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Quercetin promotes production
of secondary hair follicle stem
cells in cashmere goat: a
mechanistic study

Wei Lian†, Guoqing Jiang†, Xueyong Wu, Yadong Gao, Kun Cui,
Lei Zhu, Ziyang Xu, Xiao Zhang, Jiawei Wang, Mingli Peng,
Rui Ding, Fei Hao* and Dongjun Liu*

Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life
Sciences, Inner Mongolia University, Hohhot, China

Introduction: This study investigated the effects of quercetin on the proliferation
and apoptosis of secondary hair follicle stem cells (SHFSCs) isolated from Arbas
cashmere goats.
Methods: SHFSCs were treated with varying quercetin concentrations. CCK-
8, EdU assays, and flow cytometry analyses were performed to assess cell
proliferation and apoptosis. Transcriptome analyses were used to identify
differentially expressed genes and enriched signaling pathways.
Results: Treatment with 10 μg/mL quercetin for 48 h significantly promoted cell
proliferation. The proportion of S-phase cells increased from 15.5% to 21.2%, and
the mRNA and protein levels of PCNA and TERT were upregulated. Quercetin
inhibited apoptosis by downregulating BAX, TP53, and CASP3, upregulating
BCL2, and reducing the number of late apoptotic cells. Mechanistically, quercetin
activated the PI3K–Akt, Wnt, and TGF-β signaling pathways, upregulated CCND1
and CDK4 expression, improved mitochondrial membrane potential, reduced
ROS levels, and promoted VEGF, FGF, and HGF secretion. Transcriptome analyses
revealed that differentially expressed genes were enriched in translational
processes, insulin-like growth factor binding, and proliferation-related signaling
pathways.
Conclusion: Quercetin promotes SHFSC proliferation and inhibits apoptosis
through multiple pathways, providing a potential regulatory strategy for
improving cashmere production in goats.

KEYWORDS

quercetin, hair follicle stem cell, cell proliferation, apoptosis, antioxidation, RNA-Seq,
cashmere goat

1 Introduction

Arbas cashmere, a key raw material for down products, is renowned for its warmth,
lightness, and bright luster (1). The Arbas cashmere goat, a unique breed from Inner
Mongolia, has long been globally recognized for its advantages in terms of cashmere yield,
fineness, and length (2). The goat’s hair follicles, an appendage of the skin, play a crucial
role in determining cashmere quality. Cashmere goat hair follicles are categorized into
primary (hair-producing) and secondary follicles (cashmere-producing) (3). Research on
secondary follicles is essential for improving the quality of cashmere. The seasonal cycle of
secondary hair follicles in adult cashmere goats typically spans anagen (April–November),
catagen (December–January), and telogen (February–March) phases (4, 5). By contrast,
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during the fetal period and early postnatal stage, secondary follicles
primarily undergo morphogenesis and maturation. The present
study investigates adult animals Anagen phase directly influences
cashmere yield. Previous studies have shown that secondary hair
follicle stem cells (SHFSCs), located in the bulge region adjacent
to the arrector pili muscle at the base of the follicles, are critical
for follicle growth and development. SHFSCs maintain their
stemness and regulate follicle growth cycles through interactions
with the surrounding microenvironment, including the dermal
papilla (DP) cells, the extracellular matrix, and various signaling
molecules (4, 6, 7).

As cashmere is produced only by secondary follicles, SHFSCs
are the key cellular drivers of cashmere output. Their proliferation–
apoptosis balance controls follicular phase transitions and directly
shapes fiber yield, fineness, and length. Thus, SHFSC-focused
studies can provide a more precise mechanistic view than whole-
follicle approaches for developing tractable cellular targets to
boost production.

At cellular level, SHFSCs play a key role in follicular
development. During the anagen phase, DP cells secrete key signals,
including Wnt ligands. Activation of Wnt signaling pathway
stimulates SHFSC activity, promotes proliferation, and sustains
stemness. For example, WNT10b induces anagen (8, 9), driving
SHFSCs proliferation, differentiation, and initiating follicle cycle
progression (10). During catagen phase, bone morphogenetic
protein (BMP) signaling inhibits SHFSCs activation, regulating the
cells into a quiescent state to prevent premature differentiation
and maintain the stem cell pool, with BMP4 and BMP6 playing
important roles (9, 11, 12). The JAK/STAT pathway modulates
stem cell behavior under specific conditions, while the PI3K/AKT
pathway promotes SHFSCs growth and differentiation and inhibits
apoptosis, balancing quiescence and activation (13–15). TGF-
β signaling participates in regulating inflammation and cellular
responses during follicle regeneration (16–18). Additionally,
the transcription factor RUNX1 enhances SHFSC sensitivity to
activation signals, promoting the transition from telogen to anagen,
while the vascular system interacts with hair stem cells to maintain
follicle cycle homeostasis (19–21). Despite systematic studies on the
regulatory mechanisms underlying SHFSC behavior, the complex
follicle regulatory network requires further exploration to develop
effective modulation strategies.

Quercetin, a secondary metabolite abundant in onions, grapes,
and tea, exhibits antioxidant, anti-inflammatory, and anticancer
properties (22). It enhances antioxidant capacities by scavenging
free radicals and increasing the activities of enzymes such
as superoxide dismutase (SOD) and glutathione peroxidase
(GPx), while inhibiting the NF-κB pro-inflammatory pathway
(23). Recent studies have indicated that quercetin can enhance
chemotherapy efficacy by regulating cellular signaling pathways
(24–26), showing promise for cancer treatment. However, its
application is limited due to its poor bioavailability (27). Notably, in
hair regulation, quercetin influences follicle development through
multiple pathways. It enhances DP cell viability by increasing
NAD(P)H production and mitochondrial membrane potential,
thereby optimizing cellular energy metabolism (28). Quercetin also
prolongs anagen phase by upregulating the anti-apoptotic protein
BCL2 and the proliferation gene KI67 to regulate follicle cycle
(29). In addition, it promotes the transcription and synthesis of

growth factors such as bFGF, KGF, and VEGF, which are critical for
maintaining follicle activity and periodic turnover. Mechanistically,
quercetin activates the MAPK/CREB signaling pathway, inducing
the phosphorylation of ERK, AKT, and CREB to regulate follicle-
associated biological processes (30). Recent clinical studies have
shown that quercetin stimulates the proliferation of keratinocytes
in quiescent follicles and enhances dermal vascularization via HIF-
1α activation, providing nutrients to follicles (31).

Quercetin exhibits broad biological activities and is compatible
with modern livestock production. By prolonging anagen,
protecting follicular cells from apoptosis, and enhancing
vascularization, quercetin fulfills key requirements for sustaining
SHFSC activity and promoting cashmere growth. As a naturally
occurring flavonoid with a favorable safety profile, quercetin
also shows promise for industrial use as a feed additive or
topical agent to improve cashmere yield and fiber quality in a
sustainable, residue-free manner. Therefore, investigating how
quercetin regulates SHFSC proliferation and apoptosis may
yield mechanistic insights with direct practical relevance for the
cashmere industry.

Although quercetin’s effects on follicle biology have been
investigated, its role in regulating follicle development through
SHFSCs in cashmere goats, particularly in relation to improving
cashmere yield, remains poorly defined. To address this gap, we
investigated the effects of quercetin on SHFSC proliferation and
apoptosis in cashmere goats, with the aim of informing strategies
to enhance cashmere production. Our findings highlight quercetin
as a candidate compound for probing SHFSC-mediated regulation
and underscore its potential for industrial application in cashmere
goat production.

2 Materials and methods

2.1 Sample collection and cell culture

Three healthy 1-year-old cashmere goats were selected from
the Yiwei White Goat Farm (Ordos, Inner Mongolia, China). In
this study, all animals were reared under husbandry conditions
following previous studies (32, 33), and food and water were
available ad libitum. Skin biopsies (1 cm diameter) were collected
from the dorsal region in September, when the hair follicle cycle
had entered the anagen phase. SHFSCs were isolated following
a published protocol (34). Briefly, under a stereomicroscope,
secondary hair follicles were mechanically separated with forceps,
the bulb region was dissected, and the tissue was digested overnight
with collagenase type IV to facilitate attachment to culture dishes.
Stem cells were further purified via sequential (gradient) digestion.
Typically, follicle stem cells detach from the dish after ∼5 min of
trypsinization. SHFSC identity was verified using specific markers
(CD34 and K19).

SHFSCs from Arbas cashmere goats were cultured in
DMEM/F-12 (Biological Industries, Kibbutz Beit Haemek, Israel)
supplemented with 4% fetal bovine serum, 14 ng/mL epidermal
growth factor (PeproTech, Rocky Hill, NJ, USA), 0.4 ng/mL
hydrocortisone (Monmouth Junction, NJ, USA), and 0.5 pg/mL
ITS-X (Gibco BRL, Grand Island, NY, USA). Cells were maintained
at 37 ◦C in a humidified 5% CO2 incubator, and the medium was
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replaced every other day. RNA and protein were extracted when
cultures reached 70–80% confluence.

2.2 RNA extraction and quantitative
real-time PCR detection

Passage-cultured SHFSCs were seeded and exposed to
quercetin at the specified concentrations. After 48 h, total RNA was
extracted using RNAiso Reagent (Takara Bio Inc., Shiga, Japan) in
accordance with the manufacturer’s instructions. RNA purity and
concentration were assessed using a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Complementary
DNA was synthesized with the PrimeScript FAST RT Reagent Kit
with gDNA Eraser (Takara Bio Inc.). Quantitative real-time PCR
was performed with TB Green� Premix Ex TaqTM II (Takara Bio
Inc.) on a CFX96 real-time PCR system (Bio-Rad Laboratories,
Hercules, CA, USA). GAPDH served as the reference gene, and
relative expression was calculated using the 2−��Ct method.
Primer sequences are provided in Supplementary material S1.

2.3 Protein extraction and western blot
analysis

Passage-cultured SHFSCs were seeded and treated with
quercetin at the specified concentrations for 48 h before lysis. Total
protein was extracted using a mammalian protein extraction kit
(CWBIO, Beijing, China) in accordance with the manufacturer’s
instructions. Protein concentration was determined using a
bicinchoninic acid assay (Thermo Fisher Scientific). Equal
amounts of protein (20 μg per lane) were separated through
sodium dodecyl sulfate polyacrylamide gel electrophoresis and
transferred to polyvinylidene difluoride membranes. Membranes
were blocked in 5% (w/v) skimmed milk for 1 h at 37 ◦C and
then incubated overnight at 4 ◦C with the primary antibodies
(details in Supplementary material S1). After washing, membranes
were incubated with horseradish peroxidase-conjugated secondary
antibodies for 1 h at 37 ◦C. Chemiluminescent signals were
recorded on a Tanon 5200 imaging system (Tanon, Shanghai,
China). Band intensities were quantified in ImageJ (35) for
statistical comparison between groups.

2.4 Flow cytometry analysis of the cell
cycle and cell apoptosis

For cell-cycle analysis, passage-cultured SHFSCs were seeded in
6-well plates and treated with quercetin (specified concentrations)
or vehicle for 48 h. The culture medium was collected, adherent
cells were trypsinized for approximately 5 min, and the suspensions
were pooled. Cells were pelleted at 1,500 × g for 5 min, washed
once with ice-cold PBS, and fixed in ice-cold 70% ethanol at 4 ◦C
for 12 h. After washing, cells were resuspended in propidium iodide
(PI) staining buffer (Beyotime, Shanghai, China) containing RNase
A, as per the manufacturer’s instructions and incubated for 30 min
at 37 ◦C in the dark. DNA content was analyzed on a FACSAria

SORP flow cytometer (BD Biosciences, New Jersey, USA). Each
group comprised three independent biological replicates (n = 3).

For apoptosis analysis, after 48 h of quercetin or vehicle
treatment, cells were washed three times with 1× PBS (pH
7.4), harvested via trypsinization, collected into 15-mL tubes,
washed once with 1× PBS, and resuspended in 1× binding buffer
(Solarbio, Beijing, China). Cells were stained with Annexin V–
FITC (5 μL) and PI (10 μL) for 10 min at 37 ◦C in the dark and
then analyzed on a FACSAria SORP flow cytometer. Acquisition
settings were matched across groups, and data were analyzed using
standard quadrant gating. Each group contained three independent
biological replicates (n = 3).

2.5 Cell counting kit-8 (CCK-8) assay

SHFSCs were seeded into 96-well plates (100 μL medium per
well) and treated with quercetin at the specified concentrations.
Each treatment group comprised nine independent replicates.
After 48 h of incubation at 37 ◦C in 5% CO2, 10 μL of CCK-
8 reagent (Biosharp, Guangzhou, China) was added to each well
and incubation continued for 4 h. Absorbance at 450 nm was then
measured on a microplate reader (BioTek, Winooski, VT, USA),
using medium-only wells for background subtraction.

2.6 EdU detection and
immunofluorescence analysis

EdU labeling was performed following the manufacturer’s
instructions (EdU Cell Proliferation Kit, RiboBio, Guangzhou,
China). Briefly, after the designated treatments, cells were
incubated with serum-free medium containing 10 μM EdU
for 24 h. Each group included three independent replicates.
Fluorescence images were acquired on a Leica fluorescence
microscope (Leica, Wetzlar, Germany), and EdU-positive rates
were quantified in ImageJ.

For immunofluorescence, cells grown on coverslips in 24-
well plates were fixed in 4% paraformaldehyde for 15 min,
permeabilized in 0.5% Triton X-100 in PBS for 15 min, and
blocked in PBS containing 0.5% Triton X-100 and 10% goat
serum for 30 min at room temperature. After blocking, cells were
incubated overnight at 4 ◦C with primary antibodies against
CD34 and K19 (Proteintech, Wuhan, China). Dilution factors are
provided in Supplementary material S2. The following day, cells
were incubated with Cy5-conjugated secondary antibodies for 1 h
at room temperature in the dark and then counterstained with
DAPI for 5 min. Images were acquired using a confocal laser-
scanning microscope(Nikon, Tokyo, Japan).

2.7 Transcriptome sequencing and
bioinformatics analysis

For RNA-seq, passage-cultured SHFSCs were seeded and
exposed to quercetin at the specified concentrations (or vehicle)
for 48 h. They were then harvested for total RNA extraction
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FIGURE 1

In vitro culture and identification of Arbas cashmere goat SHFSCs. (a) Primary and secondary follicles are isolated from skin tissue; (b) Adherent
secondary follicle cells after culture; (c) Purified secondary follicle stem cells; (d) Immunofluorescence identification of SHFSCs using markers CD34
and K19. Nuclei were stained with DAPI, and secondary antibodies conjugated with the Cy5.5 fluorophore were used to detect the primary
antibodies. The merged image shows the colocalization of the antibodies with the nuclei.NC refers to the negative control, that is, no primary
antibody was incubated.
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and library preparation. Total RNA was extracted with TRIzol
reagent in accordance with the manufacturer’s instructions.
RNA purity and quantity were assessed using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific), and RNA
integrity was evaluated on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Strand-specific libraries were
prepared with the VAHTS Universal V6 RNA-seq Library Prep
Kit following the manufacturer’s protocol. Sequencing and primary
data processing were undertaken by Shanghai OE Biotech Co., Ltd.
(Shanghai, China).

Libraries were sequenced on an Illumina NovaSeq 6000
platform to generate 150-bp paired-end reads. Raw FASTQ files
were processed with fastp for adapter trimming and quality
filtering, and clean reads were retained for downstream analyses.
Reads were aligned to the reference genome using HISAT2
(2), followed by gene-level expression quantification. Principal
component analysis was performed on count data to assess the
consistency of biological replicates. Differential expression analysis
was conducted with DESeq2, and genes with q-value < 0.05 or |log2
fold change| > 2 were designated as differentially expressed genes
(DEGs). All statistical analyses were carried out in R (v4.5.0), and
visualizations were generated with ggplot2. Functional enrichment
was performed using the GO (http://geneontology.org/) and KEGG
(http://www.kegg.jp/) online resources.

2.8 Statistical analysis

Data are presented as the mean ± standard error of the
mean, with all results derived from three independent replicates.
Comparisons between two groups were conducted using a two-
tailed Student’s t-test; unless otherwise specified, P < 0.05 was
considered significant. All statistical analyses were performed using
t-tests, and the significance was denoted as follows: ∗P < 0.05, ∗∗P
< 0.01, ∗∗∗P < 0.001, and “ns” indicates no significant difference.

3 Results

3.1 In vitro culture and identification of
Arbas cashmere goat SHFSCs

Dorsal skin samples were collected from Arbas cashmere goats
during the anagen phase. Secondary follicles were isolated under
a microscope (Figure 1a) and adherent cells were obtained after
primary culture (Figure 1b). Primary and secondary follicle cells
were digested with type IV collagen (36) to obtain purified SHFSCs
(Figure 1c). To confirm their identity, immunofluorescence
staining for the SHFSC surface markers CD34 and K19 was
performed, with positive signals shown in red (Figure 1d). The
purified SHFSCs exhibited a cobblestone-like morphology, small
size, rapid division, and high viability.

3.2 Quercetin promotes the proliferation
of Arbas cashmere goat SHFSCs

Quercetin treatment at specific concentrations and durations
promoted follicle stem cell proliferation. To determine the optimal

conditions, different concentrations of quercetin (0, 2.5, 10, and
40 μg/mL) were applied for varying durations (24 h, 48 h, and 72 h).
The highest cell viability was observed with 10 μg/mL quercetin
for 48 h (Figure 2a). Therefore, this condition was selected as the
experimental group (EG), while 0 μg/mL quercetin for 48 h was
used as the control group (CG).

RT-qPCR analyses showed significantly increased mRNA
expression levels of the proliferation markers, proliferating cell
nuclear antigen (PCNA) and telomerase reverse transcriptase
(TERT), in the EG compared to that in the CG (Figure 2b). This
observation was consistent with the elevated protein levels of PCNA
and TERT (Figure 2c). EdU assays revealed significantly more EdU-
positive cells in the EG than in CG and confocal microscopy
showed the upregulated expression of the proliferation marker
KI67, further confirming enhanced proliferation (Figure 2d). Cell
cycle analyses indicated a significant increase in the number of S-
phase cells in the EG (from 15.5% to 21.2%; Figure 2e). RT-qPCR
analyses also showed the upregulated expression of the cell cycle-
related genes CDK4 and CCND1 in the EG (Figure 2f). Collectively,
these results demonstrate that quercetin promotes the proliferation
of goat skin follicle stem cells.

3.3 Quercetin inhibits the apoptosis and
modulates the physiological status of Arbas
cashmere goat SHFSCs

The role of quercetin in the apoptosis of goat secondary skin
follicle stem cells was further investigated. The mRNA levels of the
pro-apoptotic genes BAX, TP53, and CASP3 were downregulated
in quercetin-treated cells, whereas the expression of the anti-
apoptotic gene BCL2 was upregulated. Consistently, the protein
levels of BAX, p53, and CASP3 were downregulated and that of
BCL2 was upregulated in the EG. The RNA and protein expression
trends are shown as bar and line graphs in Figure 3a. Annexin V-
FITC/PI staining further showed that quercetin inhibited apoptosis
and significantly reduced the proportion of late apoptotic cells
(Figure 3b), confirming its anti-apoptotic effects.

The effects of quercetin on physiological status of SHFSCs
were also assessed. JC-1 staining showed increased mitochondrial
membrane potential in the EG compared to that in the CG
(Figure 3c), indicating improved energy metabolism. Additionally,
quercetin reduced reactive oxygen species (ROS) levels, increased
the glutathione (GSH) content, and promoted the secretion of the
growth factors VEGF, FGF, and HGF (Figure 3d). These results
demonstrate that quercetin enhances antioxidant capacity, sustains
energy metabolism, and promotes growth factor secretion, thereby
supporting SHFSC proliferation.

3.4 Quercetin alters the transcriptome of
Arbas cashmere goat SHFSCs

To investigate quercetin’s effects on the SHFSC transcriptome,
high-throughput RNA sequencing was performed on SHFSCs from
EG and CG. After quality control and sequence alignment, 16,751
expressed genes were identified. A principal component analysis
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FIGURE 2

Quercetin promotes the proliferation of Arbas cashmere goat SHFSCs. (a) CCK-8 assay showing the proliferation activity of follicle stem cells
following treatment with different quercetin concentrations and durations; (b) RT-qPCR detection of PCNA and TERT mRNA expression in the
control group (CG) and experimental group (EG); (c) Western blot analysis of PCNA and TERT protein expression in the CG and EG, with quantitative
analyses via grayscale scanning. GAPDH served as the internal control; (d) EdU assay and KI67 immunofluorescence under a fluorescence
microscope, with quantitative analyses performed using fluorescence intensity; (e) Flow cytometry analysis of cell cycle phases in the CG and EG,
with quantitative comparisons of cell percentages; (f) RT-qPCR detection of DK4 and CCND1 mRNA expression in the CG and EG.
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FIGURE 3

Quercetin inhibits the apoptosis and modulates the physiological status of Arbas cashmere goat SHFSCs. (a) RT-qPCR and western blot analyses of
p53, BAX, CASP3, and BCL2 expression in the CG and EG, with quantitative bar graphs and trend line graphs. GAPDH served as the internal control;
(b) Flow cytometry analysis of apoptosis in the CG and EG using Annexin V-FITC/PI staining, with quantitative analyses of late apoptotic cells (Q3); (c)
Fluorescence intensity of JC-1 staining under a microscope; (d) Quantification of glutathione (GSH), reactive oxygen species (ROS), VEGF, FGF, and
HGF levels in the CG and EG using a microplate reader, with quantitative bar graphs.
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(PCA) distinguished gene expression profiles between the EG
and CG, showing high intragroup reproducibility and confirming
experimental consistency and reliability (Figure 4a).

The DEGs were filtered using the following criteria: |logFC|≥1
and P < 0.05, identifying 1,540 DEGs in the EG vs. CG, including
1,157 upregulated and 383 downregulated genes (Figure 4b). To
validate the accuracy of the RNA-seq, six upregulated and six
downregulated genes were randomly selected for qPCR verification.
The logFC trends between the RNA-seq and qPCR results were
consistent and visualized in a trend line comparison graph
(Figure 4c). The top 10 upregulated and downregulated DEGs were
identified as potential key genes, with logFC values shown in a
sorted graph (Figure 4d). Notably, ANKRD66 and PLA2G7 were
significantly upregulated. ANKRD66 is associated with enhanced
cell proliferation in tumor cells (37), whereas PLA2G7 catalyzes
phospholipid hydrolysis to produce arachidonic acid, participating
in inflammatory signaling and lipid metabolism (38, 39). In
contrast, GREM1 is found to be downregulated. GREM1 is a
BMP antagonist that inhibits BMP signaling, which typically
suppresses proliferation and promotes differentiation (40). Its
reduced expression may enhance BMP signaling and inhibit
proliferation, however, this effect may have been offset by the
pro-proliferative effects of quercetin.

A GO enrichment analysis explored the biological functions
associated with the DEGs, including biological processes (BPs),
cellular components (CCs), and molecular functions (MFs;
Figure 4e). In BPs, “cytoplasmic translation” and “translational
initiation” were enriched, indicating that quercetin promotes
protein synthesis to support proliferation. In MFs, “insulin-like
growth factor binding” was enriched. Insulin-like growth factors,
such as IGF-1 and IGF-2, regulate proliferation via the PI3K–
Akt and RAS–MAPK pathways, consistent with the observed pro-
proliferative effects.

A KEGG enrichment analysis (Figure 4f) showed that the
DEGs were enriched in various pathways including Cellular
Processes, Environmental Information Processing, Metabolism,
Genetic Information Processing, and Organismal Systems. Key
pathways included PI3K–Akt, Wnt, and TGF-β signaling, which are
part of Environmental Information Processing. Additionally, under
Metabolism, pathways related to cysteine/methionine metabolism
and glycine/serine/threonine metabolism were enriched. These
pathways are critical for follicle development and SHFSC
proliferation. Key regulatory genes identified include the COL6A
family and CD19 in the PI3K–Akt signaling pathway (41, 42);
Wnt family genes in Wnt signaling; and SMAD family genes
and BMP7 in TGF-β signaling. Additionally, CTH and AHCY
reduced ROS levels and enhanced the antioxidant capacity through
the cysteine/methionine metabolism pathway (43, 44). Western
blot analyses of the key pathway proteins (Figure 4g) confirmed
differential expression levels consistent with the sequencing data,
supporting quercetin’s role in activating the PI3K–Akt, Wnt, and
TGF-β signaling pathways.

In summary, the transcriptome analysis revealed that quercetin
promotes SHFSC proliferation and metabolism via multiple
pathways, including PI3K–Akt, Wnt, TGF-β, and PSAT1-related
pathways, clarifying its molecular mechanisms.

4 Discussion

This study found that quercetin promotes SHFSC proliferation
in a concentration- and time-dependent manner, with optimal
effects at treatment with 10 μg/mL quercetin for 48 h. This is
consistent with previous findings in human DP cells (34). Enhanced
proliferation was revealed by an increased number of S-phase
cells and upregulated PCNA and TERT expressions, suggesting
that quercetin accelerates DNA replication and maintains telomere
stability. Notably, upregulated Cyclin D1 and CDK4 expression—
key regulators of the G1/S transition—may relieve the Rb-mediated
inhibition of E2F transcription factors, activating DNA replication-
related genes (45, 46).

Transcriptome analysis and western blot showed that
quercetin activates the PI3K–Akt and Wnt/β-catenin pathways.
PI3K–Akt activation may inhibit β-catenin degradation via
GSK3β phosphorylation, promoting nuclear translocation and
the transcription of proliferation genes (47). This is supported
by observed increase in β-catenin and phosphorylation levels.
Wnt10b, a key anagen inducer, may synergize with PI3K–Akt to
drive the SHFSC transition from quiescence to proliferation (48).

Quercetin may modulate SHFSC proliferation via additional
signaling axes, including TGF-β, MAPK, and AMPK. These
pathways govern cell-cycle progression, metabolic adaptation,
and oxidative-stress responses. In particular, TGF-β signaling
may cooperate with PI3K/Akt to shape stem-cell behavior,
promoting proliferation while constraining apoptosis. Moreover,
quercetin’s effects on mitochondrial dynamics, evidenced by
increased mitochondrial membrane potential and reduced ROS,
suggest support of cellular energy homeostasis and enhanced
mitochondrial function during proliferative activity.

Quercetin downregulated the expression of pro-apoptotic
genes (BAX, TP53, and CASP3) and upregulated that of BCL2,
consistent with its anti-apoptotic effects in tumor cells (49, 50).
Mechanistically, JC-1 staining revealed increased mitochondrial
membrane potential, reduced cytochrome c release, and caspase
cascade activation. As a natural antioxidant, quercetin reduces ROS
levels and increases GSH levels, mitigating oxidative damage to
DNA and mitochondria (51). An enhanced antioxidant capacity
may also promote the secretion of VEGF and FGF, which further
stimulates SHFSC proliferation via paracrine effects.

Quercetin’s antioxidant and anti-inflammatory properties may
also enhance hair-follicle vascularization. By reducing oxidative
stress, it not only protects SHFSCs but also supports overall follicle
health, which could be critical for promoting cashmere production
in goats. In addition, quercetin’s modulation of mitochondrial
function and cellular energy metabolism may improve the
functional fitness of SHFSCs, thereby sustaining cell proliferation
throughout the hair-growth cycle.

Transcriptome analyses identified 1,540 DEGs, with ANKRD66
and PLA2G7 being significantly upregulated. ANKRD66, an
ankyrin repeat family member, may regulate cell proliferation
via cytoskeletal dynamics, consistent with its proliferative role in
cancer (52). PLA2G7 generates arachidonic acid, a precursor of
proinflammatory and proliferative prostaglandins, aligned with an
improved inflammatory microenvironment (22). Downregulated

Frontiers in Veterinary Science 08 frontiersin.org

https://doi.org/10.3389/fvets.2025.1689059
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Lian et al. 10.3389/fvets.2025.1689059

FIGURE 4

Quercetin alters the transcriptome of Arbas cashmere goat SHFSCs. (a) Principal component analysis (PCA) plot of RNA-seq data from the CG and
EG; (b) Volcano plot of the differentially expressed genes (DEGs) between the CG and EG; (c) Trend comparisons of the gene expression between the
RNA-seq and qPCR data; (d) Sorted logFC values of the DEGs; (e) Gene Ontology (GO) term enrichment analysis of the DEGs; (f) Kyoto Encyclopedia
of Genes and Genomes (KEGG) bubble plot and Sankey diagram showing pathway–gene relationships; (g) Western blot analysis of the key pathway
proteins in the CG and EG, with quantitative bar graphs created via grayscale scanning.

Frontiers in Veterinary Science 09 frontiersin.org

https://doi.org/10.3389/fvets.2025.1689059
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Lian et al. 10.3389/fvets.2025.1689059

GREM1 expression may enhance BMP signaling (typically pro-
differentiation/anti-proliferation); however, this effect may be offset
by quercetin-activated pathways (11).

KEGG enrichment analyses highlighted the PI3K–Akt, Wnt,
and TGF-β pathways. The reduced phosphorylation of SMAD2/3
in TGF-β signaling may weaken the transcriptional inhibition
of Cyclin D1, thereby accelerating the cell cycle (53–55). The
activation of cysteine/methionine metabolism may provide methyl
donors to support DNA/histone methylation, whereas CTH and
AHCY reduce ROS, enhance the antioxidant capacity, and regulate
proliferation-related genes (56, 57)

These findings elucidate the multifaceted mechanisms by
which quercetin regulate SHFSC proliferation. By modulating
key signaling pathways, including PI3K/Akt, Wnt/β-catenin and
TGF-β, quercetin emerges as a promising natural modulator
of hair-follicle stem-cell activity. In parallel, its enhancement
of mitochondrial function, attenuation of oxidative stress and
stimulation of growth-factor secretion further support its potential
as a therapeutic intervention to improve cashmere yield and
fiber quality.

5 Conclusions

Our results demonstrate that quercetin plays a critical role
in regulating follicle stem cell proliferation and apoptosis,
specifically promoting proliferation and inhibiting apoptosis. It
exerts these effects via multiple signaling pathways, including
PI3K-Akt, Wnt, and TGF-β-related pathways, enhancing SHFSCs
proliferation and metabolism. These findings provide valuable
insights into developing a regulatory strategy for improving
cashmere production from goats.
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