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Following the disruptive epidemics throughout the Indian Ocean, Southeast Asia and

the Americas, efforts have been deployed to develop an effective vaccine against

chikungunya virus (CHIKV). The continuous threat of CHIKV (re-)emergence and the

huge public health and economic impact of the epidemics, makes the development of

a safe and effective vaccine a priority. Several platforms have been used to develop

candidate vaccines, but there is no consensus about how to translate results from

preclinical models to predict efficacy in humans. This paper outlines a concept of what

constitutes an effective vaccine against CHIKV, which may be applied to other viral

vaccines as well. Defining endpoints for an effective vaccine is dependent on a proper

understanding of the pathogenesis and immune response triggered during infection.

The preclinical model adopted to evaluate experimental vaccines is imperative for the

translation of preclinical efficacy data to humans. Several CHIKV animal models exist;

however, not all provide suitable endpoints for measuring vaccine efficacy. This review

summarizes the current knowledge related to CHIKV pathogenesis and the correlates

of protection. We then define what would constitute an effective CHIKV vaccine in

humans using four key endpoints, namely: (i) prevention of chronic disease, (ii) prevention

of acute disease, (iii) prevention of transmission to mosquitoes, and (iv) complete

prevention of infection. Lastly, we address some of the gaps that prevent translation of

immunogenicity and efficacy findings from preclinical models to humans, and we propose

to use the combination of virus–cytokine–ferritin levels as a read-out for measuring

vaccine-induced protection.

Keywords: chikungunya virus, vaccine, efficacy, IL-6 (Interleukin 6), ferritin, preclinical model, viremia

INTRODUCTION

Chikungunya is an arthrogenic disease caused by chikungunya virus (CHIKV), an arbovirus
from the family Togaviridae, genus Alphavirus. The virus is spread by Aedes (Ae) aegypti and Ae
albopictus mosquitoes. Before 2004, outbreaks caused by CHIKV were mostly restricted to several
countries in Africa and Asia. In 2004, a large epidemic started on the coast of Kenya, from where
the virus subsequently spread to several islands in the Indian Ocean, including La Réunion, but
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also to India and Southeast Asia (1). Following these outbreaks,
the virus spread from Asia to the Americas and Europe, resulting
in millions of cases of severe, debilitating and often chronic
arthralgia/arthritis. Due to high morbidity and substantial
economic loss, CHIKV is, in addition to dengue virus, an
important arbovirus in Asia, Latin America and the Caribbean.
In addition, the virus currently also poses a real threat to Europe
following an outbreak in France in 2014 and in Italy in 2007 and
2017 (2–4). During CHIKV outbreaks, a high case/infection ratio
has been reported, with up to 70–80% of infected individuals
developing a febrile disease marked by a sudden onset of
high fever, rash, and polyarthritis/polyarthralgia. Symptoms of
polyarthritis or polyarthralgia may last for months to years after
infection, causing significant financial as well as public health
burdens (5). Following the disruptive epidemics throughout the
Indian Ocean, Southeast Asia, and the Americas, considerable
efforts have been deployed to develop an effective prophylactic
vaccine against CHIKV. Several platforms have been used to
develop candidate vaccines, such as live attenuated vaccines,
vectored vaccines, subunit vaccines, virus-like particles (VLPs),
and nucleic acid vaccines. Although some vaccine candidates
have reached clinical trials, conducting trials is becoming a
challenging task. After the first wave of CHIKV epidemics, the
incidence of new outbreaks in the succeeding years usually
declines due to development of herd immunity, which makes
evaluation of candidate vaccines extremely difficult. As a result,
defining clinical endpoints and correlates of protection in
relevant preclinical models is an important endeavor.When done
carefully, the “Animal Rule” pathway can be used to support
the licensure procedure (1). The Animal Rule indicates that
vaccine efficacy studies based on well-controlled animal studies
are enough to allow the vaccine to enter clinical trials, provided
that the results of those studies demonstrate reasonable evidence
that the vaccine will provide clinical benefit in humans. However,
what are the relevant endpoints and markers of protective
immunity in CHIKV preclinical models? Here we provide a
definition of vaccine efficacy that may help in the evaluation of
candidate vaccines and the decision-making process of whether
to bring a candidate vaccine further in the development pipeline.

CHARACTERISTICS OF CHIKUNGUNYA
VIRUS INFECTION IN HUMANS

It is not clear what the cellular receptor for CHIKV entry
of target cells is, but it is likely be ubiquitous given
the large tropism of CHIKV for different species and cell
types (6). Recently, Mxra8, an adhesion molecule found
in mammals, birds, and amphibians, has been identified
as a potential receptor (7). In humans, CHIKV spreads
rapidly in the body after initial infection, targeting various
cell types, including fibroblasts, keratinocytes, melanocytes,
dendritic cells, macrophages, myotubes, satellite cells, osteoblasts,
osteoclasts, chondrocytes, and neurons (6). CHIKV tropism and
disease severity in humans might vary with age (8), genetic
background and presence of co-morbidities (9). In addition,

severe neurological disease has been frequently reported in
neonates whose mothers were viremic at the time of delivery
(10). In the mouse and non-human primate models, the virus
has been detected in the same cell types in the joint, muscle,
skin, liver, and to a lesser extent in the kidneys, eye and the
central nervous system (CNS) (11, 12). In general, the main
target cells in affected organs are fibroblasts, epithelial cells
and monocytes/macrophages.

The clinical signs of acute infection include high fever
(>38.5◦C) and shivers, skin rash, weakness, headache, and severe
joint and muscle pain. In most cases, the symptoms remain
for about 4–7 days as a self-limiting disease and are followed
by a complete patient recovery (13). Frequently observed
laboratory abnormalities include pancytopenia (anemia,
moderate thrombocytopenia and leukopenia with marked
lymphopenia), increased prothrombin time, hyperglycemia,
hypoalbuminemia, hypocalcemia, and increased liver enzymes,
LDH, and creatine kinase. Mononuclear cell infiltration and
viral replication in the muscles (particularly skeletal muscle
satellite (progenitor) cells, not muscle fibers) and joints (in
fibroblasts of the joint capsule and presumably in osteoblasts)
are associated with debilitating arthralgia, myalgia, and in some
cases, arthritis (14). The acute stage can last up to one month.
The post-acute stage of CHIKV is defined as the period from one
month to the third month after the onset of acute disease. This
stage is characterized by very polymorphous manifestations,
including periarticular involvement, slowly regressive enthesitis,
tenosynovitis and bursitis, together with nonrheumatic and
systemic symptoms (15). This stage of the disease is marked by
production of several inflammatory mediators. Approximately
40–60% of cases may progress to the chronic phase (>3 months)
(16, 17) that may last up to several years. The CHIKV outbreak
on Reunion Island in 2006 indicated that persistence of myalgia,
arthralgia and asthenia may last up to 36 months post-infection
in 60–67% of chronic cases.

CHIKUNGUNYA VIRUS LINEAGES

The high neutral mutation and evolutionary rates characteristic
of RNA viruses, including CHIKV, play a role in the potential
adaptation to new vectors or are the cause of antigenic drifts,
which could allow evasion of the host immune system (18).
In addition, extensive traveling results in infection of large
populations with diverse genetic backgrounds, which further
impacts CHIKV diversity. Previous evolutionary studies grouped
CHIKV into three geographically-associated lineages based on
their origin: West African (WA) (isolates from Senegal and
Nigeria), East/Central/South African (ECSA) (isolates from
Uganda, Tanzania, Democratic Republic of Congo) and Asian
(isolates from India, Malaysia, Indonesia, Philippines, Thailand)
(8, 19). However, phylogenetic analyses of strains from 2005 and
later, recovered from the IndianOcean, Indian sub-continent and
the Americas, revealed new insights that resulted in additional
clusters of CHIKV, dubbed according to the geographical origin.
All strains characterized after 2005 shared a common ancestor
with the ECSA genotype. A recent study conducted by Casal
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FIGURE 1 | Phylogenetic analysis based on E1 gene sequence of different Chikungunya virus strains. The tree was constructed using maximum likelihood (ML)

method with 1,000 bootstrap resampling, using Kimura 2-parameter model + Gamma Distributed (K2+G) in MEGA 5.2.2. The accession numbers highlighted in red

contains the Ala226Val mutation. Different clades are marked with different color (ECSA-I: yellow; ECSA-II: green; ECSA-III: light blue; Asian: dark blue; West African

(WA): pink and O’nyong’nyong virus (ONNV): black).

et al. based on Bayesian phylogenetic analysis showed further
subdivision of the ECSA clade into three sub-groups: ECSA-
I, ECSA-II, and ECSA-III [previously reported as the Indian
Ocean Lineage (IOL)], all of which have been reported to share
a common ancestor (20) (Figure 1).

ANTIGENIC STRUCTURE, GENOTYPES
AND VACCINE DEVELOPMENT

CHIKV consists of two glycoproteins (E1 and E2) that are
involved in infection of cells. The E1 glycoprotein of CHIKV
consists of 442 amino acids that form three β-barrel domains
(4), namely domains I, II, and III. The CHIKV E2 glycoprotein
consists of 423 amino acids that form domains A, B, and C.
Domain A has been shown to contain the receptor binding site
and to be involved in cell-to-cell transmission (21). Domain B
functions more as a mask for the fusion loop on domain II of E1,
and domain C is proximal to the viral membrane with an as yet
unknown function (Figure 2).

The majority of neutralizing antibodies induced during
CHIKV infection has been shown to target E2 (22, 23), which
can be explained by the fact that the E2 glycoprotein is the
more exposed of the two. Few studies have also identified
neutralizing antibodies directed to E1 (24). Several mechanisms
of antibody neutralization of CHIKV have been described. The

FIGURE 2 | Different domains of Chikungunya virus E1 and E2 glycoprotein

(PDB: 3N42). The E1 glycoprotein consists of three domains: I (in yellow), II (in

green), III (in red) and the fusion loop (in pink). E2 glycoprotein consists of three

domains: A (in cyan), B (in orange) and C (in blue).

most relevant mechanisms of neutralization are believed to be
(1) prevention of CHIKV domain A and B binding to and
entry into target cells, (2) prevention of fusion by E1, and (3)
prevention of budding from infected cells by targeting E1 and
E2. Since domain B plays an important role in protecting the
fusion loop in E1, antibodies targeting domain B may also have a
neutralization effect by preventing fusion (25). Potent vaccines
are able to induce antibodies that neutralize at all three levels
(multi-target neutralization) and therefore prevent infection of
cells or spread from the initial site of infection. Developing an
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assay that allows for a better understanding of the mechanisms of
neutralizationmay be important in the rational design of vaccines
and understanding the correlates of protection. It is important to
realize that there is currently no consensus of what constitutes an
effective CHIKV vaccine.

Several lines of evidence indicate that antibodies, both
neutralizing and nonneutralizing, correlate with protection. First,
asymptomatic cases have been associated with high levels of
neutralizing antibodies (26). Second, B cell-deficient mice (µMT)
infected with CHIKV exhibited a long-lasting persistent viremia
and more severe joint disease compared to wild-type mice,
suggesting an important role for B cells in the resolution of
the disease (27). Furthermore, studies involving the transfer of
antibodies significantly altered the course of disease as passive
transfer of IgG antibodies from convalescent patients was able
to prevent and cure CHIKV infection in two mouse models (28).
Other studies indicated that antibodies against both E1 and E2
may provide protection against acute and chronic chikungunya
(29–31). In addition to protection, antibodies have also been
shown to be involved in recovery (30). It is less clear however,
how much neutralizing antibodies are needed to provide
protection from infection or disease. In a prospective cohort
study from the Philippines it was estimated that an anti-CHIKV
PRNT (full form) titer ≥10 was associated with protection from
development of symptomatic CHIKV infection (26).

With regard to vaccine development, it is important that
a vaccine induces cross-neutralization between the CHIKV
genotypes. The available data suggests that there is cross-
neutralization between lineages, a conclusion mainly based on
evaluation of the neutralizing antibody responses in vitro (32, 33)
using only a few strains from each genotype. Several antibody
epitopes have been identified in E1, E2, and E3 (27, 34, 35),
of which some are known to be conserved among different
strains of both the ECSA and Asian genotypes. In addition,
it has been shown that a CHIKV vaccine could cross-protect
against the closely related (85% homology) O’nyong’nyong virus,
an African alphavirus (36). Furthermore, CHIKV vaccination
followed by a heterologous CHIKV challenge in vivo also
supported the conclusion of cross-protection, demonstrating
that CHIKV neutralizing antibodies to one genotype are highly
effective against the other genotypes (37).

Since viruses belonging to the ECSA and Asian lineages are
major causes of recent outbreaks, it is important to develop safe
and effective vaccines that would provide protection against all
members of these two major lineages. It is still not clear whether
differences in virulence and pathogenesis exist among lineages
and sublineages. Although there is no unified definition of the
word virulence (pathogenic), it may be defined as the ability of
one CHIKV strain to cause more severe disease over another
CHIKV variant. There is some evidence that strains that belong
to the ECSA lineage cause more joint inflammation, higher
levels of inflammatory cytokines and feet swelling in mice (37–
39). In addition, it has been suggested from an observational
study that the Asian lineage may be less virulent since strains
of the Asian lineage have been associated with a higher rate
of subclinical infections and less persistent arthralgia than the
ECSA strains (26). This theory was recently supported by a

meta-analysis of publications about chronic chikungunya (9).
However, since only a few isolates from each lineage have
been evaluated in experimental settings, and virulence is the
outcome of the interaction between the immune system and the
virus, it is difficult to conclude whether differences in clinical
manifestations are strain- or lineage-dependent.

CORRELATES OF PATHOGENESIS

Viral Load
High viral load in the acute phase of CHIKV infection represents
a significant risk factor for developing chronic disease (40, 41).
Although both newborns and older patients develop high viral
load during CHIKV infection, the predictive value of viremia
is especially high in older patients. During the acute phase,
viral loads ranging from 104 to 1012 copies/ml have been
reported (42). Analysis of the literature suggests that patients
with CHIKV viremia titers of 104-106 copies/ml were more likely
to develop acute disease (42), whereas patients with titers >107

copies/ml were more likely to develop chronic disease (40, 41).
Interestingly, high viral loads were also associated with higher
levels of pro-inflammatory cytokines, such as IL-6 (43). Although
several studies have described an association between viral load
and age with disease severity, high viral loads have also been
measured in some asymptomatic individuals (44), indicating that
other factors such as genetic background are also involved in the
development of chronic disease.

The biggest public health impact of chikungunya
is without any doubt the development of debilitating
polyarthralgia/arthritis in the acute and chronic phase, which has
been associated with levels of viremia early in the disease (41).
Chronic arthralgia has been linked to persistent virus replication
in the target cells and/or the establishment of a self-sustained
inflammatory response that leads to tissue damage (11, 45).
CHIKV RNA has been detected in synovial macrophages, and
satellite muscle cells contain viral RNA or protein even months
after infection (40). In agreement with these observations,
long-term persistence of CHIKV infection and chronic joint
disease has occurred in experimentally infected nonhuman
primates and mice (11, 46), suggesting that residual virus or viral
products in tissues may promote chronic inflammation (40). In
contrast, Chang et al. did not detect CHIKV RNA in synovial
fluid of chronic patients, suggesting that CHIKV may not always
persist in synovial fluid or the virus was below the detection limit
of the assays used (47). Although the mechanisms leading to
chronic chikungunya have not been completely elucidated, a very
likely hypothesis is that extensive virus replication early during
infection, and subsequently persistence of CHIKV and chronic
inflammation, lead to the symptoms of chronic joint disease.

Cytokines
There is evidence that activation of the innate immune response
by alphavirus infection results in osteoblast and osteoclast
proliferation and dysfunction, which may contribute to the
effects of chronic CHIKV. In this respect, high levels of TNF-α,
IL-6, and IL-1 may promote osteoclast activity, which has been
associated with osteoclastogenesis (48, 49). Although a number
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of inflammatory cytokines, such as IL-6, IL-7, IL-12p40, IL-
16, IL-17, IP-10, MCP-1, MIF, SDF-1α, IL-1Rα, IL-2Rα, G-CSF,
GM-CSF, VEGF, and IFN-α2, have been measured during acute
CHIKV infection (50), high levels of IL-6 were identified as a
biomarker for severe and persistent arthralgia (43, 51, 52). IL-
6 has also been identified as a marker for rheumatoid arthritis
(53), suggesting a potential immunopathologic association of IL-
6 with chronic chikungunya. Specifically, for IL-6, elevated levels
were found to be associated with acute CHIKV disease in humans
(51, 54) and inmonkeys (11), or with the development of CHIKV
chronic disease in humans (43, 48, 51, 55, 56). Furthermore, in a
study using the CHIKV arthritis mouse model, serum IL-6 levels
correlated with peak viremia (38).

Ferritin
Elevated serum levels of ferritin have been found in individuals
infected with bacteria (57), but also with protozoa, such as
Plasmodium vivaxin (58), the malaria parasite. So far, only a
few studies have investigated the association between cytokines
and hyperferritinemia during severe viral infections in humans
(59–64). High concentrations of ferritin have also been found
to be associated with CHIKV load and severe disease (16, 65).
Therefore, given the positive correlation between CHIKV load
and IL-6 (43), as well as between viral load and ferritin (16), these
three molecules can also be useful as markers for disease severity.
However, as little is known about the role of serum ferritin and
its relation to CHIKV pathogenesis and disease outcomes, more
efforts should be employed to understand the kinetics of ferritin
during CHIKV infection in different animal models.

The mechanisms that regulate iron homeostasis involve two
molecules, hepcidin and ferroportin. Hepcidin is produced
mainly in the liver and its expression and release follows
the pattern of acute phase proteins. It is regulated by
several stimuli, including tissue iron levels, anemia, hypoxia,
and pro-inflammatory cytokines, such as IL-6. Hepcidin
decreases circulating iron levels by binding and promoting the
internalization and degradation of the iron exporter, ferroportin.
Accumulation of iron in cells leads to increased translation of
ferritin (66) aimed to store the iron. Ferritin is therefore mainly
considered to be the intracellular storage protein of iron. As small
amounts of ferritin are usually secreted by cells into the blood, the
concentration of serum ferritin is, under normal circumstances,
positively correlated with the amount of iron stored in the body.

The source of circulating ferritin during CHIKV
infection remains unclear and studies should be designed
to investigate this.

AN INTEGRATED MODEL OF
PATHOGENESIS: THE
VIRUS—CYTOKINE—FERRITIN (VCF)
MODEL

Conceptually, viral pathogenesis may manifest as the result of
cellular dysfunction and/or cell death. Several cell death pathways
have been described that may occur independently (66, 67),
sequentially, as well as simultaneously. CHIKV infection has been

shown to induce apoptosis and autophagy both in vitro and in
vivo (68–72). Although less is known about the contribution of
other cell death pathways to the pathogenesis of chikungunya,
there is evidence for ferroptosis as an important effector pathway
for Mayaro virus (MAYV), another alphavirus. Infection of two
different cell types with MAYV led to increased levels of reactive
oxygen species (ROS), lipid peroxidation products and protein
carbonyl (73), which are important participants of ferroptosis.
Ferroptosis is an iron-dependent form of cell death characterized
by a disrupted iron homeostasis, increased lipid peroxidation
and an accompanying insufficient capacity to eliminate lipid
peroxides. Here, we propose a theory that integrates viral load,
IL-6 and ferroptosis, resulting in hyperferritinemia (Figure 3).

Following inoculation of CHIKV into the skin, the virus
infects susceptible cells in the dermis. The virus is then
transported to the local draining lymph nodes where it is further
amplified and transported into the blood, where it subsequently
infects cells in different organs, including the spleen, liver, joints,
and muscles. CHIKV infection induces a pro-inflammatory
response with the up-regulation of multiple inflammatory
mediators (40, 43, 50, 51, 55, 74). The inflammatory cytokines
IL-1β , IL-6, and IFN-α regulate the expression of hepcidin
(75, 76). Hepcidin down-regulates iron release by enterocytes
and macrophages by binding to ferroportin and inducing its
internalization and degradation (77), increasing the intracellular
iron load and decreasing the amount of iron in circulation.
The iron overload in the cell leads to the increased production
of ferritin. In addition, IL-6 may stimulate the production
of ferritin directly. This has, for example, been seen in rats
who were injected intraperitoneally with IL-6, which led to
enhanced hepatic transferrin uptake and ferritin expression
(78). Concomitantly, the cytokine response together with
CHIKV replication in infected cells trigger both oxidative and
endoplasmic reticulum stress resulting in increased production
of ROS and reactive nitrogen species (RNS). This is in
agreement with a study that found higher intracellular ROS
in peripheral blood mononuclear cells of patients suffering
from persistent polyarthralgia post-CHIKV infection compared
to healthy subjects (79). ROS further up-regulates release of
hepcidin from infected cells (80). ROS are molecules that
contain radical oxygen species formed by the partial reduction
of oxygen, such as superoxide anion (O2-), hydrogen peroxide
(H2O2), and hydroxyl radical (•OH). ROS are by-products of
normal or stress-induced metabolic reactions and may have both
beneficial and harmful effects. However, the damaging effect
of ROS is dependent on the concentration and failure of the
antioxidant system to restore the oxidative stress (imbalance
between oxidants and antioxidants present in the cell resulting in
dysfunctional redox signaling). It is conceivable that excess ROS
production is triggered by a high cellular multiplicity of infection
in vivo caused by the high viral load (81, 82).

The free oxidative agents produced during infection damage
ferritin, resulting in aggregates that stimulate autophagy. This
selective form of autophagy is referred to as ferritinophagy, which
requires the cargo receptor NCOA4 for delivery of ferritin to
the lysosome (83). Following autophagic uptake of oxidatively
damaged ferritin, iron is released from ferritin by lysosomal
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FIGURE 3 | CHIKV-induced ferroptosis as a potential cause of hyperferritinemia observed during infection. (A) During primary viremia, CHIKV spreads from regional

lymph nodes via the blood to infect cells in visceral organs, including the spleen, liver, joints and muscles. (1) After replication in these organs, (B) CHIKV enters the

blood again (secondary viremia) to spread to other tissues. (2) Replication of the virus inside the organs and immune cells causes cytokinemia. (3) Cytokines such as

IL-1β, IL-6, and IFN-α cause the upregulation of hepcidin. (C) (4) Hepcidin binds to ferroportin, blocking release of iron from the cell decreasing the iron in circulation.

(5) In addition, the regular influx of iron into the cell via TfR increases the intracellular iron. (6) Iron overload in the cell leads to increased production of ferritin, which

may also be stimulated by IL-6 directly. (7) The cytokine response and replication of CHIKV inside the infected cell trigger both oxidative and endoplasmic reticulum

stress resulting in increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS further up-regulates release of hepcidin from

infected cells. The free oxidative agents produced during infection damage ferritin. (8) Ferritin aggregates stimulate autophagy (ferritinophagy). The damaged ferritin

taken up into autophagosomes eventually fuse with lysosomes (forming autolysosomes). (9) The lysosomal degradation of ferritin causes release of the ferrous iron

into the cytosol. The reductive milieu reduces ferrous iron into ferric iron. This reactive iron damages the lysosomal membrane, causing lysosomal leakage. The

lysosomal leakage enhances autophagy resulting in a self-perpetuating cycle of lysosomal damage. (10) The cytosolic ferrous iron is then oxidized by hydrogen

peroxide (H2O2 ) to ferric iron, forming toxic hydroxyl radicals (•OH). (11) The free radicals and H2O2 mediate oxygenation of phospholipid and polyunsaturated fatty

acids, resulting in lipid peroxides. Lipid peroxidation alters the physical properties of lipid bilayers leading to ferroptosis.
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degradation of the protein. This process involves the formation
of autophagosomes that contain damaged ferritin and other
cell materials, which will subsequently fuse with lysosomes to
form autolysosomes. The acidic pH in autolysosomes results
in degradation of ferritin and release of iron, and due to the
reductive milieu, ferric iron is reduced into ferrous iron. This
reactive iron causes damage to lysosomal membranes, resulting
in lysosomal leakage. The cytosolic ferrous iron is then oxidized
by hydrogen peroxide (H2O2) to ferric iron, forming a hydroxyl
radical (•OH), in a reaction known as the Fenton reaction.
•OH is one of the most toxic species that can be formed in
biological systems. In addition, the lysosomal leakage enhances
autophagy resulting in a self-perpetuating cycle of lysosomal
damage. Moreover, the free radicals produced during the Fenton
reaction, as well as high concentrations of H2O2, mediate
oxygenation of phospholipid and polyunsaturated fatty acids,
resulting in lipid peroxides. It is unclear where lipid peroxidation
takes place, but the plasma membrane, mitochondria, ER,
and lysosomes are the potential sites of lipid peroxidation
(84). Ultimately, lipid peroxidation is believed to alter the
physical properties of lipid bilayers in terms of disrupted ion
gradients, decreased membrane fluidity, slower lateral diffusion,
and increased membrane permeability (84). This process leads
to cell death known as iron-dependent cell death (ferroptosis).
Leakage of cell content may therefore explain the increased
ferritin levels in circulation and may therefore be considered a
marker of cell damage. Splenic macrophages and hepatocytes
represent the cells damaged by CHIKV infection, resulting in
increased circulating ferritin levels.

In addition, it is conceivable that inflammation induced
during the acute phase of CHIKV infection decreases the half-life
of erythrocytes (RBCs). This is supported by clinical observations
showing that anemia is frequently detected in patients with
severe chikungunya (85–87). The decreased RBC lifespan in
inflammation is probably due to an altered morphology of
the RBCs, resulting in increased adherence to the splenic
endothelium and clearance from the circulation by splenic
macrophages. As RBCs are an important reservoir of ferritin,
and splenic macrophages are known to recycle iron, damage
of splenic macrophages is possibly the most important source
of ferritin.

RELEVANT PRECLINICAL ANIMAL
MODELS IN CHIKV VACCINE EVALUATION

In order to use preclinical animal models to infer vaccine efficacy,
similar endpoints must be defined in humans and animal models.
The use of relevant animal models is therefore crucial; i.e.,
similar tropism, correlates of disease and correlates of protection.
Several animal models have been described for studying CHIKV
pathogenesis and evaluating candidate vaccines (12, 88). Mice
have been used in the majority of cases and despite the many
advantages of the mouse model, mice lack signs of polyarthralgia
and chronic inflammation, which are typical clinical symptoms
observed in chikungunya patients. The macaque model (old
cynomolgus macaques or rhesus macaques) has been shown

to recapitulate the chronic disease seen in patients, but is not
a model that can be used routinely. Therefore, more efforts
should be deployed to develop better mouse models. So far
three mouse models of CHIKV have been described, each
for a different purpose (12): the (1) neuroinvasive model, (2)
immunocompromised model and (3) acute arthritis model. In
most experiments, mice were challenged by either the intranasal
(i.n), subcutaneous (s.c) or intraperitoneal (i.p) route (Table 1).

• The neurologic model is based on the use of neonatal or adult
mice (see below). Neonatal mice <12 days old are extremely
susceptible to CHIKV infection, and are known to develop
lethal encephalitis (110). The tropism of CHIKV for the CNS
and the multi-system involvement observed in neonatal mice
is similar as described in neonatal humans (111). Therefore,
this model is suitable for studying human neonatal infection
and it provides a system for studying viral and host factors
that contribute to severe disease in neonates. In adult mice,
only neurological symptoms are decribed and is therefore
more appropriate for studying CHIKV neuroinvasive disease.
Although time-consuming, this both models may be used
to evaluate the protective capacity of neutralizing antibodies,
using a vaccination/adoptive transfer/challenge design.

• The immunocompetent viremic model has been developed
using both inbred (C57BL/6, BALB/c) (93) and outbred mice
(NIH Swiss) (94). In this model, mice are often infected
with the neuroadapted CHIKV Ross strain via the intranasal
route, and depending on their age, this can lead to fatal
encephalitis. Typically, in BALB/c mice exceeding 6 weeks
of age, challenge usually does not lead to fatality (105–108).
As a result, immunocompetent mice (C57BL/6, NIH Swiss,
BALB/c) of 6 weeks or younger are usually used when survival
is a desired outcome for determining vaccine efficacy (93, 94).
Nonetheless, one study has demonstrated mortality in BALB/c
mice at 14 weeks of age (95), while another study showed
that also C57BL/6 mice of 13–14 weeks-old died as a result
of i.n. CHIKV infection (92). This outcome, however, may be
explained by the fact that both studies used the CHIKV PC-08
strain, which apparently can lead to fatal encephalitis in older
mice. Although this model usually measures entry of virus into
the brain, also low viremia of short duration has been reported.
Therefore, in immunocompetent mice in which infection does
not lead tomortality, viremia can also be considered as a useful
endpoint parameter.

• The acute arthritis model is based on the use of
immunocompetent inbred (112) or outbred (94) adult
mice. Mice are inoculated subcutaneously in the footpad with
CHIKV, which results in viremia and arthrogenic disease with
maximum swelling in the infected foot within 7 days after
infection. Interestingly, severe arthritis, necrotizing myositis,
tendonitis and fasciitis, develop in the infected foot (38, 113).
This model has been useful for testing vaccines for their ability
to protect against CHIKV-induced arthritis and persistent
infection (113).

• The immunocompromised lethal model constitutes
mice deficient in the type I interferon (IFN) system,
which is essential for protection from systemic CHIKV
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TABLE 1 | Experimental CHIKV infection animal models for studying vaccine efficacy.

Name model Animal (mouse strain or

animal species)

Age of animals at

challenge

Route of infection Parameters References

Lethal AG129 15 weeks Intraperitoneal (i.p.) Mortality, virus titers in organs (brain, spleen, liver) (33, 89)

A129 15.5 weeks. 11–14

weeks

Subcutaneous (s.c.) Mortality, viremia (90, 91)

C57BL/6 13 weeks Intranasal (i.n.), PC-08 Clinical signs (lethargy, hind limb weakness),

mortality, viremia, cytokines (TNF-α, IL-6),

histopathology of brain

(92)

C57BL/6 6 weeks Intranasal (i.n.), CHIKV

Ross

Clinical signs (temperature change, weight loss,

ruffling of fur, hunched posture), mortality

(93)

C57BL/6, NIH Swiss 6 weeks Intranasal (i.n.), CHIKV

Ross

Clinical signs (weight loss), mortality, viremia (94)

BALB/c 14 weeks Intranasal (i.n.), PC-08 Clinical signs (weight loss, lethargy, hind limb

weakness), mortality, viremia, IL-6

(95)

Neonatal BALB/c 4 days Subcutaneous (s.c.) Clinical signs (weight loss), mortality, viremia (96)

hCD46+/− IFNα/βR−/− 14.5 weeks Intraperitoneal (i.p.) Clinical signs (lethargy, loss of muscle tone),

mortality

(97)

Arthritis C57BL/6 8 weeks Subcutaneous (s.c.)

(ventral side of footpad)

Viremia, virus titers in the foot/ankle and

quadriceps, histopathology of foot/ankle

(98)

C57BL/6 8 weeks Subcutaneous (s.c.)

(ventral side of footpad)

Weight loss, viremia, footpad swelling,

histopathology of organs (brain, lung, heart,

kidney, bowel, spleen, muscle)

(99)

C57BL/6 9, 11, 13, 13.5 16

weeks

Subcutaneous (s.c.)

(ventral side of footpad)

Viremia, footpad swelling (38, 100–103)

Lethal-arthritis A129 48 weeks Subcutaneous (s.c.)

(ventral side of footpad)

Weight loss, mortality, viremia, footpad swelling,

histopathology of pelvic limb

(104)

A129 8.5 weeks, 15.5

weeks

Not specified Clinical signs (temperature, weight loss), mortality,

footpad swelling

(93)

A129 12–16 weeks Intradermal (i.d.), footpad Mortality, viremia, footpad swelling (105)

Viremic BALB/c 11, 15, 29 weeks Intranasal (i.n.) Viremia, virus titers in organs (muscle, brain,

spleen, lung)

(106, 107)

BALB/c 7 weeks Intranasal (i.n.), Ross

CHIKV

Viremia (108)

BALB/c 10–12 weeks Intradermal (i.d.), footpad Viremia (105)

Rhesus macaques 3–4 yrs old Intravenous (i.v.) Viremia, inflammation (acute lymphopenia,

proinflammatory response)

(109)

Cynomolgus macaques 3-5 yrs old Subcutaneous (s.c.) Viremia, body temperature (fever, hypothermia) (104)

(33, 93). Immunocompromised mice frequently used in the
chikungunya field include: A129, AG129, and IRF3/IRF7
knock-out (12). Several studies have shown that these mice
can develop neutralizing antibodies after vaccination, which,
together with the fact that they die rapidly from CHIKV
infection due to their high susceptibility, make them good
models for studying sterilizing immunity. Additionally, the
AG129 mouse model can also be used as an arthritis model as
mice inoculated in the footpad develop arthritis as well (114).

Translating CHIKV Vaccine Efficacy From
Preclinical Models to Humans
In general, vaccine efficacy can be measured using three
different parameters: (a) protection against local and/or systemic
virus replication, (b) protection from development of clinical
disease, and (c) development of an anemnestic response
following challenge. For CHIKV, there is no consensus
about what would constitute an effective response to a

vaccine in humans. In preclinical mouse models, efficacy
can mainly be defined as the ability of the vaccine to
induce sterilizing immunity and prevent against lethal disease
or prevent the development of arthritis. It is important
to define clinical endpoints and correlates of protection in
preclinical models due to the increasing challenge of performing
phase-III trials in humans in endemic areas as a result of
herd immunity.

The process of translating preclinical data to predict vaccine
effectiveness is similar to the process known as “forecasting
by analogy” (115). As outlined above, viral load, IL-6 and
ferritin are the hallmarks of the VCF model, as determined
from human studies. If relevant studies are conducted in animal
models to fill the gap between human and animal responses,
the VCF model may be used to predict vaccine efficacy by
analogy (Figure 4A).

We have determined four key outcomes (efficacy levels) that
may identify an effective CHIKV vaccine candidate in humans
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FIGURE 4 | The four efficacy levels that a vaccine against CHIKV can attain in humans. (A) The four different levels of vaccine efficacy are defined in terms of the

ability of a CHIKV vaccine to reduce the level of viremia, and consequently the level of IL-6 and ferritin (indicated by the yellow, blue and pink peaks, respectively).

Level 1: A vaccine that can lower the amount of virus produced in order to prevent the development of chronic disease (indicated by red line). Level 2: The reduction of

viremia to a level that prevents the development of both chronic and acute disease, but transmission to mosquitoes may still occur (indicated by green line). Level 3: A

vaccine that is able to reduce viremia to the level below the threshold required to infect Ae aegypti and Ae albopictus (indicated by brown line). Level 4: A vaccine that

can provide sterilizing immunity (indicated by black line). The blue lines indicate the viremia level required for Ae aegypti and Ae albopictus to become infected. Level

(L) 1 is the minimum requirement for a CHIKV vaccine, while L4 is the ideal requirement that is not easily obtained by a vaccine. (B) The step-wise attainability of

CHIKV vaccine efficacy comprising four different levels. L1 vaccines reduce viremia below the threshold that leads to chronic disease; L2 reduces viremia below the

level that leads to acute disease; L3 reduces it below the threshold that allows transmission of CHIKV to both A. aegypti and A. albopictus; L4 leads to sterile immunity

by lowering the amount of virus to the level found at the inoculation site.

(Figure 4B). The VCF model may be used for prediction of
efficacy from the preclinical animal models.

Level 1: Prevention of Chronic Disease
A vaccine that can lower the amount of virus produced is likely to
prevent the development of chronic disease. To this end, the best
animal model, which may be translated to humans, is the A129
or AG129 mouse model, where high viremia (>107 copies/ml) is
measured after intradermal infection (116, 117). Based on clinical
observations in humans, patients with peak virus titers of >107

copies/ml appear to have a higher risk for developing chronic
disease (40, 41). As a result, a vaccine that can reduce viremia
to below this level may be able to prevent the development of
chronic disease. In this scenario, however, acute disease and
transmission to mosquitoes can still occur. Furthermore, there
is evidence that immunocompromised mice (A129 and AG129)
infected with CHIKV also develop high levels of IL-6, which
may be predictive of severe disease. Although the association

between the concentration of IL-6 and chronic disease has not
been established, it is clear that in humans, IL-6 is associated with
severe disease (43, 51). Taken together, an effective vaccine would
significantly reduce the viral load in blood and target organs,
as well as prevent the production of high levels of IL-6, and
consequently ferritin.

Level 2: Prevention of Acute Disease
Similar to the evaluation of efficacy level 1, level 2 can also be
evaluated in the A129 or AG129models, as high viremia and IL-6
can be measured in these interferon-deficient mice. At this level
of efficacy, viremia is reduced to a level that should prevent the
development of both chronic and acute disease, but transmission
to mosquitoes may still occur. This definition is based on studies
that suggest that patients with viremia titers of 104-106 copies/ml
were more likely to develop acute disease (42). As a result, a
vaccine able to reduce viremia to <104 copies/ml may be able
to prevent acute disease. We propose to evaluate IL-6 and ferritin
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as potential endpoint markers of vaccine efficacy in the arthritis
(immunocompetent and immunosuppressed) mouse model and
in non-human primates. In addition, these endpoint markers
may be validated during clinical trials.

Level 3: Prevention of Transmission to
Mosquitoes
Interfering with the transmission cycle of CHIKV is an attractive
approach to reduce or prevent epidemics with the virus.
Theoretically, a vaccine that can prevent infection of susceptible
mosquitoes could also be considered effective. In other words, the
vaccine is able to reduce viremia to the level below the threshold
required to infect Ae aegypti and Ae albopictus. Although the
infectivity of various CHIKV strains varies widely for both
Ae aegypti and Ae albopictus, it has been shown that the
susceptibility between them differs significantly. Virus could be
detected in the saliva of at least one Ae albopictus mosquito that
fed on a blood meal with a minimum dose of 103.9 PFU/ml,
while 105.3 PFU/ml of virus was needed for the salivary glands
of Ae aegypti to become positive (118). These results suggest
that infected individuals (titers are usually >104 copies/ml)
may be infectious for Ae albopictus almost the entire period
of their viremia. Furthermore, an effective CHIKV candidate
vaccine should break the transmission cycle between humans
and mosquitoes and, according to these results, must therefore
suppress viremia in the host below approximately 104 PFU/ml.
However, CHIKV reservoir competence studies still need to be
conducted in animal models like macaques and mice in order to
confirm the generalization of these results.

Level 4: Prevention of Infection
Sterilizing immunity can be defined as the ability of the immune
response to completely neutralize the virus inoculum and prevent
infection or inhibit further spread of virus from the site of
infection. It is different from the immunity that allows infection
to spread, but virus is successfully eradicated afterwards (such
as seen for levels 1, 2, and 3). Sterilizing immunity has been
observed in a few viral infection studies in preclinical models
(119–121). However, what still remains to be determined is
the longevity of such a level of immunity. It is also unclear
how sterilizing immunity in preclinical models translates to the
immunity induced in humans. Protection of immunodeficient
mice against infection is the best way to study sterilizing
immunity against CHIKV. Absence of viremia and virus in the
spleen, as well as lack of an anemnestic response after challenge,
can provide evidence for sterilizing immunity. While sterilizing
immunity might be an ideal level of vaccine efficacy, the reality is
that most vaccines do not elicit durable sterilizing immunity and,
as a result, obtaining this endpoint may not be clinically relevant
or feasible.

DISCUSSION

Although the model that we have proposed above for humans
may consist of plausible parameters for determining vaccine

efficacy, practically it cannot be applied in phase III clinical trials
as the window of viremia in CHIKV infected individuals is almost
impossible to capture. As a result, it is much more practical
to determine the levels of vaccine efficacy in animal models.
However, a major drawback of animal models is the absence
of CHIKV-induced chronic disease as observed in humans.
Nonetheless, we categorized the abovementioned animal models
for CHIKV infection in the following order of relevance:

(1) lethal-arthritis, (2) lethal, (3) arthritis, and (4) viremic,
which are based on the main endpoint parameters that can be
measured (as displayed inTable 1) and translated to humans. The
lethal-arthritis model involves s.c. or intradermal inoculation
of virus in the foot of immunocompromised A129 mice (and
possibly AG129), after which swelling can be measured up
to 5–8 days post-infection, before the mice succumb to the
infection. The main parameter measured in the lethal model

is mortality, for which immunocompromised or neonatal mice
are generally used. The arthritis model uses immunocompetent
mice to measure foot swelling. In both models, viremia can
also be measured. Lastly, the viremic model comprises older
mice in which challenge does not lead to mortality or foot
swelling, but viremia does still occur. Even though mortality
and/or arthritis cannot be measured in this model, it is a
useful model for identifying vaccine candidates that do not
provide any kind of protection. However, its main disadvantage
is that it does not provide good translation to humans.
In addition to the mouse models, macaques can also be
used to measure viremia and/or arthritis. However, due to
availability, costs, and ethical arguments, macaques are usually
not preferred.

Taken together, the lethal-arthritis model is the most
appropriate for prediction of vaccine efficacy in humans because
it utilizes the extreme susceptibility of the immunodeficient
mouse while allowing the simultaneous testing of the
largest number of efficacy parameters, namely mortality,
foot swelling, viremia, viral persistence in target organs,
levels of IL-6 (and other cytokines) and ferritin. It is unclear,
however, which threshold levels of IL-6 and ferritin are
associated with acute or chronic disease in mice. Therefore,
in order to validate the proposed VCF model, more
studies are warranted where all three efficacy endpoints are
measured simultaneously.
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