centrifugation at 1500 × g for 20 min at 5 °C, and aliquots were labeled 

and stored at −20 °C until analysis. Plasma progesterone 
concentrations were determined by solid-phase radioimmunoassay 
(RIA) using a commercial kit (PROG-RIA-CT, DiaSource, Louvain-
la-Neuve, Belgium), previously validated for use in ruminants. The 
assay sensitivity was 0.05 ng/mL, with intra- and inter-assay 
coefficients of variation of 4.3 and 5.0%, respectively.

2.5 Experiments

2.5.1 Experiment 1. Effect of GnRH administration 
on ovulation and luteal development in ewes 
treated with a short-term progesterone–PGF2α 
protocol

This experiment was conducted between May and July, within the 
local breeding season [February–July; (10)]. A total of 73 ewes—31 
Suffolk, 18 Texel, and 24 Highlander—underwent estrous 
synchronization using the short-term progesterone–PGF2α protocol. 
At CIDR removal, animals were blocked by breed and randomly 
assigned to one of three treatment groups: (1) CIDR + eCG (n = 23), 
receiving 400 IU of eCG (Novormon, Syntex, Buenos Aires, 
Argentina) at CIDR removal; (2) CIDR + eCG + GnRH (n = 26), 
receiving 400 IU of eCG at CIDR removal and 4.2 μg of buserelin 
acetate (Conceptal®, MSD, Unterschleissheim, Germany) 36 h later; 
and (3) CIDR + GnRH (n = 24), receiving GnRH alone at 36 h after 
CIDR removal (see Figure  1). To evaluate the effect of GnRH on 
ovulation, ovarian ultrasonography (US) was performed at 36 h post-
CIDR removal and subsequently every 8 h until ovulation was 
confirmed or up to 68–72 h post-treatment. A final US was conducted 
7 days later to assess luteal development. Outcome variables included 
the number and diameter of large follicles at GnRH administration 
and at ovulation, the interval from treatment to ovulation, the number 
of corpora lutea, and total luteal area.

2.5.2 Experiment 2. Effect of GnRH administration 
for ovulation control on post-mating 
reproductive performance of ewes synchronized 
with a short-term progesterone–PGF2α protocol

The study was conducted between April and September (from 
mating to lambing) using 370 ewes and 24 mature rams from two 
commercial farms (n = 186 and 184 ewes; 10 and 14 rams, respectively; 
Figure  2). All ewes were synchronized using the short-term 
progesterone–PGF2α protocol. At CIDR removal, animals were 
randomly assigned to one of three groups: (1) a control group with no 
additional treatment (CIDR; n = 64 and 48 per farm), (2) a group 
receiving 400 IU eCG at CIDR removal (CIDR + eCG; n = 61 and 43), 
and (3) a group receiving 400 IU eCG at CIDR removal plus 4.2 μg 
GnRH (Conceptal®) 36 h later (CIDR + eCG + GnRH; n = 61 and 93). 
In Farm 1, rams with satisfactory breeding soundness evaluation 
(BSE) and marking harnesses were used for natural mating in 
paddocks (ram-to-ewe ratio: 1:18). Mating marks were recorded twice 
daily (AM and PM) as evidence of estrus, beginning immediately after 
CIDR removal, and rams remained for 7 days before the entire group 
rejoined the flock. In Farm 2, a genetic nucleus, ewes were housed in 
pens with controlled mating (ram-to-ewe ratio: 1:8–15), where estrous 
detection was conducted twice daily starting 24 h after CIDR removal. 
Ewes were allowed two successful mounts before being removed from 
the group. After 72 h, the experimental group joined the commercial 
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flock and was exposed to clear-up rams (1:60 ratio). Pregnancy was 
diagnosed by transrectal ultrasonography 35–40 days post-estrus, and 
lambing performance was recorded in Farm 2 at 147 ± 7 days after 
breeding. The effects of GnRH administration on reproductive 
outcomes were evaluated using estrous presentation, and conception, 
pregnancy, lambing, and fecundity rates.

2.5.3 Experiment 3. Effect of GnRH administration 
to control the ovulatory wave on follicular 
development and fertility outcomes in ewes 
synchronized with the Synchrovine protocol

This experiment was conducted between April and November at 
the university campus using 46 Highlander ewes (2–6 years old). 
Prior to estrous synchronization, ewes were blocked by age and 
randomly assigned to two groups treated with the Synchrovine® 
protocol. The control group received two doses of PGF₂α (0.125 mg 
DL-cloprostenol, Ciclase®) 7 days apart (PGF + PGF; n = 23), while 
the treatment group received the same protocol plus 4.2 μg buserelin 
acetate (Conceptal®) on Day 3 (PGF + GnRH + PGF; n = 23; 
Figure  3). The experiment was replicated three times. Ovarian 
follicular dynamics were evaluated by transrectal ultrasonography on 

Days 3 (follicles 3 days after first PGF), 7 (follicles at second PGF), 
and 9 (preovulatory follicles) to assess the number and diameter of 
antral follicles. Ovulation was evaluated on Day 11, and luteal 
development (CL count, luteal area, and plasma progesterone) was 
assessed on Day 16. Additional indicators of follicular competence 
included estrous expression, intervals to estrus and ovulation, and 
ovulation efficiency based on preovulatory-sized follicles observed 
on Day 9. To evaluate fertility outcomes, ewes were group-mated in 
collective pens using rams that rotated between pens at a ratio of 
1:8–10. Pregnancy was diagnosed by ultrasonography 35 days after 
estrus, and lambing outcomes were recorded 147 days later. Mated 
ewes remained separated from rams until pregnancy diagnosis.

2.6 Statistical analyses

Data are expressed as means ± standard error of the mean (SEM) 
or as percentages, as appropriate. Normality of the data distributions 
was assessed using the D’Agostino–Pearson omnibus test. Parametric 
data were analyzed using one-way analysis of variance (ANOVA) 
followed by Tukey’s post hoc test, or Student’s t-test for two-group 

FIGURE 1

Timeline of treatments and ultrasound evaluations in Experiment 1. Ewes were synchronized with a short-term progesterone–PGF2α protocol and 
assigned to receive eCG and/or GnRH at indicated intervals. Ovulation was monitored every 8 h after 36 h post-CIDR removal until confirmation. US, 
ultrasound evaluation; FOL, follicle; CL, corpus luteum.

FIGURE 2

Timeline of treatments and ultrasound evaluations in Experiment 2. The scheme illustrates the distribution of ewes into experimental groups following 
synchronization using a short-term progesterone-PGF2α protocol.
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comparisons. For non-normally distributed data, the Kruskal–Wallis 
test followed by Dunn’s multiple comparison test or the Mann–
Whitney U test was applied. Categorical variables, such as ovulation 
efficiency, pregnancy rate, and lambing rate, were evaluated using 
Fisher’s exact test or the Chi-square test, as appropriate. All analyses 
were performed using Prism software (version 10.2.3; GraphPad 
Software, LLC). A p value < 0.05 was considered 
statistically significant.

3 Results

The effect of treating ewes with GnRH to synchronize ovulations 
in the P4-PGF2α protocol used for ES is shown in Table 1. One ewe 
from the eCG-treated group was eliminated from the experiment due 
to a digestive disease.

GnRH administration 36 h after CIDR removal significantly 
reduced the treatment-to-ovulation interval (p  <  0.0001) and 
narrowed the ovulation window compared to CIDR + eCG 
(p = 0.0026) and CIDR + eCG + GnRH (p < 0.0001). No differences 
were observed between the GnRH-treated groups in either interval 
to ovulation (p = 0.8482) or deviation from the mean ovulation 
time (p > 0.999).

Additionally, eCG increased the number of large follicles (≥4.3 
mm) observed at 36 h post-treatment (CIDR + eCG vs. CIDR + 
GnRH, p = 0.049; CIDR + eCG + GnRH vs. CIDR + GnRH, p = 
0.038), as well as the number of ovulated follicles (CIDR + eCG vs. 
CIDR + GnRH, p = 0.006; CIDR + eCG + GnRH vs. CIDR + 
GnRH, p = 0.014). These effects were reflected in the number of 
corpora lutea assessed 7 days after ovulation.

Experiment 2 evaluated the effect of GnRH administration on 
reproductive performance in estrous-synchronized ewes. The 

FIGURE 3

Timeline of treatments and ultrasound evaluations in Experiment 3. The scheme illustrates the distribution of ewes into experimental groups following 
synchronization using a synchrovine protocol.

TABLE 1  Effect of GnRH administration 36 h after treatment, on ovulation performance and luteal development of ewes synchronized by the 6-day 
CIDR-PGF2α protocol early in the breeding season.

Parameters CIDR + eCG CIDR + eCG + GnRH CIDR + GnRH

Mean ± SEM Mean ± SEM Mean ± SEM

Ewes (replicates): 24 (3) 26 (3) 24 (3)

Follicles ≥4.3 mm at 36 h1:

Number (n): 2.3 ± 0.12a2 2.3 ± 0.17a 1.8 ± 0.11b

Diameter (mm): 5.4 ± 0.17 5.5 ± 0.14 5.8 ± 0.14

Ovulatory follicles:

Number (n): 2.0 ± 0.09 1.9 ± 0.12 1.4 ± 0.14

Diameter (mm): 5.9 ± 0.14 6.0 ± 0.13 6.0 ± 0.15

Interval CIDR-ovulation (h): 63.8 ± 1.38a 55.5 ± 0.48b 56.8 ± 0.82b

Dev. interval to ovulation (h)3: 5.8 ± 0.65a 2.2 ± 0.36b 2.9 ± 0.57b

Ovulation Efficiency (%) 93.8 (49/54) 86.5 (50/61) 76.0 (34/45)

CL development at day 16:

Number (n): 2.0 ± 0.09a 1.9 ± 0.12a 1.4 ± 0.14b

Total luteal area (mm): 127.3 ± 9.89 164.7 ± 14.19 141.1 ± 12.55

1US assessment at GnRH administration.
2Different superscripts in rows indicate significant differences (p < 0.05).
3Deviation from mean ovulation interval.
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study was conducted on two commercial farms with distinct 
production objectives—lamb production (Farm 1) and genetic 
nucleus (Farm 2). They differed in mating precision (group mating 
in paddocks vs. hand mating in pens) and lambing monitoring 
(outdoor vs. indoor). Consequently, lambing data were only 
collected in Farm 2.

Results in Table 2 show that the administration of GnRH tended 
to increase the pregnancy rate in ewes treated with eCG only in farm 
2 (p = 0.061). Furthermore, GnRH significantly improved fecundity 
rates compared to both CIDR-only (p = 0.007) and CIDR + eCG 
groups (p = 0.004). In contrast, no significant effects of GnRH or eCG 
were observed in Farm 1 (p > 0.10). However, when pregnancy rate 
following GnRH treatment was compared between farms, farm 2, 
based on controlled mating, exhibited significantly higher results 
than farm 1, based in group mating, (p = 0.002), suggesting that 
controlled mating protocols could have influenced the fertility 
performance. No other inter-farm differences were significant 
(p > 0.10).

Experiment 3 evaluated the effect of GnRH administration during 
the ovulatory wave on follicular morphology and reproductive 
performance in ewes synchronized with the Synchrovine protocol 
(Table 3).

Results showed that GnRH administration during the 
ovulatory wave significantly reduced follicular diameter 
deviation on day 7 (p  =  0.004), indicating improved cohort 
homogeneity. However, no significant effects were observed on 
follicle number, ovulation efficiency (p  =  0.061), luteal 
development, or fertility outcomes (p  >  0.10). These results 
suggest that GnRH modified follicular morphology but did not 
improve reproductive performance.

4 Discussion

The main findings of this study demonstrate that administering 
GnRH 36 h after treatment in ewes synchronized with a short-term 
progesterone-PGF protocol accelerates the interval to ovulation and 

improves the synchrony of functionally competent ovulations. 
Furthermore, when GnRH is used to modulate the ovulatory follicular 
wave during a Synchrovine protocol, it reduces follicular diameter 
variability at the onset of the follicular phase, while maintaining the 
functional competence of oocytes for fertilization and development. 
These observations are consistent with the initial hypothesis. A 
complementary observation was that the administration of eCG 
increased the number of ovulatory-sized follicles and ovulation rate but 
an increased in fecundity rate was observed only when combined 
with GnRH.

The experimental model applied in this study had been 
validated in earlier research (10, 11), helping to minimize 
confounding effects, particularly those related to the metabolic 
influences on ovarian function (11, 29, 63) and the selection of 
follicular markers (10, 30, 31). Controlled mating with rams of 
known fertility and libido, and with appropriate ram-to-ewe 
ratios, further ensured reliable assessment of oocyte 
fertility competence.

GnRH administration 36 h after CIDR removal significantly 
reduced the interval to ovulation and tightened ovulatory 
distribution consistent with recent findings under similar 
conditions, including flock management and ultrasound-based 
monitoring (7). This outcome is conceptually expected if GnRH 
agonists effectively induce an LH surge (19) and there is 
sufficient synchronization of responsive follicles. However, 
studies on the use of GnRH for ovulation induction in sheep 
report a wide range of reproductive outcomes. Some studies 
support the pattern of ovulations observed here (22, 32–34) and 
the improved fecundity rates (23, 24), whereas others describe 
negative (20, 35, 36) or neutral effects on fertility (22, 32, 37). 
This variability likely reflects the multifactorial nature of 
reproductive outcomes and the diversity of experimental settings 
in which GnRH is tested. Research in cattle may help to identify 
factors that can affect the reproductive success when using 
GnRH in sheep.

The timing of GnRH administration is especially critical. The 
ovulatory wave in ruminants is regulated by LH pulsatility in 

TABLE 2  Effects of GnRH administration 36 h after CIDR removal on fertility and lambing performance of ewes synchronized with a 6-day CIDR-PGF2α 
protocol and subsequently mated.

Parameters CIDR CIDR + eCG CIDR + eCG + GnRH

Farm 1:

Ewes (n): 64 61 61

Estrous presentation (%): 57/64 (89.1) 57/61 (93.4) 56/61 (91.8)

Conception rate (%): 49/57 (86.0) 48/57 (84.2) 43/56 (76.8)

Pregnancy rate (%): 49/64 (76.6) 48/61 (78.7) 43/61 (70.5)a1

Farm 2:

Ewes (n): 48 43 93

Estrous presentation (%): 42/48 (87.5) 41/43 (95.3) 88/93 (94.6)

Conception rate (%): 37/42 (88.1) 39/41 (95.1) 84/88 (95.5)

Pregnancy rate (%): 37/48 (77.1) 39/43 (90.7) 84/93 (90.3)b

Lambing rate (%): 37/37 (100) 36/39 (92.3) 79/84 (94.0)

Fecundity rate (%): 56/48 (116.7)x 50/43 (116.3)x 142/93 (152.7)y

1Different superscripts in columns (a, b) and in rows (x, y) indicate statistical differences (p < 0.05).
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coordination with metabolic hormones such as IGF-I and insulin (38). 
During this phase, follicles undergo terminal differentiation, including 
increased LH receptor expression on granulosa cells (16, 39, 40). This 
is an essential step for responsiveness to LH pulses and the 
preovulatory surge (39–41, 64). Immature follicles cannot respond 
reliably to premature GnRH stimulation, and the associated oocytes 
may lack developmental competence (25, 42). Conversely, late GnRH 
administration may occur after LH granules have been depleted (61), 
reducing the efficacy of induced surges and increasing the risk of aged 
follicle ovulation (8, 10).

Timing of GnRH can also be  influenced by estrus detection 
management and ram exposure, both associated to the Male Effect 
(43, 44). The Male Effect, and its management, can accelerate GnRH 
and LH pulse frequency (45, 46), accordingly, it can also accelerate 
follicular development and granulosa cell differentiation, as 
previously discussed.

Additionally, energy balance and body condition score (BCS) play 
key roles in terminal follicular development and differentiation, 

primarily through metabolic signals, including IGF and insulin (47–
49). Mechanisms controlling energy homeostasis are highly conserved 
and are often linked to moderate metabolic stress [(50, 51)]. However, 
while it is well established that energy balance impacts follicular and 
oocyte competence during the follicular phase, its influence on the 
timing of GnRH administration under subtle energy imbalances 
remains unclear.

In the present study, eCG increased terminal follicular growth 
and ovulation rate (Table  1), consistent with prior findings 
[reviewed by (3)]. However, no increase in fecundity rates was 
observed when eCG was used without GnRH (Table 2). Notably, 
differences in pregnancy rates between controlled and group mating 
systems were only observed in groups with more synchronized 
ovulations. While fertilization is generally not limiting in pregnancy 
establishment (52–54), this understanding largely derives from 
cattle studies. The influence of ram behavior or semen quality in 
sheep following synchronized ovulation remains unclear and merits 
further study.

TABLE 3  Effect of the administration of GnRH 3 days after the first dose of PGF2α, on morphological and functional markers of preovulatory follicle 
development in ewes synchronized by the synchrovine protocol during the breeding season.

Parameters PGF + PGF
Mean ± SEM

PGF + GnRH + PGF
Mean ± SEM

P

Ewes (replicates): 23 (3) 23 (3)

Follicles at day 3 (GnRH):

Number (n): 1.9 ± 0.34 1.6 ± 0.40 0.362

Diameter (mm): 5.5 ± 0.17 5.3 ± 0.23 0.425

Deviation in diameter (mm)1: 0.77 ± 0.08 0.88 ± 0.14 0.788

Follicles at day 7 (PGF2α):

Number (n): 2.3 ± 0.19 2.2 ± 0.21 0.214

Diameter (mm): 5.4 ± 0.15 5.3 ± 0.11 0.363

Deviation in diameter (mm): 0.91 ± 0.08 0.58 ± 0.06 0.004

Follicles at day 9 (preovulatory):

Number (n): 2.3 ± 0.14 2.3 ± 0.13 0.565

Diameter (mm): 6.2 ± 0.14 6.4 ± 0.10 0.233

Deviation in diameter (mm): 0.73 ± 0.09 0.56 ± 0.08 0.128

Estrous presentation (%): 23/24 (95.8) 24/24 (100) >0.999

Interval PGF-Estrus (h): 29.4 ± 1.51 27.3 ± 1.24 0.300

Interval PGF-Ovulation (h): 58.4 ± 6.54 56.5 ± 1.84 0.498

Ovulation efficiency (%)2: 77.8 (43/54) 92.3 (48/52) 0.061

Luteal development:

Number (n): 1.8 ± 0.14 2.1 ± 0.11 0.156

Total luteal area (mm): 148.8 ± 11.53 170.9 ± 10.72 0.275

Progesterone in plasma (ng/ml): 4.6 ± 0.71 5.1 ± 0.38 0.803

Fertility markers:

Pregnancy rate (%): 13/14 (92.9) 14/14 (100) >0.999

Lambing rate (%): 13/13 (100) 14/14 (100) 1.0

Fecundity rate (%): 24/14 (171.4) 23/14 (164.3) >0.999

Reproductive success (%) 66.7 (24/36) 79.3 (23/29) 0.257

1Deviation from the mean diameter.
2CLs/ovulatory-sized follicles at day 9.
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The use of GnRH to synchronize the ovulatory follicular wave 
and reduce the incidence of ovulation from persistent follicles has 
been extensively studied in cattle (55, 56) but less actively in sheep 
(34, 57, 65). In sheep, large follicles present at the start of a follicular 
wave can contribute to ovulation rates in natural estrous cycles, 
particularly in prolific breeds (8–11, 15). However, in short-term 
protocols, the interval between recruitment and ovulation can 
be sufficiently prolonged to impair oocyte functional competence 
(13, 15).

Antral follicles ≥3.0 mm in diameter at the start of a follicular 
phase often represent a heterogeneous population (9–11). In this 
study, GnRH administration reduced the heterogeneity in follicular 
diameters within this group without affecting the ovulation efficiency 
or the functional competence of ovulated oocytes (Table  3). The 
reproductive performance of ewes treated with the Synchrovine 
protocol was superior to that reported after artificial insemination 
(26, 27, 62). This suggests that the protocol possesses an inherent 
potential to achieve reproductive outputs comparable to those of 
untreated ewes.

However, the mechanism by which GnRH affected follicle 
diameter remains unclear. No increase in accessory CL formation 
was detected at the second PGF treatment. Although persistent 
follicles often respond to GnRH (13, 15), the lack of luteal evidence 
suggests a possible suboptimal LH response, perhaps due to 
insufficient LH granule replenishment (61). Alternatively, GnRH 
might have disrupted follicular growth without promoting 
ovulation, consistent with findings using subovulatory doses of 
hCG (7, 58).

In conclusion, GnRH administration at a strategic interval from 
the start of the follicular phase improves the synchronization of 
ovulations while maintaining oocyte competence for fertilization and 
development. Furthermore, when used after wave emergence, GnRH 
effectively uniforms the diameters of the follicular cohort at the start of 
follicular phase, although it does not significantly impact the overall 
reproductive performance of treated ewes. These results highlight the 
importance of both timing and physiological context when using 
GnRH in ES protocols.
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